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An Elasticity Solution for the
Global Buckling of Sandwich
Beams/Wide Panels With
Orthotropic Phases
There exist several formulas for the global buckling of sandwich plates, each based on a
specific set of assumptions and a specific plate or beam model. It is not easy to determine
the accuracy and range of validity of these rather simple formulas unless an elasticity
solution exists. In this paper, we present an elasticity solution to the problem of global
buckling of wide sandwich panels (equivalent to sandwich columns) subjected to axially
compressive loading (along the short side). The emphasis on this study is on the global
(single-wave) rather than the wrinkling (multiwave) mode. The sandwich section is sym-
metric, and all constituent phases, i.e., the facings and the core, are assumed to be
orthotropic. The buckling problem is formulated as an eigenboundary-value problem for
differential equations, with the axial load being the eigenvalue. The complication in the
sandwich construction arises due to the existence of additional “internal” conditions at
the face-sheet/core interfaces. Results are produced for a range of geometric configura-
tions, and these are compared with the different global buckling formulas in the
literature. �DOI: 10.1115/1.3173758�
Introduction

The compressive strength of thin sheets can be realized only if
hey are stabilized against buckling. In sandwich construction, two
uch sheets �face sheets� are bonded to a core slab of different
light� material. Both the core and the face sheets can be isotropic
r anisotropic.

Panels of this construction give rise to a set of problems of
trength, stiffness, and stability analogous to, but by no means
dentical with, the well-known problems of ordinary homoge-
eous elastic beam/plates. One of these is “cylindrical buckling.”
eferring to Fig. 1, the panel is so wide that lines along the y axis
an be taken as uncurved. Therefore, a unit width can be treated as
n Euler column. Buckling is either like column buckling �Euler
r global buckling� or a short wave “wrinkling” of the face sheets.
n the former, the core may exhibit a substantial shearing defor-
ation; in the latter, it acts like an elastic foundation and the

uckling deformation is mainly confined to the layers adjacent to
he face sheets.

A few global buckling formulas for sandwich construction can
e found in the literature. In particular, a whole chapter is devoted
o buckling in Allen’s book �1�. Two formulas are presented, one
or thin faces and one for thick faces. Another formula is in Ba-
ant and Cedolin’s book �2�. In fact, the global buckling formulas
or sandwich structures in the literature are essentially ways of
efining the equivalent rigidity and the shear correction factors for
he sandwich construction in the old Engesser’s shear correction
ormula for column buckling �3�. Recently, Huang and Kardo-
ateas �4� derived a new shear correction formula for sandwich

ections, which can be used with either the Engesser �3� or the
aringx �5,6� shear correction formula. This shear correction for-
ula is not exclusively based on the shear modulus of the core,

ut instead includes the shear modulus of the faces and the exten-
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sional modulus of the core; therefore, it can account for sandwich
constructions with stiffer cores and/or more compliant faces.

As far as wrinkling, several investigations have led to simple
formulas, with the most known those by Hoff and Mautner �7� and
the one in Allen’s book �1�.

Sandwich structures may also exhibit another form of local
buckling, namely, edge buckling, which is a nonperiodic buckling
deformation mode. Ji and Waas �8� showed, through a two-
dimensional elasticity study, that a sandwich beam having a core
with a negligible stiffness compared with the face sheets is prone
to failure by edge buckling.

The existence of different buckling formulas based on various
beam or plate models underscores the need for an elasticity solu-
tion, in order to compare the accuracy of the predictions from the
simple beam/plate formulas. Elasticity solutions for buckling have
become available mainly for the axisymmetric cylindrical shell
geometry due to the availability of three-dimensional elasticity
solutions for the prebuckling state and the ease of formulation
afforded by the axisymmetry �9–11�. As far as sandwich struc-
tures, a three-dimensional elasticity solution for the buckling of a
sandwich long shell under external pressure was recently done by
Kardomateas and Simitses �12�. In all these studies, a prerequisite
to obtaining elasticity solutions for shell buckling is the existence
of three-dimensional elasticity solutions to the prebuckling prob-
lem. For the monolithic homogeneous cylindrical shells, the elas-
ticity solutions for orthotropy provided by Lekhnitskii �13� were
used, whereas for the sandwich shells, the elasticity solution of
Kardomateas �14� was used.

In this paper we make again the simplifying assumption of a
two-dimensional problem by considering a wide plate. Because
the plate is wide, lines along the long dimension can be taken as
uncurved during buckling, and the problem reduces to a two-
dimensional �equivalent to a beam rather than a plate assumption�
one. Under these assumptions, an elasticity solution for the wrin-
kling of a sandwich wide plate/beam with generally orthotropic
phases under axial loading was presented by Kardomateas �15�. In
this paper we focus on the global buckling behavior, and the gov-
erning buckling equations along with the corresponding boundary

conditions are derived by including all terms. These reduce to an

MARCH 2010, Vol. 77 / 021015-110 by ASME

E license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



e
a
c
c
i

2

i
�
s
m
k
s
s
c
B
i
t
c
i
o
s
b
t

F
b

0

Downloa
igenboundary-value problem for differential equations with the
xial load being the eigenvalue. The complication in the sandwich
onstruction arises due to the existence of additional “internal”
onditions at the face sheet/core interfaces. The shooting method
s used to solve the problem thus formulated.

Formulation
The significance of the proper conjugate incremental stress and

ncremental strain measure for buckling was introduced by Bazant
16� and in Refs. �17,18� it was shown that, for sandwich-type
tructures with a soft core, the Green–Lagrange strain measure
ust be used if the strains are small and the elastic moduli are

ept constant throughout the analysis. The objective stress mea-
ure, which is energetically conjugate to the Green–Lagrange
train measure, is the second Piola–Kirchhoff stress, �ij and the
orresponding incremental stress measure is the Trefftz stress.
ased on this, the buckling equations that follow can be accord-

ngly derived from this general formulation �16� or the fundamen-
al approach presented in Ref. �19�. Since sandwich panels are
haracterized by large shear deformations in the soft core, we
nclude all terms herein. Specifically, by considering the equations
f equilibrium in terms of the second Piola–Kirchhoff stress ten-
or, subtracting these at the perturbed and initial conditions, the
uckling equations for a Cartesian coordinate system can be ob-
ained as follows:

�

�x
��xx + �xx�xx

0 + �1

2
�xy − �z��xy

0 + �1

2
�xz + �y��xz

0 � +
�

�y
��xy

+ �xx�xy
0 + �1

2
�xy − �z��yy

0 + �1

2
�xz + �y��yz

0 � +
�

�z
��xz

+ �xx�xz
0 + �1

2
�xy − �z��yz

0 + �1

2
�xz + �y��zz

0 � = 0 �1a�

�

�x
��xy + �1

2
�xy + �z��xx

0 + �yy�xy
0 + �1

2
�yz − �x��xz

0 � +
�

�y
��yy

+ �1

2
�xy + �z��xy

0 + �yy�yy
0 + �1

2
�yz − �x��yz

0 � +
�

�z
��yz

+ �1
�xy + �z��xz

0 + �yy�yz
0 + �1

�yz − �x��zz
0 � = 0 �1b�

ig. 1 Definition of the geometry for a sandwich wide panel/
eam under axial compression
2 2
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�

�x
��xz + �1

2
�xz − �y��xx

0 + �1

2
�yz + �x��xy

0 + �zz�xz
0 � +

�

�y
��yz

+ �1

2
�xz − �y��xy

0 + �1

2
�yz + �x��yy

0 + �zz�yz
0 � +

�

�z
��zz

+ �1

2
�xz − �y��xz

0 + �1

2
�yz + �x��yz

0 + �zz�zz
0 � = 0 �1c�

In the previous equations, �ij
0 are the values of stresses at the

initial equilibrium position �prebuckling state�, and �ij and � j are
the values of stresses and rotations at the perturbed position
�buckled state�.

The foregoing equations include shear stresses and normal
strains at the buckled state, therefore, they are complete. We have
retained these terms because the core is weak in shear, and trans-
verse shear stresses may be significant. This is unlike the simpli-
fied equations used in previous work on monolithic composites
�9–11�, in which it was assumed that rotations substantially ex-
ceed strains.

The boundary conditions associated with Eq. �1� can be ob-
tained from the traction �stress resultant� relationships in terms of
the second Piola–Kirchhoff stress tensor, and in the general case
of an external hydrostatic pressure loading �in which case the
magnitude of the surface load remains invariant under deforma-
tion, but its direction changes� �19�. By writing these equations for
the initial and the perturbed equilibrium position and then sub-
tracting them, the following boundary conditions on a surface,

which has outward unit normal �l̂ , m̂ , n̂� �no hydrostatic pressure
acting�, are obtained �with shear stresses and normal strains at the
buckled state included�:

��xx + �xx�xx
0 + �1

2
�xy − �z��xy

0 + �1

2
�xz + �y��xz

0 � l̂ + ��xy + �xx�xy
0

+ �1

2
�xy − �z��yy

0 + �1

2
�xz + �y��yz

0 �m̂ + ��xz + �xx�xz
0

+ �1

2
�xy − �z��yz

0 + �1

2
�xz + �y��zz

0 �n̂ = 0 �2a�

��xy + �1

2
�xy + �z��xx

0 + �yy�xy
0 + �1

2
�yz − �x��xz

0 � l̂ + ��yy

+ �1

2
�xy + �z��xy

0 + �yy�yy
0 + �1

2
�yz − �x��yz

0 �m̂ + ��yz

+ �1

2
�xy + �z��xz

0 + �yy�yz
0 + �1

2
�yz − �x��zz

0 �n̂ = 0 �2b�

��xz + �1

2
�xz − �y��xx

0 + �1

2
�yz + �x��xy

0 + �zz�xz
0 � l̂ + ��yz + �1

2
�xz

− �y��xy
0 + �1

2
�yz + �x��yy

0 + �zz�yz
0 �m̂ + ��zz + �1

2
�xz

− �y��xz
0 + �1

2
�yz + �x��yz

0 + �zz�zz
0 �n̂ = 0 �2c�

For the bounding surfaces, l̂= m̂=0 and n̂= �1. These condi-
tions will also be used when we impose traction continuity at the
core/face-sheet interfaces.

The face sheets and core are assumed to be homogeneous and
linearly elastic orthotropic solids. Consequently, it is assumed that
the perturbed stresses are related to the perturbed strains in the
same manner as in the prebuckling state. Therefore, the stress-
strain relationship for the face sheet, i= f , or the core, i=c is

assumed to be
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�xx

�i�

�yy
�i�

�zz
�i�

�yz
�i�

�xz
�i�

�xy
�i�


 = 	
c11

i c12
i c13

i 0 0 0

c12
i c22

i c23
i 0 0 0

c13
i c23

i c33
i 0 0 0

0 0 0 c44
i 0 0

0 0 0 0 c55
i 0

0 0 0 0 0 c66
i


	
�xx

�i�

�yy
�i�

�zz
�i�

�yz
�i�

�xz
�i�

�xy
�i�


, �i = f ,c� �3�

here ckl
i are the stiffness constants �we have used the notation

�x, 2�y, and 3�z, see Fig. 1�. In a similar fashion, we shall
enote by aij the corresponding compliance constants.
Note that the specific elastic moduli corresponding to the incre-
ental stresses are used �16�, and the strains associated with the

ncremental displacements are the linearized strains, as outlined in
ec. 2.2.

2.1 Prebuckling State. The prebuckling state is that of nor-
al prebuckling stresses in the form �for i= f ,c�

�xx
0�i� = Pdi, �yy

0�i� = �zz
0�i� = 0 �4a�

hereas the shear stresses are zero

�xy
0 = �xz

0 = �yz
0 = 0 �4b�

Imposing the condition of same axial strain �xx
0�i�=a11

i �xx
0�i� and

he condition of the resultant applied compressive load, ��xxwdz
−P, leads to two equations for the constants, i.e.,

a11
f Pdf = a11

c Pdc, Pdf f + Pdcc = − P/�2w� �4c�

nd subsequently to the prebuckling stresses

�xx
0f = − P

a11
c

2w�a11
c f + a11

f c�
, �xx

0c = − P
a11

f

2w�a11
c f + a11

f c�
�4d�

2.2 Perturbed State. The buckling equations �1� can be writ-
en in terms of the buckling displacements u, v, and w by using
he strain versus displacement relations

�xx = u,x, �yy = v,y, �zz = w,z �5a�

�xy = u,y + v,x, �xz = u,z + w,x, �yz = v,z + w,y �5b�

nd rotation versus displacement relations

2�x = w,y − v,z, 2�y = u,z − w,x, 2�z = v,x − u,y �5c�

nd then using the stress-strain relations �3�. The following three
quations are obtained for the prebuckling stress field equations
4a� and �4b�. These equations apply at every point through the
hickness, but for convenience we have dropped the superscript i

�c11 + �xx
0 �u,xx + c66u,yy + c55u,zz + �c12 + c66�v,xy + �c13 + c55�w,xz

= 0 �6a�

c22v,yy + �c66 + �xx
0 �v,xx + c44v,zz + �c12 + c66�u,xy + �c44 + c23�w,yz

= 0 �6b�

c33w,zz + �c55 + �xx
0 �w,xx + c44w,yy + �c13 + c55�u,xz + �c44 + c23�v,yz

= 0 �6c�
The corresponding from Eq. �2� traction boundary conditions at

he bounding surfaces for l̂= m̂=0 and n̂=1 are

c55u,z + c55w,x = 0 �7a�

c44w,y + c44v,z = 0 �7b�

c13u,x + c23v,y + c33w,z = 0 �7c�
In the petrurbed position we seek two-dimensional equilibrium

odes as follows:

ournal of Applied Mechanics
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ui = Ui�z�cos �x, vi = 0, wi = Wi�z�sin �x, � =
�

L
i = f ,c

�8�
It should be mentioned that according to the general bifurcation

formulation, if we denote by u0, v0, and w0 the x, y, and z com-
ponents of the displacement field at the primary �prebuckling�
state, the perturbed �buckled� position is denoted by u1=u0+	u,
v1=v0+	v, and w1=w0+	w, where 	 is an infinitesimally small
quantity. Here 	u�x ,y ,z�, 	v�x ,y ,z�, and 	w�x ,y ,z� are the dis-
placements to which the points of the body must be subjected to
shift them from the initial position of equilibrium to the new equi-
librium position. Thus, displacements �8� are simply on top of the
prebuckling displacements and therefore, the fact that the preb-
uckling displacement field corresponding to Eq. �4� would imply
v0�0 does not present a contradiction.

Now, substituting into Eq. �7�, results in the following two lin-
ear homogeneous ordinary differential equations of the second
order for Ui�z�, Wi�z�, where i=c for 0
z
c and i= f for c
z

 �c+ f�:

c55
�i�Ui� − �c11

�i� + �xx
0�i���2Ui + �c13

�i� + c55
�i���Wi� = 0 �9a�

and

c33
�i�Wi� − �c55

�i� + �xx
0�i���2Wi − �c13

�i� + c55
�i���Ui� = 0 �9b�

The associated boundary conditions are as follows:

�a� at the bounding surfaces, z=c+ f , we have the following
two traction-free conditions:

c55
�f�Uf� + c55

�f��Wf = 0 �10a�

c33
�f�Wf� − c13

�f��Uf = 0 �10b�
�b� at the face-sheet/core interface, z=c, we have the follow-

ing four conditions at each of the interfaces.

For displacement continuity,

Uf = Uc, Wf = Wc �10c�
For traction continuity,

c55
�f�Uf� + c55

�f��Wf = c55
�c�Uc� + c55

�c��Wc �10d�

c33
�f�Wf� − c13

�f��Uf = c33
�c�Wc� − c13

�c��Uc �10e�

�c� at the axis of symmetry, z=0, we have the following an-
tisymmetry conditions:

Uc = Wc� = 0 �10f�

Notice that since the construction is assumed to be symmetric,
only half of the sandwich needs to be considered.

2.3 Solution of the Eigenboundary-Value Problem for Dif-
ferential Equations. Equations �9� and �10� constitute an eigen-
value problem for differential equations, with the axial load, P,
the parameter �two point boundary-value problem�. An important
point is that the prebuckling stresses � j j

0�i��z�, depend linearly on
the applied axial load, P �the parameter� through expressions in
the form of Eq. �4�, and this makes possible the direct application
of standard solution techniques.

With respect to the method used, there is a difference between
the present problem and the homogeneous orthotropic body �apart
from being shell geometry� solved by Kardomateas �9�. The com-
plication in the present problem is due to the fact that the displace-
ment field is continuous but has a slope discontinuity at the face-
sheet/core interfaces. This is the reason that the displacement field
was not defined as one function but as two distinct functions for
i= f and i=c, i.e., the face sheet and the core. Our formulation of

the problem employs, hence, internal boundary conditions at the
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ace-sheet/core interface, as outlined above. Due to this complica-
ion, the shooting method �20� was deemed to be the best way to
olve this eigenboundary-value problem for differential equations.

special version of the shooting method was formulated and
rogrammed for this problem. In fact, for each of the two con-
tituent phases of the sandwich structure, we have five variables:

1=Ui, y2=Ui�, y3=Wi, y4=Wi�, and y5= P. The five differential
quations are y1�=y2, the first equilibrium Eq. �9a�, y3�=y4, the
econd equilibrium Eq. �9b�, and y5�=0.

The method starts from the middle of the core, z=0 and inte-
rates the five first order differential equations from z=0 to the
ace-sheet/core interface z=c �i.e., through the core�. At the start
oint, z=0, we have three conditions as follows: Uc=y1=0, Wc�
y4=0 and a third condition of �arbitrarily� setting Wc=y3=1.0,

herefore we have two freely specifiable variables, the P=y5 and
he Uc�=y2.

The freely specifiable starting values at z=0 are taken as the
alues from the simple plate/beam theory solutions available in
he literature �described later�; in particular, we have used Allen’s
1� solution; therefore, we input the Allen’s �1� solution as a guess
nd then obtain the elasticity solution by the shooting method
escribed. Further details of the solution method can be found in
ef. �15�.

Global Buckling Formulas in the Literature, Results
nd Discussion
In the following, we list the formulas in the literature for global

uckling of sandwich columns.

�a� A formula for thin faces, which accounts for transverse
shear, is in Allen’s book �1� as follows:

1

Pcr,A
thin =

1

PE1
+

1

Pc
�11a�

where

PE1 = Efwf�2c + f�2 �2

2L2 , Pc = Gc

w�2c + f�2

2c

�11b�

i.e., PE1 represents the Euler load of the sandwich col-
umn in the absence of core shear strains and with the
bending stiffness of the core ignored and with the local
bending stiffness of the faces ignored as well �because
they are assumed thin�; Pc may be described as the shear
buckling load.

Although not explicitly stated, the structure of the formula in-
icates that it is an adaptation for sandwich configurations of the
ngesser’s �3� column buckling formula.

�b� For thick faces, Allen gives another formula

Pcr,A
thick = PE2
 1 +

PEf

Pc
−

PEf

Pc

PEf

PE2

1 +
PE2

Pc
−

PEf

Pc

� �12a�

where

PE2 = Ef
�2

L2�wf3

6
+

wf�2c + f�2

2
� �12b�

PEf = Ef
�2

L2

wf3

6
, Pc = Gc

w�2c + f�2

2c
�12c�

i.e., PE2 represents the Euler load of the sandwich col-
umn in the absence of core shear strains and with the

bending stiffness of the core ignored, but with the local

21015-4 / Vol. 77, MARCH 2010
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bending stiffness of the faces included; PEf represents the
sum of the Euler loads of the two faces when they buckle
as independent struts �i.e., when the core is absent� and
Pc is the shear buckling load, same as in Eq. �11b�.

�c� Another formula is in Bazant and Cedolin’s book �2�,
which was derived from adapting Engesser’s �3� formula
for the sandwich configuration

Pcr,BC =
PE2

1 +
PE2

�GA�0

�13a�

where PE2 is given in Eq. �8� and

�GA�0 = Gcw�f + 2c��1 +
f2

3�f + 2c�2� �13b�

�d� A shear correction formula for sandwich sections was
derived by Huang and Kardomateas �4� from a shear en-
ergy equivalency. This shear correction is usually ex-
pressed by the ratio � / �AGeq�, where A is the total cross-
sectional area of the column, Geq is the “equivalent” or
“effective” modulus in shear, and � is a numerical factor
depending on the shape of the cross section, which ac-
counts for the fact that shear is not uniformly distributed
throughout the section. If the section is rectangular and
the column homogeneous isotropic, then Geq=G=shear
modulus of the homogeneous material and �=1.2. For
sandwich construction, which is a nonhomogeneous sec-
tion, the Huang and Kardomateas �4� formula is as fol-
lows:

s =
�

AGeq
=

2w

�EI�eq
2 � af

Gf
+

ac

Gc
� �14a�

where

af =
Ef

2

4
��f + c�4f −

7

15
�f + c�5 −

c5

5
+

2

3
�f + c�2c3�

�14b�

ac = Ef
2f2c� f

2
+ c�2

+
2

15
Ec

2c5 +
2

3
EfEcf� f

2
+ c�c3

�14c�

and �EI�eq is the equivalent rigidity of the section, which
includes the local bending stiffness of the faces and the
bending stiffness of the core

�EI�eq = 2Ef
wf3

12
+ 2Efwf� f

2
+ c�2

+ Ec

w�2c�3

12

�14d�

For a homogeneous section �this can be most easily seen
by setting c=0, A=2fw�, the calculations reduce to the
simple value �=6 /5, which is a well-known shear cor-
rection factor for a rectangular homogeneous section
from classical bending theory �21,22�.

Notice that this shear correction formula is not exclusively
based on the shear modulus of the core, but instead includes the
shear modulus of the faces and the extensional modulus of the
core, therefore, it can account for sandwich constructions with
stiffer cores and/or more compliant faces.

It should also be noted that a more general formula for the
transverse shear correction coefficient �, which is applicable for a
sandwich section with dissimilar faces can be found in Ref. �4�.

The shear correction formula �14a� can be used by substituting

in either the Engesser critical load formula �3�
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Pcr
Engess =

PE0

1 + sPE0
�15�

r the Haringx one �5,6�

Pcr
Harngx =

�1 + 4sPE0 − 1

2s
�16�

here PE0 is the Euler load corresponding to Eq. �14d�

PE0 =
�2�EI�eq

L2 �17�

In a recent paper, Bazant and Beghini �17� showed that the
ngesser and Haringx-type theories are equivalent �i.e., one to

ollow from the other� provided that a proper transformation of

ig. 2 Critical load for a wide range of face-sheet thicknesses
or graphite/epoxy faces and glass/phenolic honeycomb core

Table 1 Critical loads, Pcr/PE0 and in s

f /htot Elasticity Allen thina Baz and Cedb Allen thic

0.02 0.7173 0.7106 0.7107 0.7149
�
0.94� �
0.92� �
0.33�

0.04 0.5692 0.5568 0.5571 0.5678
�
2.18� �
2.13� �
0.25�

0.06 0.4795 0.4609 0.4615 0.4786
�
3.89� �
3.76� �
0.19�

0.08 0.4205 0.3955 0.3965 0.4199
�
5.95� �
5.72� �
0.15�

0.10 0.3797 0.3481 0.3495 0.3793
�
8.34� �
7.96� �
0.12�

0.12 0.3508 0.3122 0.3141 0.3505
�
11.03� �
10.47� �
0.09�

0.14 0.3303 0.2840 0.2866 0.3301
�
14.01� �
13.25� �
0.06�

0.16 0.3161 0.2614 0.2646 0.3160
�
17.29� �
16.29� �
0.04�

0.18 0.3069 0.2429 0.2468 0.3068
�
20.84� �
19.57� �
0.01�

0.20 0.3018 0.2274 0.2321 0.3018
�
24.65� �
23.09� �0.0�

Eq. �11a�.
Eq. �13a�.
Eq. �12a�.
Eq. �15�.
Eq. �16�.

Ref. �1�.
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the shear modulus of the core, Gc, is made. However, this trans-
formation implies that Gc of the soft core is a function of the axial
stress in the stiff skins. This paradox was clarified by showing that
the energetic variational analysis merely requires that the shear
stiffness of the cross section, characterized by Gc of the core, to be
a function of the axial force in the skins. In other words, if the
Haringx type theory was used with a constant shear modulus, the
results, as in Eq. �16�, would be obtained; however, if the shear
modulus is updated as a function of the axial load, then the results
are expected to agree with Engesser’s formula.

One last point: For a wide panel, in the above formulas, Ef and
Ec are substituted by the Ef�=Ef / �1−�13

f �31
f � and the Ec�=Ec / �1

−�13
c �31

c �.

3.1 Results and Discussion. Let us consider a sandwich con-
struction with unidirectional graphite/epoxy faces and hexagonal
glass/phenolic honeycomb core. Such sandwich construction is
quite common in the aerospace/rotorcraft industry. The orthotro-
pic graphite/epoxy facings moduli are �in GPa�: E1

f =181.0, E2
f

=E3
f =10.3, G23

f =5.96, and G12
f =G31

f =7.17; and the facings’ Pois-
son’s ratios: �12

f =�13
f =0.277 and �32

f =0.400. The orthotropic hon-
eycomb core moduli are �in GPa�: E1

c =E2
c =0.032, E3

c =0.300,
G23

c =G31
c =0.048, and G12

c =0.013; and the core’s Poisson’s ratios:
�12

c =�32
c =�31

c =0.25.
The total thickness is considered constant at htot=2f +2c

=30 mm, the length over total thickness, L /htot=30, and we ex-
amine a range of face thicknesses defined by the ratio of face-
sheet thickness over total thickness, f /htot, between 0.010 and
0.20. Figure 2 shows the critical load for a simply supported con-
figuration, normalized with the Euler load without transverse
shear, PE0. The elasticity solution, along with the different formu-
las from the literature, is plotted. Detailed data for the critical
loads are also given in Table 1, along with the percentage differ-
ences of the different formulas from the exact elasticity solution.
Notice also that we use G31

c in place of Gc in these formulas,
which were originally derived for isotropy.

nd line the % difference from elasticity

Engssr w /H and K d Harngx w /H and K e Wrinkl Allenf

0.7156 0.7665 0.6902
�
0.24� �+6.86�
0.5678 0.6642 0.7179

�
0.24� �+16.69�
0.4782 0.6031 0.7478

�
0.27� �+25.78�
0.4189 0.5620 0.7795

�
0.37� �+33.65�
0.3776 0.5325 0.8132

�
0.57� �+40.24�
0.3477 0.5107 0.8487

�
0.89� �+45.57�
0.3259 0.4944 0.8862
�
1.33� �+49.67�
0.3100 0.4823 0.9259

�
1.92� �+52.58�
0.2987 0.4735 0.9678

�
2.65� �+54.33�
0.2911 0.4676 1.012

�
3.54� �+54.94�
eco

kc
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Downloa
Since it is possible that wrinkling could dominate for the very
hin face sheets, Fig. 2 shows also the critical wrinkling load from
llen’s wrinkling formula �1�, and we can see that wrinkling
ould dominate for f /htot below 0.02.
From these results we can make the following observations.

�a� Allen’s thick formula �1� and the Engesser formula with
the Huang and Kardomateas shear correction �4� give
predictions, which are very close to the elasticity solution
�the corresponding three curves can hardly be distin-
guished as different in Fig. 2�. Between the two, Allen’s
thick formula �1� is more accurate in general, except for
the very thin faces �f /htot between 0.01 and 0.02�.

�b� Allen’s thin formula �1� and the Bazant and Cedolin �2�
formula are practically identical with the latter slightly
more accurate, and both give predictions that are accurate
within 5% of the elasticity solution for small f /htot, less
than 0.07; however, both can be quite conservative for
the thicker face sheets �of the order of 20% below the
elasticity value for f /htot=0.2�. In Fig. 2, the curves from
these two formulas can hardly be distinguished as differ-
ent.

�c� All the above mentioned formulas �Allen’s thin and thick
formulas �1�, the Bazant and Cedolin �2� formula, and the
Engesser formula with the Huang and Kardomateas shear
correction �4�� are conservative.

�d� The Haringx formula with the Huang and Kardomateas
shear correction �4� give predictions, which are noncon-
servative, and it is the most inaccurate, being of the order
of 50% above the elasticity value for f /htot=0.2. Its ac-
curacy improves, though, for the very thin face sheets.
However, these results are based on a constant core shear
modulus and the Haringx theory is more complicated and
its proper application would imply a varying shear modu-
lus, as discussed later.

�e� The transverse shear effect is very large and results in a
critical load less than one-third of the Euler load for face-
sheet ratios, f /htot, above 0.14.

To examine another case with a smaller anticipated transverse
hear effect, we consider a sandwich construction with unidirec-
ional E-glass/polyester faces and H100 cross-linked PVC foam
ore and with the same geometry as before. Such sandwich con-
truction is more common in the marine industry. The orthotropic
-glass/polyester facings moduli are �in GPa�: E1

f =40.0, E2
f =E3

f

10.0, G23
f =3.5, and G12

f =G31
f =4.5; and the facings Poisson’s ra-

ios: �12
f =0.065, �31

f =0.26, and �32
f =0.400. The isotropic core

odulus is Ec=0.100 GPa and the core’s Poisson’s ratio: �c

0.30.
Figure 3 shows again the critical load and we can say that all of

he conclusions reached earlier hold true except that the elasticity
urve is now a bit more distinguishable from Allen’s thick or
ngesser with shear correction from Ref. �4� curves. Both of these
urves are slightly below the elasticity curve with the latter being
loser to the elasticity curve, especially for the thinner faces.
hese two curves are still the most accurate. In addition, the Har-

ngx curve with shear correction from Ref. �4� curve is now clos-
st to the elasticity for very small f /htot, less than 0.03.

Moreover, the effect of transverse shear is smaller as the critical
oad goes as low as about half the Euler load for f /htot=0.2.

To examine the effect of the core material, we present in Fig. 4
he critical loads for the case of graphite/epoxy faces and isotropic
ore material with varying modulus, Ec and Poisson’s ratio �c

0.30, as described by the ratio E1
f /Ec between 100 and 5000. The

esults are produced for f /htot=0.10 and the same length and total
hickness as before. We can see that all formulas converge for the
ower ratios �stiffer cores� and basically the same general conclu-
ions regarding the relative performance of each formula hold

rue.

21015-6 / Vol. 77, MARCH 2010
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One general observation is that the Haringx results stand out as
being in much discrepancy with the elasticity results. This con-
firms the Bazant and Beghini’s study �18� who showed that if a
constant shear modulus Gc is used, then the correct theory is the
Engesser-type theory and that the Haringx-type theory is usable
only if the Gc of the core is considered to be a linear function of
the axial stress in the skins.

There is another interesting difference between the Engesser
and Haringx formulas, in that they have different limit for infinite
slenderness, as discussed in Bazant and Cedolin �2�. Indeed, in the
limit of zero rigidity �infinite slenderness�, PE0→0, both formulas
give the same, zero critical load. However, in the limit of infinite
rigidity �zero slenderness�, that is PE0→�, the Haringx formula
gives from Eq. �16�, Pcr

Harngx→�, while Engesser’s formula with
the shear correction from Ref. �4�, gives from Eq. �15�: Pcr

Engess

→s−1=AGeq /�, see Eq. �14a�, which is a very different result.
Allen’s thin formula gives Pcr,A

thin →Pc with Pc given in Eq. �11b�
and the Bazant and Cedolin formula Pcr,BC→ �GA�0 with �GA�0

Fig. 3 Critical load for E-glass polyester faces and H100
cross-linked PVC foam core

Fig. 4 The effect of relative core stiffness „case of f /htot

=0.10…
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iven in Eq. �13b�. However, Allen’s thick formula �12� gives

cr,A
thick→� when both PE2→� and PEf →�, and in that sense it
as the same asymptotic behavior as the Haringx formula.

This very interesting behavior is illustrated in Fig. 5, which
hows the case of E-glass/polyester faces and H100 cross-linked
VC foam core with f /htot=0.10, htot=30 mm, and a range of

engths L /htot between 0.01 and 0.50, i.e., for very small lengths.
he elasticity solution is now between the Allen thick and the
ther Engesser-type formulas for this range of very small lengths,
ut tends rapidly to the latter ones as L /htot→0. This case of
anishing slenderness may not be of practical interest but it illus-
rates the complexities and differences among the different formu-
as.

Conclusions
An elasticity solution to the problem of global buckling of

andwich beams or wide sandwich panels subjected to axially
ompressive loading is presented. A symmetric section is consid-
red with all constituent phases, i.e., the facings and the core,
eing orthotropic. The different global buckling formulas in the
iterature are compared with the elasticity predictions. The elas-
icity problem for buckling is formulated as an eigenboundary-
alue problem for differential equations, with the axial load being
he eigenvalue. The complication in the sandwich construction
rises due to the existence of additional “internal” conditions at
he face-sheet/core interfaces. From the results it can be concluded
hat �1� Allen’s thin and thick formulas, the Bazant and Cedolin
ormula and the Engesser formula with the Huang and Kardo-
ateas shear correction are all conservative. �2� Allen’s thick

aces formula and the Engesser formula with the Huang and Kar-
omateas shear correction give predictions, which are very close
o the elasticity solution and, in many cases, identical to the elas-
icity solution for the entire range of face thicknesses examined.
3� The Haringx formula, with the Huang and Kardomateas shear
orrection and the assumption of a constant core shear modulus,
ives predictions that are nonconservative, and it is the most in-
ccurate, especially at the thicker faces. �4� Allen’s thin formula

ig. 5 The asymptotic behavior of the various sandwich buck-
ing formulas „at the very small lengths…
ournal of Applied Mechanics
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and the Bazant and Cedolin formula give practically identical pre-
dictions �with the latter being slightly more accurate�; they are
both quite accurate for the thinner faces. �5� The transverse shear
effect can be very large in these sandwich configurations with the
critical load being just a fraction of the Euler load. The solution
presented herein provides a means of accurately assessing the
limitations of simplifying analyses and the accuracy of simple
formulas in predicting global buckling in sandwich beams or wide
panels.
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