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This work analyzes the nonlinear impulse response of a composite sandwich plate exposed to a sudden
point-wise transverse loading on the top face sheet. The nonlinearity arising from the core compressibil-
ity in the thickness direction is modeled and incorporated into the constitutive relations explicitly. As
such, one can have a deep insight regarding the stress, strain and displacement profiles into the sandwich
plate. The sandwich plate is assumed to be perfectly bonded at the face sheet/core interfaces. The equa-
tions of motion are formulated using Hamilton’s principle. The simply supported case is used to illustrate
the procedure for solving the nonlinear equations. Numerical results are presented to demonstrate the
response in terms of the transverse deformation and stresses in the composite sandwich plate. The effects
of the variation of the geometrical parameters of the structure on the blast impulse response are also
studied. Some conclusions are suggested regarding the associated optimal design of sandwich plates.
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1. Introduction

A typical sandwich plate consists of two stiff metallic or com-
posite thin face sheets separated by a soft honeycomb or foam
thick core of low density. This configuration gives the sandwich
material system high stiffness and strength with little resultant
weight penalty and high-energy absorption capability related to
the application of sandwich structures in the construction of aero-
space vehicles, naval vehicles and civil infrastructure. Most of the
studies in sandwich composites neglect the transverse deforma-
tion of the core as mentioned in the Sandwich Structures books
(Plantema, 1966; Allen, 1969; Vinson, 1999). The core of a sand-
wich structure is treated as infinitely rigid in the thickness direc-
tion and only its shear stresses are taken into account. This
assumption works well in the analysis of sandwich structural re-
sponse to a static or dynamic loading of long-duration. However,
several studies (Kwon and Lannamann, 2002; Xue and Hutchinson,
2004; Fleck and Deshpande, 2004; Li et al., 2008) have shown that
the core transverse deformation/strain in a sandwich structure
subject to impulsive loading has a highly non-linear profile with
respect to the thickness-wise coordinate. Although two models
(Frostig et al., 1992; Librescu et al., 2004) consider transverse com-
pressibility in the core, they yield either linear or constant trans-
verse strain profiles.
ll rights reserved.

: +1 404 894 9313.
tech.edu (G.A. Kardomateas).
It has been shown that the non-linear high order core theory in
Li and Kardomateas (2008) is very accurate, yielding essentially
identical results to the elasticity solution for static transverse load-
ing. Therefore, this paper we shall extend this non-linear core mod-
el in to address the dynamic response of sandwich plates subject to
point-wise blast impact loading. Consideration of the core com-
pressibility implies that the displacements of the top and bottom
face sheets may not be identical. The following assumptions will
be adopted in this paper: (1) the face sheets satisfy the Kirch-
hoff-Love assumptions and their thicknesses are small compared
with the overall thickness of the sandwich section, and the two
face sheets are further assumed to have identical thickness; (2)
the core is compressible in the transverse direction, that is, its
thickness may change; (3) the bonding between the face sheets
and the core is assumed perfect; and (4) an impulse loading decay-
ing exponentially with time (blast loading) applied at a specific
point on the top face of the plate will be considered.

This paper is organized as follows: the high order non-linear
transverse compressible core theory assumptions are summarized
in Section 2. The equations of motion and boundary and initial con-
ditions are formulated in Section 3 via Hamilton’s principle. These
unknowns in the equations are highly coupled in terms of both the
spatial and time variables. A solution procedure for solving the
non-linear partial governing equations is formulated in Section 4
using the simply supported case as an example. Results from
point-wise sudden impulse loading on the top face sheet of a sand-
wich plate are presented and discussed in Section 5. Suggested in
Section 6 are some conclusions.

mailto:george.kardomateas@aerospace.gatech.edu
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr


R. Li et al. / International Journal of Solids and Structures 46 (2009) 2216–2223 2217
2. Formulation

2.1. Kinematic relations

In the following, we consider a sandwich plate with two identi-
cal face sheets of thickness hf and a core of thickness hc and let a
cartesian coordinate system ðx; y; zÞ be on the middle plane of the
core, as shown in Fig. 1. The corresponding displacements are
denoted by ðu;v;wÞ. We further use the superscript ‘‘t, b, c” to refer
to the top face sheet, bottom face sheet or core, respectively, and
the subscript ‘‘0” to refer to the middle surface of the correspond-
ing phase.

The face sheets are assumed to satisfy the Kirchhoff-Love
assumptions and their thicknesses are small compared with the
overall thickness of the sandwich section. Therefore, if we define

f ¼ z� hc

2
þ hf

2

� �
; ð1aÞ

in which the ‘±’ sign in the variable f corresponds to the top and
bottom face sheets respectively, the displacements for the top and
bottom face sheets are expressed as:

ut;bðx; y; zÞ ¼ ut;b
0 ðx; yÞ � fwt;b

;x ðx; yÞ; ð1bÞ
v t;bðx; y; zÞ ¼ v t;b

0 ðx; yÞ � fwt;b
;y ðx; yÞ; ð1cÞ

wt;bðx; y; zÞ ¼ wt;bðx; yÞ; � hf

2
6 f 6

hf

2
: ð1dÞ

Omitting the superscripts t and b, the non-linear strain–dis-
placement relations for the face-sheets can take the following
form:

½�� ¼
�xx

�yy

cxy

264
375 ¼ ½�0� þ f½k� ¼

�0
x þ fkx

�0
y þ fky

c0
xy þ fkxy

264
375; ð2aÞ

in which ½�0� is the middle surface strain given by

½�0� ¼
�0

x

�0
y

c0
xy

264
375 ¼ u0;x þ 1

2 w2
;x

v0;y þ 1
2 w2

;y

u0;y þ v0;x þw;xw;y

264
375: ð2bÞ

Moreover, ½k� is the curvature

½k� ¼
kx

ky

kxy

264
375 ¼ �w;xx

�w;yy

�2w;xy

264
375: ð2cÞ

During the impulsive loading process, the core may undergo a
considerable reduction in thickness. In order to capture this core
transverse compressibility, we use a higher order core theory as
formulated by Li and Kardomateas (2008). In this theory, the trans-
verse displacement in the core, wc is of fourth order in the trans-
verse direction z:
Fig. 1. A composite sandwich plate subject to point-wise blast (impluse) loading.
wcðx; y; zÞ ¼ 1� 2z2

h2
c

� 8z4

h4
c

 !
wc

0ðx; yÞ þ
2z2

h2
c

þ 8z4

h4
c

 !
�wðx; yÞ

� z
hc
þ 4z3

h3
c

 !
ŵðx; yÞ; � hc

2
6 z 6

hc

2
; ð3aÞ

in which wc
0ðx; yÞ is the transverse displacement of the middle sur-

face of the core, and �wðx; yÞ and ŵðx; yÞ are, respectively, the aver-
age and difference of the middle surface transverse displacements
for the two face-sheets,

�wðx; yÞ ¼ 1
2

wtðx; yÞ þwbðx; yÞ
� �

;

ŵðx; yÞ ¼ 1
2

wtðx; yÞ �wbðx; yÞ
� �

: ð3bÞ

The in-plane displacements in the core, uc and vc , are of fifth
order in z, expressed as follows:

ucðx; y; zÞ ¼ �uðx; yÞ � z
2
hc

ûðx; yÞ þ z
hf

hc
wc
;xðx; y; zÞ; ð4aÞ

vcðx; y; zÞ ¼ �vðx; yÞ � z
2
hc

v̂ðx; yÞ þ z
hf

hc
wc
;yðx; y; zÞ; ð4bÞ

where, �uðx; y; tÞ; ûðx; y; tÞ and �vðx; y; tÞ, v̂ðx; y; tÞ are, again, respec-
tively, the average and difference of the middle surface in-plane dis-
placements for the two face-sheets:

�uðx; yÞ ¼ 1
2
½ut

0ðx; yÞ þ ub
0ðx; yÞ�;

ûðx; yÞ ¼ 1
2
½ut

0ðx; yÞ � ub
0ðx; yÞ�; ð4cÞ

�vðx; yÞ ¼ 1
2
½v t

0ðx; yÞ þ vb
0ðx; yÞ�;

v̂ðx; yÞ ¼ 1
2
½v t

0ðx; yÞ � vb
0ðx; yÞ�: ð4dÞ

These displacement profiles satisfy the displacement continu-
ity, at the top face sheet/core interface, z ¼ �hc=2 and at the
bottom face sheet/core interface, z ¼ hc=2.

It should be noted that like any other plate theory, this is still an
approximate model and, although the displacement field satisfies
all continuity and compatibility conditions, the equilibrium equa-
tions may not be satisfied within the core. However, a validation
study for the static loading case has shown that this high order the-
ory gives a displacement distribution almost exactly as the elastic-
ity solution and a transverse stress distribution most close to the
elasticity solution among all current sandwich theories (Li and
Kardomateas, 2008).

The displacement profiles postulated above lead to the follow-
ing strain relations for the core:

�c
zz ¼ � 1

2hc
þ 2z

h2
c

� 6z2

h3
c

þ 16z3

h4
c

 !
wtðx; yÞ � 4z

h2
c

þ 32z3

h4
c

 !
wc

oðx; yÞ

þ 1
2hc
þ 2z

h2
c

þ 6z2

h3
c

þ 16z3

h4
c

 !
wbðx; yÞ; ð5aÞ

cc
xz ¼ �

2
hc

ûðx; yÞ þ g1ðzÞwt
;xðx; yÞ þ g2ðzÞwc

o;xðx; yÞ þ g3ðzÞwb
;xðx; yÞ;

ð5bÞ

cc
yz ¼ �

2
hc

v̂ðx; yÞ þ g1ðzÞwt
;yðx; yÞ þ g2ðzÞwc

o;yðx; yÞ þ g3ðzÞwb
;yðx; yÞ;

ð5cÞ

in which,
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g1ðzÞ ¼ � 1þ 2hf

hc

� �
z

2hc
þ 1þ 3hf

hc

� �
z2

h2
c

� 1þ 4hf

hc

� �
2z3

h3
c

þ 1þ 5hf

hc

� �
4z4

h4
c

; ð5dÞ

g2ðzÞ ¼ 1þ hf

hc

� �
� 1þ 3hf

hc

� �
2z2

h2
c

� 1þ 5hf

hc

� �
8z4

h4
c

; ð5eÞ

g3ðzÞ ¼ 1þ 2hf

hc

� �
z

2hc
þ 1þ 3hf

hc

� �
z2

h2
c

þ 1þ 4hf

hc

� �
2z3

h3
c

þ 1þ 5hf

hc

� �
4z4

h4
c

: ð5fÞ

It should be noted that the core is considered undergoing large rota-
tion with a small displacement, therefore, the in-plane strains can
be neglected.
2.2. Constitutive relations

The equations developed so far can be applied to general mate-
rials. In the following sections, we will assume the face sheets are
made of orthotropic laminated composites and the core is also
orthotropic.

The general stress–strain relationship for any layer of the face
sheets reads as:

rxx

ryy

sxy

264
375 ¼ C11 C12 C16

C12 C22 C26

C16 C26 C66

264
375 �xx

�yy

cxy

264
375 or ½r� ¼ ½C�½��; ð6aÞ

where Cij for i; j ¼ 1;2;6 are the plane-stress reduced stiffness coef-
ficients. Therefore, based on classic laminated composite theory,
one can find the resultants for the top or bottom face sheet of a
sandwich plate as:

Nx

Ny

Nxy

264
375 ¼ A11 A12 A16

A12 A22 A26

A16 A26 A66

264
375 �0

x

�0
y

c0
xy

264
375þ B11 B12 B16

B12 B22 B26

B16 B26 B66

264
375 k0

x

k0
y

k0
xy

2664
3775;
ð6bÞ

for the resultant force and

Mx

My

Mxy

264
375 ¼ B11 B12 B16

B12 B22 B26

B16 B26 B66

264
375 �0

x

�0
y

c0
xy

264
375þ D11 D12 D16

D12 D22 D26

D16 D26 D66

264
375 k0

x

k0
y

k0
xy

2664
3775;
ð6cÞ

for the resultant moment. The A (extensional), B (coupling) and D
(bending) stiffness matrices are respectively defined as:

½Aij;Bij;Dij� ¼
R cþf

c Cij�f1;z;z2gdz; for top faceR�c
�c�f Cij�f1;z;z2gdz; for bottom face

(
i; j¼1;2;6:

ð6dÞ

The stress–strain relations for an orthotropic core can be written as:

rc
zz ¼ Ec�c

zz; sc
xz ¼ Gc

xzc
c
xz; sc

yz ¼ Gc
yzc

c
yz: ð7Þ
3. Equations of motion

The equations of motion and appropriate boundary conditions
can be derived using the Hamilton’s principle. The sandwich plate
is subject to an impulsive transverse loading qðx; y; tÞ on the top
face-sheet. Let the strain energy be denoted by U, the external
potential by W and the kinetic energy by T, then the variational
principle states:

d½T � ðU �WÞ� ¼ 0; ð8Þ

in which,

dT ¼
Z t

0

Z b=2

�b=2

Z a=2

�a=2

Z �hc
2

�hc
2�hf

qf ð _utd _ut þ _v td _v t þ _wtd _wtÞdz

"

þ
Z hc

2

�hc
2

qcð _ucd _uc þ _vcd _vc þ _wcd _wcÞdz

þ
Z hc

2þhf

hc
2

qf ð _ubd _ub þ _vbd _vb þ _wbd _wbÞdz

#
dxdydt; ð9aÞ

dU ¼
Z t

0

Z b=2

�b=2

Z a=2

�a=2

Z �hc
2

�hc
2�hf

ðrt
xxd�

t
xx þ rt

yyd�
t
yy þ st

xydc
t
xyÞdz

"

þ
Z hc

2

�hc
2

ðrc
zzd�

c
zz þ sc

xzdc
c
xz þ sc

yzdc
c
yzÞdz

þ
Z hc

2þhf

hc
2

ðrb
xxd�

b
xx þ rb

yyd�
b
yy þ sb

xydc
b
xyÞdz

#
dxdydt; ð9bÞ

dW ¼
Z t

0

Z b=2

�b=2

Z a=2

�a=2
qðx; y; tÞdwt dxdydt; ð9cÞ

where q is the mass density. The superscript t in the above equa-
tions denotes the corresponding values for the top face sheet
whereas t when appearing in the variable list of the functions refers
to time. The equation of motion and the boundary conditions can be
obtained by substituting the stress–strain relations (6a) and (7) and
displacements (3) and (4) into Eqs. (9), then into (8) and employing
integration by parts. This results in seven equations, three for each
face sheet and one for the core. There are seven unknowns:
ut

o;v t
o;w

t;wc
o;u

b
o;vb

o;w
b.

The resulting equations for the top face sheet are:

dut
0 : Nt

x;x þ Nt
xy;y � qf hf þ qc hc

3

� �
€ut

o � qc hc

6
€ub

o

þ qc hchf

420
ð23 €wt

;x þ 17 €wc
o;x � 5 €wb

;xÞ

� Gc
xz

1
hc

ut
o � ub

o

� �
� 11

15
wc

o;x � a0 wt
;x þwb

;x

� 	
 �
¼ 0; ð10aÞ

dv t
0 : Nt

xy;x þ Nt
y;y � qf hf þ qc hc

3

� �
€v t

o � qc hc

6
€vb

o

þ qc hchf

420
ð23 €wt

;y þ 17 €wc
o;y � 5 €wb

;yÞ

� Gc
yz

1
hc
ðv t

o � vb
oÞ �

11
15

wc
o;y � a0ðwt

;y þwb
;yÞ


 �
¼ 0; ð10bÞ

and

dwt
0 : Mt

x;xx þ 2Mt
xy;xy þMt

y;yy þ ðN
t
xwt

;xÞ;x þ ðN
t
xywt

;xÞ;y þ ðN
t
yxwt

;yÞ;x

þ ðNt
ywt

;yÞ;y � qthf þ
29

315
qchc

� �
€wt � qc 37hc

630
€wc

o �
11
37

€wb

� �

þ o2

ox2 þ
o2

oy2

 !
qc

19hch2
f

1155
€wt þ

qchch2
f

27720
199 €wc

o � 61 €wb
� �" #

� qc hchf

420
½23ð€ut

o;x þ €v t
o;yÞ þ 5ð€ub

o;x þ €vb
o;yÞ�

þ a1hcðGc
xzwt

;xx þ Gc
yzw

t
;yyÞ þ a2hcðGc

xzw
c
o;xx þ Gc

yzw
c
o;yyÞ
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� a3hcðGc
xzw

b
;xx þ Gc

yzwb
;yyÞ � a0½Gc

xzðut
o;x � ub

o;xÞ

þ Gc
yzðv t

o;y � vb
o;yÞ� �

61
21

Ec

hc
wt � 358

305
wc

o þ
53

305
wb

� �
þ qðx; y; tÞ ¼ 0; ð10cÞ
in which ai ði ¼ 1; . . . ;4Þ are constants in terms of the ratio of face
thickness and core thickness as follows:

a0 ¼
2

15
þ hf

2hc
; a1 ¼

29
315
þ 373

630
hf

hc
þ 247

252
hf

hc

� �2

; ð11aÞ

a2 ¼
37

630
þ 37

630
hf

hc
� 383

630
hf

hc

� �2

;

a3 ¼
11

630
þ 11

630
hf

hc
� 23

180
hf

hc

� �2

: ð11bÞ

The equation of motion for the compressible core is:

dwc
0 : a4hcðGc

xzw
c
o;xx þ Gc

yzwc
o;yyÞ þ a2hc½Gc

xzðwt
;xx þwb

;xxÞ

þ Gc
yzðwt

;yy þwb
;yyÞ� �

194
315

hcq €wc
o �

37hc

630
qcð€wt þ €wbÞ

� 17hf hc

420
qcð€ut

0;x þ €v t
0;yÞ þ

17hf hc

420
qcð€ub

0;x þ €vb
0;yÞ

þ
181h2

f hc

6930
qc o2

ox2 þ
o2

oy2

 !
€wc

o þ
199
724
ð €wt þ €wbÞ


 �
� 358

105
Ec

hc
ð2wc

o �wt �wbÞ � 11
15

Gc
xzðut

o;x � ub
o;xÞ

� 11
15

Gc
yzðv t

o;y � vb
o;yÞ ¼ 0 ð12Þ

where,

a4 ¼
194
315
þ 194

315
hf

hc
þ 383

315
hf

hc

� �2

: ð13Þ

A similar set of equations for the motion of the bottom face sheet
can be derived, as follows:

dub
0 : Nb

x;x þ Nb
xy;y � qf hf þ qc hc

3

� �
€ub

o � qc hc

6
€ut

o

� qc hchf

420
23 €wb

;x þ 17 €wc
o;x � 5 €wt

;x

� 	
� Gc

xz
1
hc

ut
o � ub

o

� �
� 11

15
wc

o;x � a0 wt
;x þwb

;x

� 	
 �
¼ 0; ð14aÞ

dvb
0 : Nb

xy;x þ Nb
y;y � qf hf þ qc hc

3

� �
€vb

o � qc hc

6
€v t

o

� qc hchf

420
ð23 €wb

;y þ 17 €wc
o;y � 5 €wt

;yÞ

� Gc
yz

1
hc
ðv t

o � vb
oÞ �

11
15

wc
o;y � a0ðwt

;y þwb
;yÞ


 �
¼ 0; ð14bÞ

and

dwb
0 : Mb

x;xx þ 2Mb
xy;xy þMb

y;yy þ ðN
b
xwb

;xÞ;x þ ðN
b
xywb

;xÞ;y þ ðN
b
yxwb

;yÞ;x

þ ðNb
ywb

;yÞ;y � qf hf þ
29

315
qchc

� �
€wb � qc 37hc

630
€wc

o �
11
37

€wt

� �
þ o2

ox2 þ
o2

oy2

 !
qc

19hch2
f

1155
€wb þ

qchch2
f

27720
199 €wc

o � 61 €wt
� �" #

þ qc hchf

420
½23ð€ub

o;x þ €vb
o;yÞ þ 5ð€ut

o;x þ €v t
o;yÞ�

þ a1hcðGc
xzw

b
;xx þ Gc

yzwb
;yyÞ þ a2hcðGc

xzw
c
o;xx þ Gc

yzwc
o;yyÞ

� a3hcðGc
xzw

t
;xx þ Gc

yzwt
;yyÞ � a0½Gc

xzðut
o;x � ub

o;xÞ

þ Gc
yzðv t

o;y � vb
o;yÞ� �

61
21

Ec

hc
wb � 358

305
wc

o þ
53

305
wt

� �
¼ 0:

ð14cÞ
The corresponding boundary conditions at x ¼ 0, a read as follows:
For the top face sheet:

ut
0 ¼ ~ut or Nt

x ¼ eNt
x; ð15aÞ

v t
0 ¼ ~v t or Nt

xy ¼ eNt
xy; ð15bÞ

wt ¼ ~wt or Nt
xwt

;x þMt
x;x þ Nt

xywt
;y þ 2Mt

xy;x

þ Gc
xz a0ðub

0 � ut
0Þ þ a1hcwt

;x þ a2hcwc
0;x � a3hcwb

;x

h i
¼ eQ t

x;

ð15cÞ

where eQ t
x is the resultant top face sheet shear, defined as the

integral of sxz over the top face sheet, and

wt
;x ¼ ~wt

;x or Mt
x ¼ eMt

x: ð15dÞ

For the core:

wc
0 ¼ ~wc

0 or
11
15
ðub

0 � ut
0Þ þ a2hcwt

;x þ a4hcwc
0;x þ a2hcwb

;x ¼ ~Qc;

ð16Þ

where eQ c is the resultant core shear divided by the core shear mod-
ulus, i.e. eQ c is defined as the integral of sxz=Gc over the core.

For the bottom face sheet:

ub
o ¼ ~ub or Nb

x ¼ eNb
x ; ð17aÞ

vb
o ¼ ~vb or Nb

xy ¼ eNb
xy; ð17bÞ

wb ¼ ~wb or Nb
xwb

;x þMb
x;x þ Nb

xywb
;y þ 2Mb

xy;x

þ Gc
xz½a0ðub

0 � ut
0Þ � a3hcwt

;x þ a2hcwc
0;x þ a1hcwb

;x� ¼ eQ b
x ;

ð17cÞ

where again eQ b
x is the resultant bottom face sheet shear, defined as

the integral of sxz over the bottom face sheet, and

wb
;x ¼ ~wb

;x or Mb
x ¼ eMb

x : ð17dÞ

The superscript � denotes the known external boundary values.
Similar equations can be written for y ¼ 0; b.
Assuming the sandwich plate is made of orthotropic materials

and substituting Eq. (2b) into (6b) and (6c) and then into Eq.
(10), one can rewrite the non-linear governing equations for the
top face sheet as:

At
11ut

o;xx þ At
66ut

o;yy þ ðA
t
12 þ At

66Þv t
o;xy �

Gc
xz

hc
ðut

o � ub
oÞ

� qf hf þ qc hc

3

� �
€ut

o � qc hc

6
€ub

o þ qc hf hc

420
ð23 €wt

;x þ 17 €wc
o;x � 5 €wb

;xÞ

þ Gc
xz

11
15

wc
o;x þ a0ðwt

;x þwb
;xÞ


 �
¼ bF t

1; ð18aÞ

ðAt
21 þ At

66Þut
o;xy þ At

66v
t
o;xx þ At

22v
t
o;yy �

Gc
yz

hc
ðv t

o � vb
oÞ

� qf hf þ qc hc

3

� �
€v t

o � qc hc

6
€vb

o þ qc hf hc

420
ð23 €wt

;y þ 17 €wc
o;y � 5 €wb

;yÞ

þ Gc
yz

11
15

wc
o;y þ a0ðwt

;y þwb
;yÞ


 �
¼ bF t

2; ð18bÞ

in which the last terms in the left-hand side of these equations
reflect the effects of the higher order core theory, and the second
from last terms in the left-hand side can be viewed as the excitation
produced by the transverse motion for the in-plane motion;
furthermore, the Ft

1; F
t
2 terms in the right-hand side represent the

nonlinear terms, and these are:
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bF t
1 ¼ �A11wt

;xwt
;xx � ðA12 þ A66Þwt

;ywt
;xy � A66wt

;xwt
;yy; ð18cÞ

bF t
2 ¼ �ðA21 þ A66Þwt

;xwt
;xy � A66wt

;xxwt
;y � A22wt

;ywt
;yy: ð18dÞ

Furthermore, the third equation is:

Dt
11wt

;xxxx þ 2ðDt
12 þ 2Dt

66Þwt
;xxyy þ Dt

22wt
;yyyy

þ 61
21

Ec

hc
wt � 358

305
wc

o þ
53

305
wb

� �
þ qthf þ qc 29hc

315

� �
€wt

þ qc 37hc

630
€wc

o �
11
37

€wb

� �
� o2

ox2 þ
o2

oy2

 !
qc

19h2
f hc

1155
€wt

"

þ
qch2

f hc

27720
ð199 €wc

o � 61 €wbÞ
#
� a1hcðGc

xzw
t
;xx þ Gc

yzw
t
;yyÞ

�a2hcðGc
xzwc

o;xx þ Gc
yzw

c
o;yyÞ þ a3hcðGc

xzw
b
;xx þ Gc

yzw
b
;yyÞ

þqc hf hc

420
½23ð€ut

o;x þ €v t
o;yÞ þ 5ð€ub

o;x þ €vb
o;yÞ� þ a0½Gc

xzðut
o;x � ub

o;xÞ

þGc
yzðv t

o;y � vb
o;yÞ� ¼ qðx; y; tÞ þ bF t

3; ð18eÞ

in which the last term in the left-hand side reflects the effects of the
higher order core theory, and the second from last term in the left-
hand side can be viewed as the effect from the in-plane motion on
the transverse motion and Ft

3 in the right-hand side is the nonlinear
terms, as follows:bF t

3 ¼ ðN
t
xwt

;xÞ;x þ ðN
t
xywt

;xÞ;y þ ðN
t
yxwt

;yÞ;x þ ðN
t
ywt

;yÞ;y: ð18fÞ

Similarly, one can also recast the equation for core as follows:

a4hcðGc
xzw

c
o;xx þ Gc

yzwc
o;yyÞ þ a2hc½Gc

xzðwt
;xx þwb

;xxÞ þ Gc
yzðwt

;yy þwb
;yyÞ�

� 194
315

qchc €wc
o �

358
105

Ec

hc
ð2wc

o �wt �wbÞ � 37hc

630
qcð €wt þ €wbÞ

þ
181h2

f hc

6930
qc o2

ox2 þ
o2

oy2

 !
€wc

o þ
199
724
ð €wt þ €wbÞ


 �

� 17hf hc

420
qcð€ut

0;x þ €v t
0;y � €ub

0;x � €vb
0;yÞ �

11
15

Gc
xzðut

o;x � ub
o;xÞ

� 11
15

Gc
yzðv t

o;y � vb
o;yÞ ¼ 0: ð19Þ

Finally, for the bottom face sheet, the equations of motion become:

Ab
11ub

o;xx þ Ab
66ub

o;yy þ ðA
b
12 þ Ab

66Þvb
o;xy þ

Gc
xz

hc
ðut

o � ub
oÞ

� qf hf þ
hc

3
qc

� �
€ub

o � qc hc

6
€ut

o � qc hf hc

420
ð23 €wb

;x þ 17 €wc
o;x � 5 €wt

;xÞ

� Gc
xz

11
15

wc
o;x þ a0ðwt

;x þwb
;xÞ


 �
¼ bF b

1; ð20aÞ

ðAb
21 þ Ab

66Þub
o;xy þ Ab

66vb
o;xx þ Ab

22vb
o;yy þ

Gc
yz

hc
ðv t

o � vb
oÞ

� qf hf þ
hc

3
qc

� �
€vb

o � qc hc

6
€v t

o þ qc hf hc

420
ð5 €wt

;y � 17 €wc
o;y � 23 €wb

;yÞ

� Gc
yz

11
15

wc
o;y þ a0ðwt

;y þwb
;yÞ


 �
¼ bF b

2; ð20bÞ

and

Db
11wb

;xxxx þ 2ðDb
12 þ 2Db

66Þwb
;xxyy þ Db

22wb
;yyyy

þ 61
21

Ec

hc

53
305

wt � 358
305

wc
o þwb

� �
� qbhf þ qc 29hc

315

� �
€wb

þ qc 37hc

630
€wc

o �
11
37

€wt

� �
� o2

ox2 þ
o2

oy2

 !
qc

19h2
f hc

1155
€wb

"

þ qc
h2

f hc

27720
ð199 €wc

o � 61 €wtÞ
#
þ a3hcðGc

xzw
t
;xx þ Gc

yzwt
;yyÞ

� a2hcðGc
xzwc

o;xx þ Gc
yzw

c
o;yyÞ � a1hcðGc

xzw
b
;xx þ Gc

yzw
b
;yyÞ

� qc hf hc

420
½5ð€ut

o;x þ €v t
o;yÞ þ 23ð€ub

o;x þ €vb
o;yÞ� þ a0½Gc

xzðut
o;x � ub

o;xÞ

þ Gc
yzðv t

o;y � vb
o;yÞ� ¼ bF b

3; ð20cÞ

in which the right-hand sides are the nonlinear terms:

bF b
1 ¼ �Ab

11wb
;xwb

;xx � ðA
b
12 þ Ab

66Þwb
;ywb

;xy � Ab
66wb

;xwb
;yy; ð20dÞ

bF b
2 ¼ �ðA

b
21 þ Ab

66Þwb
;xwb

;xy � Ab
66wb

;xxwb
;y � Ab

22wb
;ywb

;yy; ð20eÞ

bF b
3 ¼ ðN

b
xwb

;xÞ;x þ ðN
b
xywb

;xÞ;y þ ðN
b
yxwb

;yÞ;x þ ðN
b
ywb

;yÞ;y: ð20fÞ
4. Solution procedure

In this section the solution procedure for the dynamic response
of sandwich plates will be demonstrated through the study of the
simply supported case. The boundary conditions along the
x ¼ 0; a and y ¼ 0; b sides (Fig. 1) read as:

ut
0 ¼ 0; ub

0 ¼ 0; v t
0 ¼ 0; vb

0 ¼ 0; wt ¼ 0; wc ¼ 0; wb ¼ 0

ð21aÞ

and

Mt
xx ¼ 0; Mb

xx ¼ 0 for x ¼ 0; a; ð21bÞ

Mt
yy ¼ 0; Mb

yy ¼ 0 for y ¼ 0; b: ð21cÞ

The displacements can be assumed as:

ut
o ¼

X
m;n

Ut
mnðtÞ cos

mpx
a

sin
npy

b
;

v t
0 ¼

X
m;n

Vt
mnðtÞ sin

mpx
a

cos
npy

b
; ð22aÞ

ub
o ¼

X
m;n

Ub
mnðtÞ cos

mpx
a

sin
npy

b
;

vb
0 ¼

X
m;n

Vb
mnðtÞ sin

mpx
a

cos
npy

b
; ð22bÞ

wt ¼
X
m;n

Wt
mnðtÞ sin

mpx
a

sin
npy

b
;

wb ¼
X
m;n

Wb
mnðtÞ sin

mpx
a

sin
npy

b
; ð22cÞ

wc
o ¼

X
m;n

Wc
mnðtÞ sin

mpx
a

sin
npy

b
; ð22dÞ

where Ut
mnðtÞ, Vt

mnðtÞ, Ub
mnðtÞ, Vb

mnðtÞ, Wt
mnðtÞ, Wb

mnðtÞ, and Wc
mnðtÞ are

unknown functions of time t. These displacements satisfy the
boundary conditions. Substituting the displacements (22) into the
equations of motion (18)–(20), with bF t

i , bF b
i ði ¼ 1;2;3Þ and qðx; y; tÞ

being expressed into the following form:

bF t;b
1 ¼

X
mn

bF t;b
1mnðtÞ cos

mpx
a

sin
npy

b
;

bF t;b
2 ¼

X
mn

bF t;b
2mnðtÞ sin

mpx
a

cos
npy

b
; ð23aÞ
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bF t;b
3 ¼

X
mn

bF t;b
3mnðtÞ sin

mpx
a

sin
npy

b
;

qðx; y; tÞ ¼
X
mn

bQ mnðtÞ sin
mpx

a
sin

npy
b

; ð23bÞ

we can obtain sets of second order ordinary differential equations
with regard to the variable time in matrix form:

½Mmn�€UmnðtÞ þ ½1mn� _UmnðtÞ þ ½jmn�UmnðtÞ ¼ FmnðtÞ; ð24Þ

where ½Mmn� is the equivalent mass matrix, ½1mn� is the damping
coefficient matrix and ½jmn� is the equivalent spring constant ma-
trix. These are 7 � 7 matrices for a given pair ðm;nÞ.

The displacement vector Umn is defined as Umn ¼ ½Ut
mnðtÞ;V

t
mnðtÞ;

Wt
mnðtÞ;W

c
mnðtÞ;U

b
mnðtÞ;V

b
mnðtÞ;W

b
mnðtÞ�

T and the loading vector

Fmn ¼ ½bF t
1mnðtÞ þ Q̂ mnðtÞ; bF t

2mnðtÞ; bF t
3mnðtÞ;0; bF b

1mnðtÞ; bF b
2mnðtÞ; bF b

3mnðtÞ�
T .

The bF t
jmnðtÞ; bF b

jmnðtÞ; bQ mnðtÞ are obtained from Eqs. (23) as:

bQ mnðtÞ ¼
4
ab

Z a

0

Z b

0
qðx; y; tÞ sin

mpx
a

sin
npy

b
; ð25aÞ

bF t;b
1mnðtÞ ¼

4
ab

Z a

0

Z b

0

bF t
1 cos

mpx
a

sin
npy

b
; ð25bÞ

with similar expressions for the rest of the bF t
jmnðtÞ and bF b

jmnðtÞ.
Next, applying the Laplace transform:

eUðsÞ ¼ L½UðtÞ�ðsÞ ¼
Z 1

0
UðtÞe�st dt ð26Þ

to Eq. (24), one can further obtain:

s2½Mmn� þ s½1mn� þ ½jmn�
� �eUmnðsÞ ¼ eF mnðsÞ: ð27Þ

In the Laplace space, the solution in terms of the displacements
to Eq. (27) can be obtained without much difficulty if the loading

vector eF mn ¼ ½eF t
1mn þ eQ mnðsÞ; eF t

2mn;
eF t

3mn;0; eF b
1mn;

eF b
2mn;

eF b
3mn�

T is con-
stant, then (27) is a set of linear algebraic equations, which can

be solved directly for eUmn ¼ ½eUt
mn;
eV t

mn;
fW t

mn;
fW c

mn;
eUb

mn;
eV b

mn;
fW b

mn�
T

and then the displacements in time domain Umn ¼ ½Ut
mnðtÞ;V

t
mnðtÞ;

Wt
mnðtÞ;W

c
mnðtÞ;U

b
mnðtÞ;V

b
mnðtÞ;W

b
mnðtÞ�

T can be recovered using the
inverse Laplace Transform without much difficulty. Subsequently,
the solution for the displacements can be found by using Eqs.

(22). But the loading coefficients eF t
jmn and eF b

jmn were derived from
the expressions (18c), (18d), (18f) and (20d)–(20f), which are
non-linear functions of the displacements. Therefore, the right-

hand side of (27), eF mn are non-linear functions of eUmn. Therefore,

an iterative procedure is developed as follows: (1) First, eQ mn is a
known function once the applied load is given. If the right-hand

side of Eq. (27) is approximated by eF mn ¼ ½ eQ mn;0;0;0;0;0; 0�T , then

a first approximation to the solution is easily obtained as feUmnðsÞ ¼
s2½Mmn� þ s½1mn� þ ½jmn�g�1eF mn (the superscript �1 denotes matrix
inversion). (2) Application of the Inverse laplace Transform toeUmnðsÞ can lead to the corresponding solution UmnðtÞ. Then, making
use of Eqs. (18c), (18d), (18f), (20d)–(20f) and (22), one can deter-

mine the functions bF t
1; F̂

t
2;
bF t

3 and bF b
1;
bF b

2;
bF b

3 and then the corre-

sponding to these Laplace Transforms eF t
1;
eF t

2;
eF t

3 and eF b
1;
eF b

2;
eF b

3. (3)
The next approximation for the displacements is found by solving

Eq. (27) with the updated vector eF mn ¼ ½eF t
1mn þ eQ mnðsÞ; eF t

2mn;
eF t

3mn;

0; eF b
1mn;

eF b
2mn;

eF b
3mn�

T . This procedure continues until the in-plane
and transverse displacements are determined by the nth iteration
with a convergence tolerance � applied on the displacements
normalized by the total height of the sandwich section, such that
� 6 10�5 between two consecutive steps.
It should be mentioned that, in general, an iterative procedure
combined with the Laplace transform in time to solve a set of non-
linear equations, may converge or diverge depending on the coef-
ficient matrices and the applied loading amplitudes. For practical
structural configurations, the displacement solution is expected
to converge until the dynamic buckling phenomenon occurs. In
this study, in which we produce results for a realistic sandwich
structure, we found that the solution is convergent after only six
iterations.

5. Numerical results and discussions

In this section, we shall present the numerical results for typical
sandwich plates with orthotropic phases. Since the sandwich
structure consist of orthotropic phases, the relationship for the
Poisson’s ratios as: mij ¼ mjiEi=Ej will be applied without explicit
explanation. Let us first consider faces with elastic constants (in
GPa): Ef

1 ¼ 40:0, Ef
2 ¼ 10:0, Ef

3 ¼ 10:0, Gf
12 ¼ 4:5, Gf

23 ¼ 3:5, Gf
31 ¼

4:5; Poisson’s ratios: mf
12 ¼ 0:065, mf

31 ¼ 0:260, mf
23 ¼ 0:400 (these

are typical of glass/epoxy composite). The orthotropic core has
elastic constants reading as (in GPa): Ec

1 ¼ Ec
2 ¼ 0:032, Ec

3 ¼
Ec

z ¼ 0:30, Gc
12 ¼ 0:013, Gc

31 ¼ 0:048, Gc
23 ¼ 0:048; Poisson’s ratios:

mc
12 ¼ mc

31 ¼ mc
32 ¼ 0:25 (these are typical of honeycomb material).

In the following we denote by htot the total thickness of the
plate, defined as htot ¼ 2hf þ hc. In the example presented the face
sheet thickness is hf ¼ 2 mm and the core thickness hc ¼ 18 mm.
The plate dimensions are: a ¼ 25htot and b ¼ 50htot. The top face
of the sandwich plate is assumed to be blasted by a impulsive load
at the point ðx0; y0Þ, which is of the following form:

pðx; yÞ ¼ p0ðtÞdðx; x0Þdðy; y0Þ; 0 < x; x0 < a; 0 < y; y0 < b;

ð28aÞ

where d is the delta function. The intensity of the loading varies
with time exponentially as

p0ðtÞ ¼ Q 0e�t=a MPa; t P 0; ð28bÞ

in which we use the values from Librescu et al. (2004):
Q0 ¼ 60:86 and a ¼ 3:33435. From Eq. (25a) one can obtain the fol-
lowing loading in the transformed space:

Qmn ¼
4
ab

p0ðtÞ sin
mpx0

a
sin

npy0

b
; 0 < x0 < a; 0 < y0 < b:

ð28cÞ

This loading case is the idealization of an explosive impact near a
big sandwich plate. We shall study the case of x0 ¼ 0:5a,
y0 ¼ 0:5b. However, all the methods and procedures can be ex-
tended for an arbitrary loading location of ðx0; y0Þ.

Regarding the number of terms used in producing the results,
we have used m ¼ 10 and n ¼ 10. No noteworthy difference in
the results was found with a larger number of terms. In fact, we
found that the calculations converge when m P 8 and n P 8, with
no real difference beyond these levels of m and n.

Plotted in Fig. 2 is the distribution of the normalized transverse
displacement as functions of y at x ¼ 0:5a in the face sheets and
middle plane of the core at time instants t = 25 ls and 250 ls,
respectively. The results demonstrate the evolution of motion
propagating outward from the center points when the point-wise
blast loading impacts on the top face at its center. Since the energy
is still added into the sandwich material system from t = 25 ls and
t = 250 ls, the maximum amplitudes of these displacements in-
crease during the evolution. One can also apparently see that the
transverse displacements in the top face, middle plane of the core
and bottom face are not identical. This observation is in good
agreement with those in Li et al. (2008). A three dimensional dis-
placement distribution profile for the top face sheet is presented
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in Fig. 3 for time instant t = 0.45 ms, or 450 ls. As expected, the
maximum displacement occurs at the center point where the load-
ing is applied.

Fig. 4 depicts the transient displacements for 4 different points
ð0:5a;0:5bÞ; ð0:25a;0:5bÞ; ð0:5a; 0:25bÞ and ð0:25a;0:25bÞ in the
top face. Since a–b, the curves for ð0:25a; 0:5bÞ and ð0:5a;0:25bÞ
are not identical. One can further see that the displacements for
the points ð0:25a;0:5bÞ; ð0:5a;0:25bÞ and ð0:25a;0:25bÞ could be
tangled when t 6 10 ms (in the sense that the displacement of a
Fig. 2. Transverse displacements as a function of y for x ¼ 0:5a and at two time
instants.

Fig. 3. Transverse displacement distribution at the top face sheet at t ¼ 0:45 ms.

Fig. 4. Transverse displacement evolution with time at the top face sheet at
different locations.
further away point can even exceed that of a closer point), but
these displacements decrease as the distance from the center point
increases for each time instant of t > 10 ms. However, the maxi-
mum displacement occurs at the center when t ¼ 2:25 ms.

Presented in Figs. 5–7 are the stress profiles in the core at three
locations: ðx ¼ 0:5a; y ¼ 0:5bÞ, ðx ¼ 0:375a; y ¼ 0:375bÞ and ðx ¼
0:25a; y ¼ 0:25bÞ, respectively. These profiles are used to demon-
strate the stress distribution in the core through the thickness
direction and as a function of time. In these figures z=hc ¼ 0:5 is
along the interface between the bottom face and the core, and
z=hc ¼ �0:5 is the interface between the core and the top face
sheet, on which the impulsive impact is exerted. Fig. 5 shows that
the stress is always negative (compressive) at the top face/core
Fig. 5. Normal stress in the core at x ¼ 0:5a and y ¼ 0:5b.

Fig. 6. Normal stress in the core at x ¼ 0:375a and y ¼ 0:375b.

Fig. 7. Normal stress in the core at x ¼ 0:25a and y ¼ 0:25b.



Fig. 8. Transverse displacement evolution with time at the top face sheet at
x ¼ 0:5a, y ¼ 0:5b and for various face sheet thicknesses (total plate thickness
constant).
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interface for ðx ¼ 0:5a; y ¼ 0:5bÞ, but could be positive at the bot-
tom face/core interface. One may also see that the maximum
amplitude of the stress happens at the top face/core interface, as
expected. These observations agree with the ones in Li et al.
(2008), where the loading is uniformly distributed over the top
face. However, at any position other than ðx ¼ 0:5a; y ¼ 0:5bÞ, the
stress could be either positive or negative at either of these inter-
faces, as shown in Figs. 6 and 7. One may also easily see that the
maximum values in the transverse stress in the core of the sand-
wich plate decrease dramatically when x and y are away from
ð0:5a;0:5bÞ.

The effects from the ratio of face sheet thickness over core thick-
ness, hf =hc , on the transient response are illustrated in Fig. 8. In these
results, the thickness of the plate is kept constant at 20mm. It can be
seen that when hf =hc increases, the maximum value of the displace-
ment at the center of the top face decreases. This observation has sig-
nificance in the design of a sandwich structure. For example, if the
maximum transverse deformation is the design criterion for certain
sandwich structures, one must ensure the ratio hf =hc shall not be less
than a critical value. In the meanwhile, this hf =hc may be as small as
possible in order to ensure adequate weight savings. Therefore, the
results can provide a guideline for optimal design.
6. Conclusions

The transient response of an orthotropic composite sandwich
plate subject to point-wise impulse (blast) loading is studied using
a nonlinear high order core theory. It is found that the top face, the
core and the bottom face behave differently in the transient re-
sponse. The transverse stress profiles in the core show high nonlin-
earity with maximum amplitudes at the interface between the core
and top face sheet on which the blast loading impacts. Therefore,
debonding could initiate at this interface as has been observed in
preliminary experiments. The stress and displacement amplitudes
decrease very rapidly away from the point loading. The effect of the
ratio of face thickness over core thickness is analyzed and these
observations could suggest some guidelines for sandwich plate
optimal design.
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