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three-dimensional elasticity solution for rectangular sandwich
lates exists only under restrictive assumptions on the orthotropic
aterial constants of the constitutive phases (i.e., face sheets and

ore). In particular, only for negative or zero discriminant of the
ubic characteristic equation, which is formed from these con-
tants (case of three real roots). The purpose of the present paper
s to present the corresponding solution for the more challenging
ase of positive discriminant, in which two of the roots are com-
lex conjugates. �DOI: 10.1115/1.2966174�

ntroduction
Elasticity solutions are significant because they provide a

enchmark for assessing the performance of the various plate or
hell theories or the various numerical methods such as the finite
lement method. For monolithic anisotropic bodies, such solutions
ave been developed primarily by Lekhnitskii �1�. For laminated
omposite or sandwich structures a few closed form solutions ex-
st, namely, for a plate configuration by Pagano �2� for the two-
imensional case and �3� for the three-dimensional case �both un-
er restrictive assumptions� and for a sandwich shell configuration
y Kardomateas �4�. The purpose of this work is to extend the
aper for the three-dimensional elastic solution by Pagano �3�.
pecifically, the material constants of each phase �layer in com-
osites or face-sheet or core in sandwich� result in a cubic char-
cteristic equation. In Ref. �3� only the case of negative discrimi-
ant of the cubic equation, which is the case of three unequal real
oots, was treated. The isotropic case, in which there are three
qual real roots, was also treated. In the present paper we present
he solution for the case of positive discriminant, which results in
wo complex conjugate roots and one real root of the cubic equa-
ion. Although the case of negative discriminant is probably more
requent with composite layers, including the transversely isotro-
ic layers �3�, the positive discriminant seems to appear frequently
n sandwich construction with orthotropic cores, in which the
tiffness in the transverse direction is greater than that of the in-
lane directions �e.g., realistic honeycomb cores as shown in the
xample in the Results and Discussion section�. Therefore, the
olution given in the present paper completes Pagano’s original
ork �3� for all cases of material constants.

lasticity Formulation
We consider a sandwich plate consisting of orthotropic face-

heets of thickness f1 and f2 and an orthotropic core of thickness
c, such that the various axes of elastic symmetry are parallel to
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the plate axes x, y, and z �Fig. 1�. The body is simply supported.
A normal traction �z=q0�x ,y� is applied on the upper surface but
the lower surface is traction-free.

Let us denote each phase by i, where i= f1 for the upper face-
sheet, i=c for the core, and i= f2 for the lower face-sheet. Then,
for each phase, the orthotropic strain-stress relations are in the
same form as in Eqs. �1� and �2� of Ref. �3�, with cij denoting the
stiffness constants. Using the strain-displacement relations and the
equilibrium relations and the simply supported plate solution for
the displacements as in Eqs. �6�–�8� of Ref. �3� results in the
following characteristic equation for a solution to exist in each of
the sandwich phases:

A0s6 + A1s4 + A2s2 + A3 = 0 �1�
where

A0 = − c33c44c55 �2a�

A1 = p2�c44�c11c33 − c13
2 � + c55�c33c66 − 2c13c44��

+ q2�c55�c22c33 − c23
2 � + c44�c33c66 − 2c23c55�� �2b�

A2 = − p4�c66�c11c33 − c13
2 � + c55�c11c44 − 2c13c66��

+ p2q2�− c11�c22c33 − c23
2 �

− 2�c12 + c66��c13 + c55��c23 + c44�

− 2c44c55c66 + 2c11c23c44 + c12c33�c12 + 2c66�

+ c13c22�c13 + 2c55�� − q4�c66�c22c33 − c23
2 �

+ c44�c22c55 − 2c23c66�� �2c�

A3 = p6c11c55c66 + p4q2�c55�c11c22 − c12
2 � + c66�c11c44 − 2c12c55��

+ p2q4�c44�c11c22 − c12
2 � + c66�c22c55 − 2c12c44�� + q6c22c44c66

�2d�
With the substitution

� = s2 �3�

Eq. �1�, which defines the parameter s, can be written in the form
of a cubic equation as

�3 + a1�2 + a2� + a3 = 0, ai = Ai/A0 �i = 1,2,3� �4�
This is what we would call the “characteristic equation” for the
elasticity solution. Let

Q =
3a2 − a1

2

9
, R =

9a1a2 − 27a3 − 2a1
3

54
, D = Q3 + R2 �5�

The last quantity, D, is the discriminant and determines the nature
of the solution. If D�0, then all roots are real and unequal. This
case was treated by Pagano �3�. We consider next the case of
positive discriminant, which has not yet been treated.

Solution for Positive Discriminant
If D�0, then the cubic equation �4� has one real root and two

complex conjugates.
With R and D defined in Eq. �5�, we further define

S = �3 R + �D, T = �3 R − �D �6a�

Then if

�R = − 1
2 �S + T� −

a1

3
, �I = 1

2
�3�S − T� �6b�

the two complex conjugate roots are

�1 = �R + i�I, �2 = �R − i�I �6c�

The real root is
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�3 = S + T −
a1

3
�6d�

We will consider how to deal with the complex conjugate roots
rst. In terms of the modulus r and amplitude � of these complex
umbers,

r = ��R
2 + �I

2, � = arctan� �I

�R
� �6e�

hese roots can be set in the form

�1 = r�cos � + i sin ��, �2 = r�cos � − i sin �� �6f�

rom Eq. �3�, we seek now the square roots of the �is. Thus, in
erms of

�1 = �r cos
�

2
, �2 = �r sin

�

2
�6g�

he corresponding roots of the sixth order equation �7�, si, are

s1,2 = � ��1 + i�2�, s3,4 = � ��1 − i�2� �6h�
Corresponding to these four roots, the displacement functions

ake the form

U	�z� = a1	e�1z cos �2z + a2	e�1z sin �2z + a3	e−�1z cos �2z

+ a4	e−�1z sin �2z, 	 = u,v,w �7�

here 	=u ,v ,w corresponds to the U, V, W displacements and
he a1	 are constants. Of the 12 constants appearing in Eq. �7�
nly 4 are independent. The eight relations that exist among these
onstants are found by substituting the displacements along with
qs. �6�–�8� of Ref. �3� into the equilibrium Eq. �3� of Ref. �3�.
For convenience, let us set

r1 = c44��1
2 + �2

2� + c66p2 + c22q
2 �8a�

r2 = c44��1
2 + �2

2� − c66p2 − c22q
2 �8b�

r3 = c55��1
2 + �2

2� + c11p2 + c66q
2 �8c�

r4 = c55��1
2 + �2

2� − c11p2 − c66q
2 �8d�

nd

e1 = r1�c13 + c55� − q2�c12 + c66��c23 + c44� �8e�

2

Fig. 1 Definition of the geometrical and l
e2 = r2�c13 + c55� + q �c12 + c66��c23 + c44� �8f�
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e3 = r3�c23 + c44� − p2�c12 + c66��c13 + c55� �8g�

e4 = r4�c23 + c44� + p2�c12 + c66��c13 + c55� �8h�
In this way, we obtain the following relations for the coeffi-

cients in the displacement expression for V�z�, Eq. �7�, in terms of
the coefficients in the expression for U�z�:

a1v = 
11a1u + 
12a2u, a2v = 
21a1u + 
22a2u �9a�

a3v = 
33a3u + 
34a4u, a4v = 
43a3u + 
44a4u �9b�
where


11 = 
22 = 
33 = 
44 =
q�e1e3�2

2 + e2e4�1
2�

p��2
2e1

2 + �1
2e2

2�
�9c�


12 = − 
21 = − 
34 = 
43 =
q�1�2�e2e3 − e1e4�

p��2
2e1

2 + �1
2e2

2�
�9d�

Also, the following relations for the coefficients in the expres-
sion for W�z�, Eq. �7�, in terms of the coefficients in the expres-
sion for U�z�:

a1w = f11a1u + f12a2u, a2w = f21a1u + f22a2u �10a�

a3w = f33a3u + f34a4u, a4w = f43a3u + f44a4u �10b�
where

f11 = f22 = − f33 = − f44 =
�c12 + c66�pq�1 − r2�1
11 − r1�2
21

q�c23 + c44���1
2 + �2

2�
�10c�

f12 = − f21 = f34 = − f43 = −
�c12 + c66�pq�2 + r2�1
12 + r1�2
22

q�c23 + c44���1
2 + �2

2�
�10d�

Now, coming to the real root �3 of Eq. �4�, this is treated in the
same manner as in Ref. �3�, i.e., if we set

m3 = ���3� �11�

then, if �3�0, the corresponding two roots of Eq. �1� are s5,6
= � im3 and the corresponding displacements can be set in the
form

ing configuration for the sandwich plate
U	�z� = a5	 cos m3z + a6	 sin m3z, 	 = u,v,w �12�
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If �3�0 then s5,6= �m3 and in an analogous fashion, we can
et

U	�z� = a5	 cosh m3z + a6	 sinh m3z, 	 = u,v,w �13�
Again, of the six unknown constants in Eq. �12� and �13� only

wo are independent and the four relations among them are found
gain by substituting these expressions into Eqs. �6�–�8� and �3� of
ef. �3�.
Hence, if we consider as independent the constants a1u, a2u,

3u, a4u, a5u, and a6u, which we rename for convenience as g1, g2,
3, g4, g5, and g6, respectively, the displacement U�z� is in the
orm

U�z� = du1g1 + du2g2 + du3g3 + du4g4 + du5g5 + du6g6 �14�

ith the z-dependent coefficients defined as

du1 = e�1z cos �2z, du2 = e�1z sin �2z �15a�

du3 = e−�1z cos �2z, du4 = e−�1z sin �2z �15b�

du5 = 	cos m3z if �3 � 0

cosh m3z if �3 � 0

 �15c�

du6 = 	sin m3z if �3 � 0

sinh m3z if �3 � 0

 �15d�

Similar expressions can be found for V�z�, W�z�, and the
tresses.

From this analysis, we can see that within each phase �i�, where
= f1 ,c , f2, there are six constants: gj

�i�, j=1, . . . ,6. Therefore, for
he three phases, this gives a total of 18 constants to be deter-

ined.
There are three traction conditions at each of the two core/face-

heet interfaces, giving a total of six conditions. In a similar fash-
on, there are three displacement continuity conditions at each of
he two core/face-sheet interfaces, giving another six conditions.
inally, there are three traction boundary conditions on each of the

wo plate bounding surfaces, giving another six conditions, for a
otal of 18 equations.

esults and Discussion
As an illustration of the above, let us consider a sandwich plate

ith unidirectional graphite/epoxy faces and hexagonal glass/
henolic honeycomb core. Such sandwich construction is quite
ommon in the aerospace/rotorcraft industry. The orthotropic
raphite/epoxy facing moduli are �in gigapascals� as follows: E1

f

181.0, E2
f =E3

f =10.3, G23
f =5.96, and G12

f =G31
f =7.17 and facing

oisson’s ratios are as follows: �12
f =�13

f =0.277 and �32
f =0.400.

he orthotropic honeycomb core moduli are �in gigapascals� as
ollows: E1

c =E2
c =0.032, E3

c =0.300, G23
c =G31

c =0.048, and G12
c

0.013 and core’s Poisson’s ratios are as follows: �12
c =�32

c =�31
c

0.25. The thickness of each face-sheet is f1= f2=2 mm and the
ore 2c=16 mm. The plate is square with a=b=10htot, where htot
s the total thickness of the plate. We further assume that a trans-
erse loading is applied at the top face-sheet of the form repre-
ented by Eq. �25� of Ref. �3�, and in the definition of p and q in
q. �7� of Ref. �3�, we further assume m=n=1, i.e., the applied

oading is in the form q0�x ,y�=� sin��x /a�sin��y /b�.
Substituting the corresponding constants leads to the following

s:
Face-sheets, D�0, therefore two complex conjugate roots and

ne real root:

�1
f = 342.5 + i316.3, �2

f = 342.5 − i316.3, �3
f = 6150.2

ore, D�0, therefore again two complex conjugate roots and one
eal root:

�c = 158.9 + i49.2, �c = 158.9 − i49.2, �c = 131.6
1 2 3

ournal of Applied Mechanics

ded 02 Feb 2009 to 130.207.50.192. Redistribution subject to ASM
Since for both the face-sheet and the core we have positive
discriminant, the formulas for the coefficients in the expressions
of the displacements and stresses given in the present paper are
applicable. Note that if one of the phases had a negative discrimi-
nant, then we would have to use the corresponding formulas in
Ref. �3�.

The solution is determined by imposing the following:

�a� three traction conditions at the lower face-sheet/core in-
terface:

�zz
�c� = �zz

�f2�, yz
�c� = yz

�f2� and xz
�c� = xz

�f2� at z = − c

�b� three displacement continuity conditions at the lower
core/face-sheet interfaces:

U�c� = U�f2�, V�c� = V�f2� and W�c� = W�f2� at z = − c

�c� three analogous traction conditions at the upper face-
sheet/core interface, z= +c

�d� three analogous displacement continuity conditions at the
upper face-sheet/core interface, z= +c

�e� three traction-free conditions at the lower bounding sur-
face:

�zz = 0, yz = 0 and xz = 0 at z = − �c + f2�
and finally,

�f� three traction conditions at the upper bounding surface
where the transverse load q0 is applied:

�zz = q0, yz = 0 and xz = 0 at z = �c + f1�

Therefore, we have a system of 18 linear algebraic equations in
the 18 unknowns, gj

�f2�, gj
�c�, and gj

�f1�, j=1,6.
The resulting transverse displacement w at the top, i.e., at z

=c+ f1, and at y=b /2 is shown in Fig. 2. In this figure, we also
show the predictions of the simple classical plate theory �5,6�,
which does not include transverse shear.

Furthermore, the resulting displacement profile from the first
order core shear theory �based on the shear being carried exclu-
sively by the core� �5,6� is also shown in Fig. 2. It can be seen that
the classical plate is too nonconservative and very inaccurate. Fur-
thermore, the first order shear is too conservative and also quite
inaccurate �although considerably better than the classical plate�.
Figure 3 shows the corresponding displacement profiles for a plate
five times longer, i.e., with a=b=50htot. We can see that for this
case of larger ratio of length over thickness, the classical and first

Fig. 2 Transverse displacement, W, at the top face-sheet and
at y=b /2 as a function of x for a=b=10htot
order shear theories come closer to the elasticity, as expected; the
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lassical plate is still quite inaccurate but much less so with the
rst order shear. These figures demonstrate clearly the large effect
f transverse shear, which is an important feature of sandwich

ig. 3 Transverse displacement, W, at the top face-sheet and
t y=b /2 as a function of x for a=b=50htot
tructures.
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Summary
A three-dimensional elasticity solution for a rectangular sand-

wich plate with positive discriminant orthotropic phases is pre-
sented. This is a case frequently encountered in realistic sandwich
construction. The solution is closed form. This work completes
Pagano’s original work �3�, which was done for the negative dis-
criminant orthotropic phases and for the isotropic phases.
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