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Original Article

Three-dimensional
elasticity solution for
sandwich beams/wide
plates with orthotropic
phases: The negative
discriminant case

George A. Kardomateas and
Catherine N. Phan

Abstract

In an earlier paper, Pagano (1969) [Pagano NJ. Exact solutions for composite laminates in

cylindrical bending. J Compos. Mater. 1969; 3: 398–411] presented the three-dimensional

elasticity solution for orthotropic beams (applicable also to sandwich beams) for the cases

of: (1) a phase with positive discriminant of the qudratic characteristic equation, which is

formed from the orthotropic material constants and further restricted to positive real

roots and (2) an isotropic phase, which results in a zero discriminant. The roots in this case

are all real, unequal, and positive (positive discriminant) or all real and equal (isotropic case).

This purpose of this article is to present the corresponding solution for the cases of

(1) negative discrimnant, in which case the two roots are complex conjugates and (2) pos-

itive discriminant but real negative roots. The case of negative discriminant is frequently

encountered in sandwich construction, where the orthotropic core is stiffer in the trans-

verse than the in-plane directions. Example problems with realistic materials are solved and

compared with the classical and the first-order shear sandwich beam theories.

Keywords

beam, elasticity, sandwich, face sheet, core, orthotropic, panel

Introduction

Elasticity solutions are significant because they provide a benchmark for assessing
the performance of various beams, plate, or shell theories or the various numerical
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methods such as the finite element method. For monolithic anisotropic bodies, such
solutions have been developed primarily by Lekhnitskii [1]. For laminated com-
posite or sandwich structures, a few closed-form solutions exist, namely by Vlasov
[2] for isotropic plates, by Pagano [3,4] for beam and plate configurations, respec-
tively (both under restrictive assumptions), and for a sandwich shell configura-
tion by Kardomateas [5]. The purpose of this study is to extend the study for the
three-dimensional elastic solution of a laminated beam by Pagano [3].

Specifically, the material constants of each phase (layer in composites or face
sheet or core in sandwich) result in a quadratic characteristic equation. In Ref. [3],
only the case of positive discriminant of the quadratic equation, which is the case of
two unequal real roots, and only when these roots are positive, was treated. The
isotropic case, in which there are two equal real roots, was also outlined. In the
article, we present the solution for the case of negative discriminant, which results
in two complex conjugate roots of the quadratic equation. In addition, we present
the solution for a positive discriminant but with real negative roots. Although the
case of positive discriminant is probably more frequent with composite layers, the
negative discriminant seems to appear frequently in sandwich construction with
orthotropic cores, in which the stiffness in the transverse direction is greater than
that of the in-plane directions (e.g., realistic honeycomb cores as shown in the
example in the results section). Therefore, the solution given in this article com-
pletes Pagano’s original work [3] for all cases of material constants.

Elasticity formulation

We consider a sandwich beam consisting of orthotropic face sheets of thickness f1
and f2 and an orthotropic core of thickness 2c, such that the various axes of elastic
symmetry are parallel to the plate axes x, y, and z (Figure 1). The body is simply

x

z

TOP FACE SHEET

BOTTOM FACE SHEET

CORE
c

c

f1

f2

a

Figure 1. Definition of the geometry and coordinate system for the sandwich beam.

642 Journal of Sandwich Structures and Materials 13(6)

 by George Kardomateas on March 10, 2013jsm.sagepub.comDownloaded from 

http://jsm.sagepub.com/


supported. Although the elasticity solution is derived for any loading, results
will be presented for a transverse distributed loading eq0ðxÞ applied on the upper
surface.

Let us denote each phase by i, where i= f1 for the upper face-sheet, i= c for the
core, and i= f2 for the lower one. The displacements along x, y, and z are denoted
by u, v, and w, respectively.

The underlying assumption of the problem (one-dimensional) is

v ¼ 0; u;w ¼ fnðx; zÞ: ð1aÞ

Using the strain–displacement relations results in:

�xx ¼ u;x; �zz ¼ w;z ; �xz ¼ u;z þ w;x; ð1bÞ

and

�yy ¼ �xy ¼ �yz ¼ 0: ð1cÞ

Then, for each phase, the orthotropic strain–stress relations are:

�ðiÞxx
�ðiÞyy

�ðiÞzz
�ðiÞyz

�ðiÞxz
�ðiÞxy

2
6666666664

3
7777777775
¼

ci11 ci12 ci13 0 0 0

ci12 ci22 ci23 0 0 0

ci13 ci23 ci33 0 0 0

0 0 0 ci44 0 0

0 0 0 0 ci55 0

0 0 0 0 0 ci66

2
666666664

3
777777775

�ðiÞxx
0

�ðiÞzz
0

�ðiÞxz
0

2
666666664

3
777777775
; ði¼ f1;c; f2Þ ð2Þ

where ciij are the stiffness constants (we have used the notation 1� x, 2� y, and
3� z).

Accordingly, the non-zero stresses depend only on x and z. Thus, the equilib-
rium relations are:

�xx;x þ �xz;z ¼ 0; ð3aÞ

�xz;x þ �zz;z ¼ 0; ð3bÞ

This leads to the following governing field equations in terms of the displace-
ments for each of the phases:

ci11u;xx þ ci55u;zz þ ðc
i
13 þ ci55Þw;xz ¼ 0; ð4aÞ

ðci13 þ ci55Þu;xz þ ci55w;xx þ ci33w;zz ¼ 0: ð4bÞ
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In the following, we shall drop the superscript i that refers to the phases (core or
face sheets) with the understanding that the derived relations will hold within each
phase.

For a simply supported plate, an appropriate solution for the displacements
would be in the form:

u ¼ UðzÞ cos px; w ¼ WðzÞ sin px; where p ¼
n�

a
ðn ¼ 1; 2; . . .Þ: ð5aÞ

Note that these displacements, in conjunction with the corresponding forms (1)
and (2) stresses, would satisfy the simple support edge conditions.

Assuming next that

½UðzÞ;WðzÞ� ¼ ½U0;W0�e
sz; ð5bÞ

where U0 and W0 are constants, and substituting (5a, b) into (4) results in the
following system of algebraic equations

ðc11p
2 � c55s

2ÞU0 � ðc13 þ c55ÞpsW0 ¼ 0; ð6aÞ

ðc13 þ c55ÞpsU0 þ ðc55p
2 � c33s

2ÞW0 ¼ 0: ð6bÞ

Non-trivial solutions of this system exist only if the determinant of the coeffi-
cients vanishes, which leads to the equation:

A0s
4 þ A1s

2 þ A2 ¼ 0; ð7Þ

where

A0 ¼ c33c55; A2 ¼ p4c11c55 ð8aÞ

A1 ¼ p2 ðc13 þ c55Þ
2
� c11c33 � c255

� �
; ð8bÞ

With the substitution

� ¼ s2; ð9aÞ

Equation (7), which defines the parameter s, can be written in the form of a qua-
dratic equation as:

A0�
2 þ A1� þ A2 ¼ 0: ð9bÞ

This is what we would call the characteristic equation for the elasticity solution.
The discriminant of this equation is:

� ¼ A2
1 � 4A0A2: ð10Þ
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If �> 0, then all roots are real and unequal. If, furthermore, these two real roots
are positive, the case was treated by Pagano [3]. We consider next the case of
negative discriminant, which has not yet been treated. The case of a positive dis-
criminant with negative real roots will be treated subsequently.

Solution for negative discriminant

If �< 0, then the quadratic Equation (10) has two complex conjugate roots:

�1 ¼ �R þ i�I; �2 ¼ �R � i�I; where �R ¼ �
A1

2A0
; �I ¼

ffiffiffiffiffiffiffiffiffiffi
j � j
p

2A0
:

ð11aÞ

In terms of the modulus r and amplitude y of these complex numbers,

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
R þ �2

I

q
; 	 ¼ arctan

�I

�R

� �
; ð11bÞ

these roots can be set in the form:

�1 ¼ rðcos 	 þ i sin 	Þ; �2 ¼ rðcos 	 � i sin 	Þ: ð11cÞ

From (9), we seek now the square roots of the �i’s. Thus, in terms of:

�1 ¼
ffiffi
r
p

cos
	

2
; �2 ¼

ffiffi
r
p

sin
	

2
; ð11dÞ

the corresponding roots of the fourth-order Equation (7), si, are:

s1;2 ¼ � ð�1 þ i�2Þ; s3;4 ¼ � ð�1 � i�2Þ: ð11eÞ

Corresponding to these four roots, the displacement functions take the form:

U
ðzÞ ¼ a1
e
�1z cos �2z þ a2
e

�1z sin �2z

þ a3
e
��1z cos �2z þ a4
e

��1z sin �2z; 
 ¼ u;w; ð12Þ

where Z= u, w corresponds to the U and W displacements, respectively, and a1Z
are constants.

Of the eight constants appearing in (12) only four are independent. The four
relations that exist among these constants are found by substituting the displace-
ments along with (5) into the equilibrium equations (4). For convenience, let us set:

r1 ¼
�1 c11p

2 � c55ð�
2
1 þ �22 Þ

� �
pðc13 þ c55Þð�21 þ �22 Þ

; r2 ¼
�2 c11p

2 þ c55ð�
2
1 þ �22 Þ

� �
pðc13 þ c55Þð�21 þ �22 Þ

; ð13aÞ
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In this way, we obtain the following relations for the coefficients in the displace-
ment expression for W(z), equation (12), in terms of the coefficients in the expres-
sion for U(z):

a1w ¼ r1a1u � r2a2u; a2w ¼ r2a1u þ r1a2u; ð13bÞ

a3w ¼ � r1a3u � r2a4u; a4w ¼ r2a3u � r1a4u: ð13cÞ

Hence, if we consider the constants a1u, a2u, a3u, and a4u as independent, which
we rename for convenience as g1, g2, g3, and g4, respectively, the displacement
u(x, z) is in the form

u ¼ ðdu1g1 þ du2g2 þ du3g3 þ du4g4Þ cos px; ð14aÞ

with the z-dependent coefficients defined as:

du1 ¼ e�1z cos �2z; du2 ¼ e�1z sin �2z; ð14bÞ

du3 ¼ e��1z cos �2z; du4 ¼ e��1z sin �2z: ð14cÞ

The displacement w(x, z) is in the form:

w ¼ ðdw1g1 þ dw2g2 þ dw3g3 þ dw4g4Þ sin px; ð15aÞ

where the z-dependent coefficients are defined:

dw1 ¼ ðr1 cos �2z þ r2 sin �2zÞe
�1z; dw2 ¼ ðr1 sin �2z � r2 cos �2zÞe

�1z; ð15bÞ

dw3 ¼ ðr2 sin �2z � r1 cos �2zÞe
��1z; dw4 ¼ ðr2 cos �2z � r1 sin �2zÞe

��1z: ð15cÞ

The corresponding stresses are derived by substituting the above displacement
expressions into (5), (1), and (2). We present the explicit expressions for the stresses
as follows.

The transverse normal stress szz(x, z) is in the form

�zz ¼ bzz1g1 þ bzz2g2 þ bzz3g3 þ bzz4g4ð Þ sin px; ð16aÞ

with the z-dependent coefficients defined as:

bzz1 ¼ ½c33ðr1�1 þ r2�2Þ � c13p�e
�1z cos �2z

þ c33ðr2�1 � r1�2Þe
�1z sin �2z; ð16bÞ

bzz2 ¼ c33ðr1�2 � r2�1Þe
�1z cos �2z

þ ½c33ðr1�1 þ r2�2Þ � c13p�e
�1z sin �2z; ð16cÞ

bzz3 ¼ ½c33ðr1�1 þ r2�2Þ � c13p�e
��1z cos �2z

� c33ðr2�1 � r1�2Þe
��1z sin �2z; ð16dÞ
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and

bzz4 ¼ c33ðr2�1 � r1�2Þe
��1z cos �2z

þ ½c33ðr1�1 þ r2�2Þ � c13p�e
��1z sin �2z: ð16eÞ

The shear stress �xz(x, z) is in the form:

�xz ¼ bxz1g1 þ bxz2g2 þ bxz3g3 þ bxz4g4ð Þ cos px; ð17aÞ

with the z-dependent coefficients defined as:

bxz1 ¼ c55e
�1z½ð�1 þ pr1Þ cos �2z þ ðpr2 � �2Þ sin �2z�; ð17bÞ

bxz2 ¼ c55e
�1z½ð�2 � pr2Þ cos �2z þ ðpr1 þ �1Þ sin �2z�; ð17cÞ

bxz3 ¼ c55e
��1z½�ðpr1 þ �1Þ cos �2z þ ðpr2 � �2Þ sin �2z�; ð17dÞ

and

bxz4 ¼ c55e
��1z½ð�2 � pr2Þ cos �2z � ðpr1 þ �1Þ sin �2z�: ð17eÞ

Finally, the axial stress sxx is in the form:

�xx ¼ bxx1g1 þ bxx2g2 þ bxx3g3 þ bxx4g4ð Þ sin px; ð18Þ

where the z-dependent coefficients bxxj are found from the bzzj expressions (16(b)–
(e) by replacing c33 with c13 and c13 with c11.

From this analysis, we can see that within each phase (i), where i= f1, c, f2, there
are four constants: g

ðiÞ
j , j=1,. . . 4. Therefore, for the three phases, this gives a total

of 12 constants to be determined.
There are two traction conditions at each of the two core/face-sheet interfaces,

giving a total of four conditions. In a similar fashion, there are two displacement
continuity conditions at each of the two core/face-sheet interfaces, giving another
four conditions. Finally, there are two traction boundary conditions on each of the
two plate bounding surfaces, giving another four conditions, for a total of 12
equations.

Positive discriminant solution

If the discriminant � is positive then the two roots are real and unequal and are as
follows:

�1 ¼
�A1 þ

ffiffiffiffi
�
p

2A0
; �2 ¼

�A1 �
ffiffiffiffi
�
p

2A0
; ð19aÞ
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If we set

mj ¼
ffiffiffiffiffiffiffi
j�jj

p
; ð19bÞ

then, if �j< 0, the corresponding two roots of (7) are sj=�imj, j=1, 2 and from
(5b) for each pair of roots sj, we can write:

UðzÞ ¼
X2
j¼1

a1j cosmjz þ a2j sinmjz; ð20aÞ

WðzÞ ¼
X2
j¼1

b1j cosmjz þ b2j sinmjz; ð20bÞ

Of the eight constants that enter into (20), only four are independent. The four
relations between these constants are found by substituting (20) directly into (5a)
and then into the equilibrium equations (4). This leads to the following two equa-
tions for b1j and b2j, j=1, 2:

b1j ¼ � �ja2j; b2j ¼ �ja1j; ð20cÞ

where we have set:

�j ¼
ðc55 þ c13Þpmj

c33m
2
j þ c55p2

: ð20dÞ

If on the other hand, �j> 0, then the corresponding two roots of (7) are
sj=�mj, j=1, 2 and by following an analogous procedure, we can write:

UðzÞ ¼
X2
j¼1

a1j coshmjz þ a2j sinhmjz; ð21aÞ

WðzÞ ¼
X2
j¼1

b1j coshmjz þ b2j sinhmjz; ð21bÞ

and the constants in W(z) are expressed in terms of the constants in U(z) as:

b1j ¼ � �ja2j; b2j ¼ �ja1j; ð21cÞ

where we have set:

�j ¼
ðc55 þ c13Þpmj

c33m
2
j � c55p2

: ð21dÞ
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Hence, the independent parameters are the four constants a11, a12, a21, and a22,
which we rename for convenience as g1, g2, g3, and g4, respectively. Then, the
displacements are as follows:

UðzÞ ¼ ðdu1g1 þ du2g2 þ du3g3 þ du4g4Þ cos px; ð22aÞ

with the z-dependent coefficients defined for j=1, 2,

duj ¼
cosmjz; if �j 5 0

coshmjz; if �j > 0

8<
: ð22bÞ

duðjþ2Þ ¼
sinmjz; if �j 5 0

sinhmjz; if �j > 0

8<
: ð22cÞ

and

WðzÞ ¼ ðdw1g1 þ dw2g2 þ dw3g3 þ dw4g4Þ sin px; ð23aÞ

where the z-dependent coefficients are again defined for j=1, 2,

dwj ¼

�j sinmjz; if �j 5 0

�j sinhmjz; if �j > 0

8<
: ð23bÞ

dwðjþ2Þ ¼

��j cosmjz; if �j 5 0

�j coshmjz; if �j > 0

8<
: ð23cÞ

The corresponding stresses are derived by substituting the above displacement
expressions into (1) and (2). We present the explicit expressions for the szz, and �xz.
The szz can be written in the form:

�zz ¼ bzz1g1 þ bzz2g2 þ bzz3g3 þ bzz4g4ð Þ sin px; ð24aÞ

with the z-dependent coefficients defined for j=1,2, as:

bzzj ¼
�c13p þ c33�jmj

� �
cosmjz; if �j 5 0

�c13p þ c33�jmj

� �
coshmjz; if �j > 0

8<
: ð24bÞ

bzzðjþ2Þ ¼
�c13p þ c33�jmj

� �
sinmjz; if �j 5 0

�c13p þ c33�jmj

� �
sinhmjz; if �j > 0

8<
: ð24cÞ
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Next,

�xz ¼ bxz1g1 þ bxz2g2 þ bxz3g3 þ bxz4g4ð Þ cos px; ð25aÞ

with the z-dependent coefficients defined for j=1,2, as:

bxzj ¼
c55 p�j �mj

� �
sinmjz; if �j 5 0

c55 p�j þmj

� �
sinhmjz; if �j > 0

8<
: ð25bÞ

bxzðjþ2Þ ¼
c55 mj � p�j
� �

cosmjz; if �j 5 0

c55 p�j þmj

� �
coshmjz; if �j > 0

8<
: ð25cÞ

Finally, the axial stress sxx is in the form (18), where the z-dependent coefficients
bxxj are found from the bzzj expressions (24) by replacing c33 with c13 and c13 with
c11.

For completeness, we give the complete solution for isotropic phases in
Appendix 1. This was outlined in Ref. [3].

Results and discussion

We shall consider sandwich configurations consisting of faces made out of either
graphite/epoxy or E-glass/polyester unidirectional composite and core made out of
either hexagonal glass/phenolic honeycomb or balsa wood. The moduli and
Poisson’s ratios for these materials are given in Table 1.

Table 1. Material properties.

Graphite

epoxy

FACE

E-glass

polyester

FACE

Balsa wood

CORE

Glass-phenolic

honeycomb

CORE

E1 181.0 40.0 0.671 0.032

E2 10.3 10.0 0.158 0.032

E3 10.3 10.0 7.72 0.300

G23 5.96 3.5 0.312 0.048

G31 7.17 4.5 0.312 0.048

G12 7.17 4.5 0.200 0.013

n32 0.40 0.40 0.49 0.25

n31 0.016 0.26 0.23 0.25

n12 0.277 0.065 0.66 0.25

Note: Moduli data are in GPa.
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The two face sheets are assumed identical with thickness f1= f2= f=2 mm.
The core thickness is 2c=16 mm. The total thickness of the plate is defined as
htot=2f+2c and the length of the beam is a=20htot. A unit width is assumed.

We further assume that a transverse distributed loading eq0ðxÞ per unit width is
applied at the top face sheet. The form of the distributed load is of the form:

eq0ðxÞ ¼ q0 sin
�x

a
; ð26aÞ

therefore in the definition of p in (5d), we have n=1. Note that a general loading
can be expanded in a series of terms of the type qn sin

n�x
a anyway.

In the following results, the displacements are normalized with

wnorm ¼
3q0a

4

2�4Ef
1f

3
: ð26bÞ

and the stresses with q0.
For each phase, the stiffness constants cij, that enter into the solution are found

from:

c11 ¼ E1
ð1� 
23
32Þ

C0
; c13 ¼ E3

ð
13 þ 
12
23Þ

C0
; ð26cÞ

c33 ¼ E3
ð1 � 
12
21Þ

C0
; c55 ¼ G31; ð27aÞ

where

C0 ¼ 1� ð
12
21 þ 
23
32 þ 
13
31Þ � ð
12
23
31 þ 
21
13
32Þ: ð27bÞ

Substituting these into Equation (10) gives the discriminant for each phase and
the corresponding �’s depending on whether the discriminant is positive or nega-
tive. The elasticity solution for the displacements, stresses, and strains follows
accordingly as outlined above in terms of the constants g

ðf2Þ
j , g

ðcÞ
j , and g

ðf1Þ
j , j=1,

4. These 12 constants are determined as follows:
There are two traction conditions at the lower face-sheet/core interface, z=�c:

a. The �ðcÞzz ¼ �ðf2Þzz jz¼�c, which gives:

X4
j¼1

b
ðcÞ
zzj jz¼�c g

ðcÞ
j ¼

X4
j¼1

b
ðf2Þ
zzj jz¼�c g

ðf2Þ
j ; ð28aÞ

and
b. the �ðcÞxz ¼ �ðf2Þxz jz¼�c, which gives:

X4
j¼1

b
ðcÞ
xzj jz¼�c g

ðcÞ
j ¼

X4
j¼1

b
ðf2Þ
xzj jz¼�c g

ðf2Þ
j : ð28bÞ
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There are also two displacement continuity conditions at the lower core/face-
sheet interfaces:

(a) The U(c)=U(f2) at z=�c, which results in:

X4
j¼1

d
ðcÞ
uj jz¼�c g

ðcÞ
j ¼

X4
j¼1

d
ðf2Þ
uj jz¼�c g

ðf2Þ
j ; ð28cÞ

and finally
(c) the W(c)=W(f2) at z=�c, which gives:

X4
j¼1

d
ðcÞ
wj jz¼�c g

ðcÞ
j ¼

X4
j¼1

d
ðf2Þ
wj jz¼�c g

ðf2Þ
j : ð28dÞ

Next, there are two traction conditions at the upper face-sheet/core interface,
z=+c:

(a) �ðf1Þzz ¼ �ðcÞzz jz¼þc, which gives:

X4
j¼1

b
ðcÞ
zzj jz¼þc g

ðcÞ
j ¼

X4
j¼1

b
ðf1Þ
zzj jz¼þc g

ðf1Þ
j ; ð29aÞ

and
(c) �ðf1Þxz ¼ �ðcÞxz jz¼þc, which gives:

X4
j¼1

b
ðcÞ
xzj jz¼þc g

ðcÞ
j ¼

X4
j¼1

b
ðf1Þ
xzj jz¼þc g

ðf1Þ
j : ð29bÞ

The corresponding displacement continuity conditions at the upper face-sheet/
core interface, z=+c are:

(a) U(f1)=U(c) at z=+c, which gives:

X4
j¼1

d
ðcÞ
uj jz¼þc g

ðcÞ
j ¼

X4
j¼1

d
ðf1Þ
uj jz¼þc g

ðf1Þ
j ; ð29cÞ

and
(c) W(f1)=W(c) at z=+c, which gives:

X4
j¼1

d
ðcÞ
wj jz¼þc g

ðcÞ
j ¼

X4
j¼1

d
ðf1Þ
wj jz¼þc g

ðf1Þ
j : ð29dÞ
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Finally, two traction conditions exist on each of the two bounding surfaces. The
traction free conditions at the lower bounding surface, z=�(c+ f2), can be writ-
ten as follows:

(a) szz |z=�(c+f2)=0, which gives:

X4
j¼1

b
ðf2Þ
zzj jz¼�ðcþf2Þ g

ðf2Þ
j ¼ 0; ð30aÞ

and
(c) �xz |z=�(c+f2), which gives:

X4
j¼1

b
ðf2Þ
xzj jz¼�ðcþf2Þ g

ðf2Þ
j ¼ 0: ð30bÞ

And for the upper bounding surface, where the transverse load q0 is applied:

(a) szz |z=(c+f1)= q0, which gives:

X4
j¼1

b
ðf1Þ
zzj jz¼ðcþf1Þ g

ðf1Þ
j ¼ q0; ð30cÞ

and
(c) �xz |z=(c+f1)=0, which gives:

X4
j¼1

b
ðf1Þ
xzj jz¼ðcþf1Þ g

ðf1Þ
j ¼ 0: ð30dÞ

Therefore, we have a system of 12 linear algebraic equations in the 12
unknowns, g

ðf2Þ
j , g

ðcÞ
j , and g

ðf1Þ
j , j=1, 4.

Plotted in Figure 2 is the normalized displacement at the top face sheet as a
function of x, for the case of graphite/epoxy faces and glass phenolic honeycomb
core. In this figure, we also show the predictions of the simple classical beam
theory, which does not include transverse shear, as well as the first-order shear
theory; for the latter, there are two versions: one that is based only on the core
shear stiffness and one that includes the face sheet stiffnesses. Both are outlined in
Appendix 2. From Figure 2, we can see that both the classical and first-order Shear
(both versions) seem to be inadequate. The classical theory is too non-conservative
and the first-order Shear theory with face sheets included can hardly make a dif-
ference. On the other hand, the first-order shear theory, where shear is assumed to
be carried exclusively by the core is too conservative. In Figure 2, we can also
readily observe the large effect of transverse shear, which is an important feature of
sandwich structures. Further and most definite confirmation of these results could
be provided by comparison with experimental data, and this is indeed a part of our
future research plans.
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The distribution of the axial stress in the core, sxx, as a function of z at
the midspan location, x= a/2 (where the bending moment is maximum), is plot-
ted in Figure 3(a), again for the case of graphite/epoxy faces and glass pheno-
lic honeycomb core. The classical and first-order shear theories give
practically identical predictions but they are in appreciable error in comparison
to the elasticity, the error increasing toward the lower end of the core (z=�c).
All curves are linear. Notice also that for the elasticity, there is not a symmetry
with regard to the midline (z=0) unlike the classical and first-order shear
theories.

The effect of different face/core combinations on the axial stress in the core, sxx,
is shown in Figure 3(b), where three face/core combinations (same geometry) are
examined. The range of the axial stress is greatly affected by the core; for the same
faces, higher axial stress range occurs with the stiffer core. Indeed, when the faces
are the same (glass–polyester), the stiffer balsa core case shows a higher range of
axial stress in the core than the weaker phenolic core case.

The corresponding three face/core combinations axial strain in the core, exx, is
shown in Figure 3(c). It is interesting to notice that the axial strain is mostly
influenced by the faces; for the same core, the stiffer faces result in less axial
strain in the core. Indeed, we can observe from Fig. 3(b), that when the core is
the same (Phenolic), the less stiff glass/polyester face case shows a higher range of
axial stress in the core than the stiffer graphite/epoxy case.

Figure 2. Transverse displacement, w, at the top, z = c+f, for the case of graphite/epoxy faces

and glass phenolic honeycomb core.
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The through-thickness distribution of the transverse normal stress in the core,
szz, at the midspan location, x= a/2, is shown in Figure 4(a) for three face/core
combinations (same geometry). Only the profiles from the elasticity solution are
shown, since the first-order shear theory and the classical theory consider the core
incompressible, i.e., zero szz. It is worth observing that the transverse normal stress
is practically the same in all three cases and all are nearly linear.

However, the theories differ when the transverse normal strain is examined in
Figure 4(b). We can see that the normal strain profile is strongly influenced by the
core; for the same faces, lower normal strains occur with the stiffer core. We can
observe from Figure 4(b) that when the faces are the same (glass–polyester), the
weaker phenolic core case shows higher normal strains in the core than the stronger
balsa core case. Also, we can observe that when the core is the same, there is little
influence of the face sheet with the graphite/epoxy and glass/polyester faces, both
with the same phenolic core being very similar.

Figure 3. Through-thickness distribution in the core of; (a) the axial stress, sxx, at x = a/2

for; (a) the case of graphite/epoxy faces and glass phenolic honeycomb core, (b) axial stress,

exx, at x = a/2 for three face/core material combination, and (c) the axial strain, exx, at x = a/2,

for three face/core material combinations.
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Figure 5 shows the through-thickness distribution of the transverse shear stress
in the core, �xz, at x= a/10, i.e., near the ends, where shearing is expected to be
significant, for the three face/core combinations (same geometry). For the very soft
core cases, the shearing stress is nearly constant. However, for the case of the stiffer
Balsa core, the shear stress shows a noticeable distribution through the thickness.

Figure 4. Through-thickness distribution in the core of the transverse normal stress

(a) szz, at x = a/2, for three face/core material combinations. (b) transverse normal strain, ezz,

at x = a/2, for three face/core material combinations.
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Conclusions

A three-dimensional elasticity solution for a sandwich beam/wide plate with neg-
ative discriminant orthotropic phases (resulting in complex conjugate roots) or
positive discriminant but real negative roots is presented. This is a case frequently
encountered in realistic sandwich construction. The solution is closed-form. This
study completes Pagano’s [3] original work, which was done for the positive dis-
criminant with real positive roots orthotropic phases and for the isotropic phases.
Results for a few representative face sheet and core material configurations are
presented.
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Appendix 1

Isotropic phases

In the event that one of the phases is isotropic (this is more common for the core)
with extensional modulus E and Poisson’s ratio n, then the following relationships
hold for the material constants:

c11 ¼ c22 ¼ c33 ¼ E
1� 


ð1� 2
Þð1þ 
Þ
; ðA1aÞ

c12 ¼ c13 ¼ c23 ¼ c11



1� 

; c66 ¼ c55 ¼ c44 ¼ c11

1� 2


2ð1� 
Þ
: ðA1bÞ

In this case, we find that � vanishes and the solution to equation (10) consists of
two equal roots, �i= p2, i=1, 2. Therefore, the solutions of (7) occurs in the form
of two repeated pairs of roots, si=�p.

In this case, the displacement functions take the form:

UðzÞ ¼ ða1u þ a3uzÞe
pz þ ða2u þ a4uzÞe

�pz ; ðA2aÞ

WðzÞ ¼ ða1w þ a3wzÞe
pz þ ða2w þ a4wzÞe

�pz : ðA2bÞ

where the aiu and aiw, i=1, 4 are constants. Of the eight constants appearing in
(A2), only four are independent. The various relations that exist among these
constants are found by substituting (A2) and (5a) into the equilibrium relations
(4), in which the relations (A1) for the isotropic material constants are used. In this
way, we deduce the following four relations:

a3w ¼ a3u; a4w ¼ � a4u; ðA3aÞ

a1w ¼ a1u �
3� 4


p
ð4
� 3Þa3u; ðA3bÞ

a2w ¼ � a2u �
3� 4


p
ð4
� 3Þa4u: ðA3cÞ
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Hence, if we consider constants a1u, a2u, a3u, and a4u as independent, which for
convenience we rename again as g1, g2, g3, and g4, respectively, the displacement
u is in the form (14a) with the z-dependent coefficients defined as:

du1 ¼ epz ; du2 ¼ e�pz ; du3 ¼ zepz ; du4 ¼ ze�pz: ðA4aÞ

and the displacement w is in the form (15a) where,

dw1 ¼ epz ; dw2 ¼ � e�pz; ðA4bÞ

dw3 ¼ z �
3� 4


p

� �
epz ; dw4 ¼ � z þ

3� 4


p

� �
e�pz: ðA4cÞ

The corresponding stresses are derived by substituting the above displacement
expressions into the strain–displacement and stress–strain relationships. The szz is
in the form (16a) with the z-dependent coefficients defined as:

bzz1 ¼
E

1þ 

pepz ; bzz2 ¼

E

1þ 

pe�pz; ðA5aÞ

and

bzz3 ¼
E

1þ 

�2 þ 2
 þ pzð Þepz ; bzz4 ¼

E

1þ 

2 � 2
 þ pzð Þe�pz: ðA5bÞ

Next, �xz is in the form (17a) with the z-dependent coefficients defined as:

bxz1 ¼
E

1þ 

pepz ; bxz2 ¼ �

E

1þ 

pe�pz; ðA6aÞ

bxz3 ¼
E

1þ 

�1 þ 2
 þ pzð Þepz ; bxz4 ¼

E

1þ 

�1 þ 2
 � pzð Þe�pz ; ðA6bÞ

Finally, sxx is in the form (18) with the z-dependent coefficients defined as:

bxx1 ¼ �
E

1þ 

pepz ; bxx2 ¼ �

E

1þ 

pe�pz; ðA7aÞ

bxx3 ¼ �
E

1þ 

2
 þ pzð Þepz ; bxx4 ¼

E

1þ 

2
 � pzð Þe�pz ; ðA7bÞ
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Appendix 2

Classical and first-order shear theories

Classical sandwich beam theory (without shear). The classical sandwich theory
assumes that the core is transversely incompressible and the displacements of the
top and bottom face sheets and care are the same. The governing differential
equation is:

D11
@4wðxÞ

@x4
¼ eq0ðxÞ; ðA8Þ

where D11 is the bending stiffness per unit width of the beam.
In the general asymmetric case, the neutral axis of the sandwich section is

defined at a distance e from the x-axis (Figure 1):

e Et
1ft þ Eb

1fb
� �

¼ Et
1ft

ft
2
þ c

� �
� Eb

1fb
fb
2
þ c

� �
: ðA9Þ

Therefore, the bending stiffness per unit width, D11, is:

D11 ¼ Et
1

f3t
12
þ Et

1ft
ft
2
þ c � e

� �2

þ Eb
1

f3b
12
þ Et

1fb
fb
2
þ c þ e

� �2

: ðA10Þ

For the load of (26a), the displacement is expressed as:

wðxÞ ¼ W0 sin
�x

a
: ðA11Þ

Substituting into Equation (A8) leads to:

W0 ¼
q0a

4

D11�4
: ðA12Þ

First-order shear sandwich beam theory. For the first-order shear model, if we let
c be the shear deformation then the governing equations with shear effects can be
written as:

D11 ;xxðxÞ � �D55  ðxÞ þ w;xðxÞ
� �

¼ 0 ; ðA13Þ

�D55  ;xðxÞ þ w;xxðxÞ
� �

þ eq0ðxÞ ¼ 0 ; ðA14Þ

where k=5/6 is the shear correction factor and

D55 ¼ Gc
13ð2cÞ : ðA15aÞ
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In some versions of the first-order shear model, the shear of the face sheets is
included, i.e.

D55 ¼ Gc
13ð2cÞ þ Gt

13ft þ Gb
13fb: ðA15bÞ

Setting

wðxÞ ¼ W0 sin
�x

a
;  ðxÞ ¼ �0 cos

�x

a
: ðA16Þ

with the load in the same manner as Equation (26a), and substituting in (A13) and
(A14) leads to:

�0 ¼ �
L13

L11L33 � L2
13

q0 ; W0 ¼
L11

L11L33 � L2
13

q0 ; ðA17Þ

where

L11 ¼ D11
�2

a2
þ �D55 ; L13 ¼ �D55

�

a
; L33 ¼ �D55

�2

a2
: ðA18Þ
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