
Global Buckling of Sandwich Beams Based on the Extended
High-Order Theory

Catherine N. Phan∗ and George A. Kardomateas†

Georgia Insitute of Technology, Atlanta, Georgia 30332

and

Yeoshua Frostig‡

Technion—Israel Institute of Technology, 32000 Haifa, Israel

DOI: 10.2514/1.J051454

The focus of this paper is the application of the recently introduced extended high-order sandwich panel theory to

the global buckling of a sandwich beam/wide panel. Three different solution approaches using the extended high-

order sandwich panel theory are presented to investigate the effects of simplifying the loading case by applying loads

just on the face sheets and by including or excluding nonlinear axial strains in the core. The results are also compared

with results from a benchmark elasticity solution and, furthermore, from the simple sandwich buckling formula by

the earlier extended high-order sandwich panel theory. It is found that all three theories are close to the elasticity

solution for “soft” cores with Ec
1=E

f
1 < 0:001. However, for “moderate” cores, i.e., with Ec

1=E
f
1 > 0:001, the theories

diverge and the extended high-order sandwich panel theory is the most accurate.

Nomenclature

a = length of the sandwich beam
at;b;c11 = axial compliance of the top face, bottom face, and

core, respectively
Ct;b;cij = Stiffness constants of the top face, bottom face, and

core, respectively
c = half-thickness of the core (total core thickness is 2c)
Et;b1 = axial extensional (Young’s) modulus of the top and

bottom face, respectively
Ec3 = transverse extensional modulus of the core
ft;b = thickness of the top face and bottom face, respectively
Gc31 = shear modulus of the core
htot = total thickness of the sandwich beam
Mt;b;c = moment stress resultant about their own centroids per

unit width of the top face, bottom face and core,
respectively

Nt;b;c = axial stress resultant per unit width of the top face,
bottom face and core, respectively

~Nt;b = end axial force (at the ends x� 0; a) per unit width at
the top and bottom faces, respectively

~nc = end axial force (at the ends x� 0; a) per unit width at
the core

PE0 = Euler load
ut;b;c = axial displacement (along x) of the top face, bottom

face, and core, respectively
Vc = shear stress resultant per unit width of core
wt;b;c = transverse displacement (along z) of the top face,

bottom face, and core, respectively
�c0 = slope at the centroid of the core
“0” = refers to the middle surface (centroid), as a subscript

I. Introduction

I N THE recent literature, several high-order theories have been
presented to model the behavior of sandwich composites. The

higher-order sandwich panel theory (HSAPT) Frostig et al. [1]
accounts for the transverse and shear stiffness of the core, but
neglects the axial stiffness of the core and assumes a constant shear
stress in the core, which is also one of the generalized coordinates
of the theory. The extended high-order sandwich panel theory
(EHSAPT) Phan et al. [2] accounts for the axial, transverse, and shear
stiffness in the core and considers the rotation at the centroid of the
core as one of the generalized coordinates. These theories were
compared in [2] to the elasticity solution for the case of a simply
supported beam subjected to a distributed sinusoidal transverse load;
it was found that while theHSAPT captures the stresses and strains in
the core very well for very soft cores, the EHSAPT is able to do the
same but for a wider range of core materials, i.e., not just soft cores.

In this paper, we are interested in how the theories perform with
respect to elasticity, in predicting the global buckling of a sandwich
beam/wide plate under compressive axial loading. The buckling
behavior of sandwich composite beams using the HSAPT was
studied by Frostig and Baruch [3]. Furthermore, a few global
buckling formulas for sandwich construction can be found in the
literature. These formulas are reviewed in detail in a whole chapter
devoted to buckling in the recent book by Carlsson and Kardomateas
[4]. As benchmark, an elasticity solution for the global buckling of a
sandwich beam/wide platewas presented byKardomateas [5]. In this
paper, two formulas were found to be the most accurate (by
comparing to elasticity). These were 1) the formula derived by Allen
[6] for thick faces (note that there also exist a corresponding formula
by Allen for thin faces, but this was less accurate), and 2) the
Engesser’s [7] critical load formula where the shear correction factor
used is the one derived for sandwich sections by Huang and
Kardomateas [8]. The latter shear correction formula is not
exclusively based on the shear modulus of the core, but instead
includes the shear modulus of the faces and the extensional modulus
of the core, therefore, it can account for sandwich constructions with
stiffer cores and/or more compliant faces. In this paper we shall use
the Allen’s [6] thick faces formula as a representative of the simple
formulas to comparewith the high-order theory results. It will also be
proven that this formula would be the direct result of the HSAPT for
the case of an incompressible core.

Thus, in this present paper, the buckling behavior for a general
asymmetric sandwich beam/wide plate with different face sheet
materials and face sheet thicknesses is presented. We have used the
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EHSAPT to solve for three cases: (a) axial load applied exclusively
the face sheets and the geometric nonlinearities in the core are
neglected (linear core); (b) uniform axial strain applied through the
entire thickness and, again, linear core; and (c) uniform axial strain
applied through the entire thickness but now the geometric
nonlinearities in the core are included (nonlinear core). It will be
shown that the critical load is nearly identical for cases (a) and (c) and
a range of corematerials and geometry but case (a) loading involves a
simpler solution process. Moreover, this critical load is very close to
the elasticity prediction. Therefore, this paper will show in detail the
solution procedure for finding the critical load of the case (a) loading.

The format of this paper is the following: in Sec. II the formulation
of the EHSAPT for the case of buckling in terms of stress resultants
and generalized coordinates is presented; in Sec. III three solution
approaches are outlined for the critical load for a simply supported
sandwich beam with general asymmetric geometry, namely linear
core and applied load on faces, linear core and applied uniform strain,
and nonlinear core and applied uniform strain; in Sec. IV results are
shown for a soft and a moderate core sandwich configurations with
symmetric geometry. Section V concludes the paper.

II. EHSAPT in Terms of Stress Resultants

In Phan et al. [2] the EHSAPTwas formulated but the governing
equations were given in terms of displacements. In this section, we
formulate the corresponding equations in terms of the applied axial
loading and the stress resultants, which is appropriate for solving the
buckling problem.

Figure 1 shows a sandwich panel of length a with a core of
thickness 2c and top and bottom face sheet thicknesses ft and fb,
respectively. ACartesian coordinate system �x; y; z� is defined at the
left end of the beam and its origin is placed at the middle of the core.
Only loading in the x-z plane is considered to act on the beam, which
solely causes displacements in the x and z directions, designated by u
andw, respectively. The superscripts t, b, and c shall refer to the top
face sheet, bottom face sheet, and core, respectively. The subscript 0
refers to the middle surface of the corresponding layer (top face,
bottom face, or core).We should also note that in our formulation the
rigidities and all applied loadings are per unit width.

The displacement field of the top and bottom face sheets are
assumed to satisfy the Euler–Bernoulli assumptions: Therefore, the
displacement field for the top face sheet, c � z � c� ft, is:

wt�x; z� � wt0�x�; ut�x; z� � ut0�x� �
�
z � c � ft

2

�
wt0;x�x�

(1a)

and for the bottom face sheet, ��c� fb� � z � �c:

wb�x; z� � wb0�x�; ub�x; z� � ub0�x� �
�
z� c� fb

2

�
wb0;x�x�

(1b)

The only nonzero strain in the faces is the axial strain, which for
buckling should be in its general nonlinear form:

�t;bxx �x; z� � ut;b;x �x; z� �
1

2
�wt;b0;x�x��2 (1c)

While the face sheets can change their length only longitudinally,
the core can change its height and length. For the EHSAPT, the
transverse displacement in the core is (Phan et al. [2])

wc�x; z� �
�
� z

2c
� z2

2c2

�
wb0�x� �

�
1 � z

2

c2

�
wc0�x�

�
�
z

2c
� z2

2c2

�
wt0�x� (2a)

and the axial displacement in the core

uc�x; z� � z
�
1 � z

2

c2

�
�c0�x� �

z2

2c2

�
1 � z

c

�
ub0�x�

�
�
1 � z

2

c2

�
uc0�x� �

z2

2c2

�
1� z

c

�
ut0�x�

� fbz
2

4c2

�
�1� z

c

�
wb0;x�x� �

ftz
2

4c2

�
1� z

c

�
wt0;x�x� (2b)

where wc0 and uc0 are the transverse and in-plane displacements,
respectively, and �c0 is the slope at the centroid of the core. This
displacement field satisfies all displacement continuity conditions at
the face/core interfaces (Phan et al. [2]).

Therefore, this theory is in terms of seven generalized coordinates
(unknown functions of x): two for the top face sheet, wt0, u

t
0, two for

the bottom face sheet, wb0 , u
b
0 , and three for the core, w

c
0, u

c
0, and �

c
0.

The core strains can be obtained from the displacements using the
strain-displacement relations.

In the following we use the notation 1 	 x, 3 	 z, and 55 	 xz.
We assume orthotropic face sheets, thus the nonzero stresses for the
faces are

�t;bxx � Ct;b11 �t;bxx ; �t;bzz � Ct;b13 �t;bxx (3a)

Notice that the �t;bzz does not ultimately enter into the variational
equation because the corresponding strain �t;bzz is zero. We also
assume an orthotropic core with stress-strain relations:

�cxx
�czz
�cxz

2
4

3
5�

Cc11 Cc13 0

Cc13 Cc33 0

0 0 Cc55

2
4

3
5 �cxx

�czz
�cxz

2
4

3
5 (3b)

where Ct;b;cij , ij� 11; 13; 33; 55 are the corresponding stiffness

constants.
The governing equations and boundary conditions are derived

from the variational principle:

��U� V� � 0 (4)

where U is the strain energy of the sandwich beam, and V is the
potential due to the applied loading. The first variation of the strain
energy per unit width of the sandwich beam is

�U�
Z
a

0

�Z �c
�c�fb

�bxx��
b
xx dz�

Z
c

�c
��cxx��cxx � �czz��czz � �czx��czx� dz

�
Z
c�ft

c

�txx��
t
xx dz

�
dx (5a)

and the first variation of the external potential per unit width is

�V �� ~Nt�ut0�ax�0 � ~Nb�ub0 �ax�0 �
�Z

c

�c
~nc�z��uc dz

��
a

x�0
(5b)

where ~Nt and ~Nb are the concentrated axial forces (per unit width) on
the top and bottom face sheets, respectively, and ~nc�z� is the
distributed axial force (per unit width) applied to the core (at the ends
x� 0 and x� a). In the following, we assume that ~nc is constant.
Therefore, using Eq. (2b) givesFig. 1 Definition of the sandwich configuration.

1708 PHAN, KARDOMATEAS, AND FROSTIG

D
ow

nl
oa

de
d 

by
 G

eo
rg

ia
 T

ec
h 

L
ib

ra
ry

 o
n 

O
ct

ob
er

 2
8,

 2
01

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

05
14

54
 



Z
c

�c
~nc�uc dz� ~ncc

�
1

3
��ub0 � �ut0� �

4

3
��uc0� �

fb
6
�wb0;x

� ft
6
�wt0;x

�
(5c)

For the sandwich panels made out of orthotropic materials, we can
substitute the stresses in terms of the strains from the constitutive
relations, Eq. (3), and then the strains in terms of the displacements
and the displacement profiles, Eqs. (1) and (2), and finally apply the
variational principle, Eqs. (4) and (5) to obtain the governing
equations and associated boundary conditions. These are listed in
Appendix A.

We have also made use of the definitions of the axial stress
resultants of the top face, bottom face, and core per unit width,
respectively, Nt;b;c, and these are defined as

Nt�x� �
Z
c�ft

c

�txx dz� Ct11ft�txx

Nbx �x� �
Z �c
�c�fb

�bxx dz� Cb11fb�bxx (6a)

Ncx�x� �
Z
c

�c
�cxx dz� Cc13�wt0 � wb0�

� cC
c
11

3

�
ub0;x � 4uc0;x � ut0;x �

ft
2
wt0;xx �

fb
2
wb0;xx

�
(6b)

where the nonlinear axial strains �t;bxx are given in Eq. (1c). The
expression (6b), however, is based on the assumption of linear strains
for the core. When nonlinear strains are included in the core, the
following term is added to Eq. (6b):

NcNL �
c

15
Cc11�2wb0;xwc0;x � wb0;xwt0;x � 2�wb0;x�2 � 2wc0;xw

t
0;x

� 8�wc0;x�2 � 2�wt0;x�2� (6c)

Also,Mt;b;c are the moment stress resultants of the top face, bottom
face, and core about their own centroids per unit width, respectively,
and are defined as

Mt�x� � �
Z
c�ft

c

�txx

�
z � c � ft

2

�
dz� Ct11

f3t
12
wt0;xx (6d)

Mb�x� � �
Z �c
�c�fb

�bxx

�
z� c� fb

2

�
dz� Cb11

f3b
12
wb0;xx (6e)

Mc�x� � �
Z
c

�c
�cxxz dz��

2cCc13
3
�wb0 � 2wc0 �wt0�

� c
2Cc11
30
�8c�c0;x � 6�ut0;x � ub0;x� � 3�fbwb0;xx � ftwt0;xx�� (6f)

Again, the expression (6f) is based on the assumption of linear strains
for the core. When nonlinear strains are included in the core, the
following term is added to Eq. (6f):

Mc
NL �

c2

30
Cc11�wb0;x � wt0;x��3wb0;x � 4wc0;x � 3wt0;x� (6g)

Finally, Vc is the shear stress resultant of the core and is defined as

Vc �
Z
c

�c
�czx dz� Cc55

�
�ut0 � ub0� �

c

3
�wb0;x �wt0;x�

� 1

2
�fbwb0;x � ftwt0;x� � 8cwc0;x

�
(6h)

III. Three Solution Approaches for the Global
Buckling of a Simply Supported Sandwich Beam

An elasticity solution exists for the critical load of a sandwich
beam undergoing compressive loading (uniform axial strain loading)
Kardomateas [5]. The goal of this paper is to determine the critical
load for a simply supported sandwich beam using the EHSAPT, and
to compare its solution, as well as other sandwich panel theories, to
the elasticity solution. Three solution approacheswere pursued using
the EHSAPT: 1) loading applied on the face sheets and the geometric
nonlinearities for the core are neglected, i.e., linear strains assumed
for the core, 2) uniform strain loading through the entire thickness
and, again, linear strains assumed for the core, and 3) uniform strain
loading through the entire thickness and the geometric nonlinearities
for the core are now included, i.e., nonlinear strains assumed for the
core. The following sections outline the solution procedures for
determining the critical load using these approaches for a sandwich
beam/wide plate of general asymmetric geometry and material
configuration.

A. Case (a): Loading on the Face Sheets with Linear Axial

Strains in the Core

In this case, ~Nt and ~Nb are applied on the top and bottom face
sheets, respectively, such that the axial strains are equal on the top and
bottom faces, and the net axial loading per unit width on each side of
the beam is �P.

Imposing the condition of the same axial strain and the condition
that the sum of the loads per unit width on the top and bottom face
sheets equals �P provides two equations for the unknown axial
loads, which are found to be

~N t
p ���tP; ~Nbp ���bP (7a)

where

�t � ab11ft
at11fb � ab11ft

; �b � at11fb
at11fb � ab11ft

(7b)

and ai11 � 1=Ei1 is the compliance constant of the corresponding face
sheet (i� t; b).

The critical load for an asymmetric geometry and material
configuration can be determined using the perturbation approach:

Ni�x� � Nip�x� � �Nis�x� �i� t; b; c� (8a)

ui0�x� � up�x� � �ui0s�x� �i� t; b� (8b)

wi0�x� � �wi0s�x�; Mi�x� � �Mi
s�x�; �i� t; b; c� (8c)

uc0�x� � �uc0s�x�; �c0�x� � ��c0s�x�; Vc�x� � �Vcs �x�
(8d)

The additional subscript p stands for primary, or the prebuckled
state, while the additional subscript s stands for secondary, or the
perturbed state, and � is an infinitesimally small quantity.

By considering Eq. (7) and substituting the displacements, the
stress resultants on the face sheets, Eq. (8a), can be written as

Ni ���iP� ��Ci11fiui0s;x� �i� t; b� (9)

We assume global bucklingmodes for the simply supported beam,
as follows:

ut;b;c0s �Ut;b;c
0 cos

	x

a
; �c0s ��c

0 cos
	x

a
(10a)

wt;b;c0s �Wt;b;c
0 sin

n	x

a
(10b)

Substitution of the secondary terms into the buckled state
equations leads to seven algebraic equations, and these are
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�ut0: U
b
0

�
� 7

30c
Cc55 �

c	2

35a2
Cc11

�
�Uc

0n

�
� 4

3c
Cc55 �

2c	2

15a2
Cc11

�

��c
0

�
� 4

5
Cc55 �

2c2	2

35a2
Cc11

�
�Ut

0

�
47

30c
Cc55 �

6c	2

35a2
Cc11

� ft	
2

a2
Ct11

�
�Wb

0

�
� cfb	

3

70a3
Cc11 � 
b2

	

a

�
�Wc

0

	�1

a

�Wt
0

�
3cft	

3

35a3
Cc11 � 
t3

	

a

�
� 0 (11a)

�wt0: U
b
0

�
cft	

3

70a3
Cc11 � 
t2

	

a

�
�Uc

0

�
cft	

3

15a3
Cc11 � 
t6

	

a

�

��c
0

�
c2ft	

3

35a3
Cc11 � 
t4

	

a

�
�Ut

0

�
3cft	

3

35a3
Cc11 �

	

a

t3

�

�Wb
0

�
Cc33
6c
� cfbft	

4

140a4
Cc11 � �2

	2

a2

�

�Wc
0

�
� 4

3c
Cc33 � 
t7

	2

a2

�
�Wt

0

�
��tP	

2

a2
� 7

6c
Cc33

� 3cf2t 	
4

70a4
Cc11 �

f3t 	
4

12a4
Ct11 � 
t8

	2

a2

�
� 0 (11b)

�uc0: U
b
0

�
� 4

3c
Cc55 �

2c	2

15a2
Cc11

�
�Uc

0

�
8

3c
Cc55 �

16c	2

15a2
Cc11

�

�Ut
0

�
� 4

3c
Cc55 �

2c	2

15a2
Cc11

�
�Wb

0

�

b6	

a
� cfb	

3

15a3
Cc11

�

�Wt
0

�
cft	

3

15a3
Cc11 �


t6	

a

�
� 0 (11c)

��c0:U
b
0

�
4

5
Cc55 �

2c2	2

35a2
Cc11

�
��c

0

�
8c

5
Cc55 �

16c3	2

105a2
Cc11

�

�Ut
0

�
� 4

5
Cc55 �

2c2	2

35a2
Cc11

�
�Wb

0

�
c2fb	

3

35a3
Cc11 �


b4	

a

�

�Wc
0n

�
4c�1	

3a

�
�Wt

0

�
c2ft	

3

35a3
Cc11 �


t4	

a

�
� 0 (11d)

�wc0: � Ub
0

�
�1	

a

�
��c

0

�
4c�1	

3a

�
�Ut

0

�
�1	

a

�

�Wb
0

�
4

3c
Cc33 �


b7	
2

a2

�
�Wc

0

�
8

3c
Cc33 �

16c	2

15a2
Cc55

�

�Wt
0

�
4

3c
Cc33 �


t7	
2

a2

�
� 0 (11e)

�ub0 : U
b
0

�
47

30c
Cc55 �

6c	2

35a2
Cc11 � fb

	2

a2
Cb11

�

�Uc
0

�
� 4

3c
Cc55 �

2c	2

15a2
Cc11

�
��c

0

�
4

5
Cc55 �

2c2	2

35a2
Cc11

�

�Ut
0

�
� 7

30c
Cc55 �

c	2

35a2
Cc11

�

�Wb
0

�
� 3cfb	

3

35a3
Cc11 � 
b3

	

a

�
�Wc

0

�
	

a
�1

�

�Wt
0

�
cft	

3

70a3
Cc11 � 
t2

	

a

�
� 0 (11f)

�wb0 : U
b
0

�
� 3cfb	

3

35a3
Cc11 � 
b3

	

a

�
�Uc

0

�
� cfb	

3

15a3
Cc11 � 
b6

	

a

�

��c
0n

�
c2fb	

3

35a3
Cc11 � 
b4

	

a

�
�Ut

0

�
� cfb	

3

70a3
Cc11 � 
b2

	

a

�

�Wb
0

�
��bP	

2

a2
� 7

6c
Cc33 �

3cf2b	
4

70a4
Cc11 �

f3b	
4

12a4
Cb11

� 
b8
	2

a2

�
�Wc

0

�
� 4

3c
Cc33 � 
b7

	2

a2

�

�Wt
0

�
Cc33
6c
� cfbft	

4

140a4
Cc11 � �2

	2

a2

�
� 0 (11g)

Notice that the loading P (eigenvalue) appears in the �w0t
Eq. (11b) in the termWt

0 and in the �wb0 Eq. (11g) in the termWb
0 .

The equations can be cast in matrix form:

�
�KLC� �

	2

a2
bGac�I�

�
fUg � f0g (12)

�KLC� is a 7 
 7matrix involvingmaterial stiffnesses and sandwich
dimensions, and each element is given in Appendix B. The subscript
LC denotes that the sandwich system has linear strains in the core.
Later in the paper another matrix, the KNLC will represent additional
terms that account for nonlinear axial strains in the core. The loading
vector is represented by bGac � b0; 0; 0; 0; �bP; 0; �tPc, if the
equations of the system are written in the order of Eqs. (11a–11g),
respectively. Seven unknown displacement amplitudes make up the
vector fUg � bUb

0 ; U
c
0;�

c
0; U

t
0;W

b
0 ;W

c
0 ;W

t
0cT. The critical load is

determined by finding the value of P for which the system has a
nontrivial solution, or finding P by zeroing the determinant:

det

�
�KLC� �

	2

a2
bGac�I�

�
� 0 (13)

B. Case (b): Uniform Strain Loading with Linear Axial Strains in the

Core

In this case, both face sheets and the core have the same axial strain
�ixxp � �ixxp=Ci11 for i� t; b; c, and imposing that the net stress
resultant per unit width at each end is �P, gives

~N t ���tP; ~Nb ���bP; ~nc ���c P
2c

(14a)

where

�t � ab11a
c
11ft

ab11a
t
112c� ab11ac11ft � at11ac11fb

;

�b � at11a
c
11fb

ab11a
t
112c� ab11ac11ft � at11ac11fb

(14b)

�c � at11a
b
112c

ab11a
t
112c� ab11ac11ft � at11ac11fb

(14c)

and ai11 � 1=Ei1 is the compliance of the top or bottom face or core
(i� t; b; c).

When a uniform strain exists in the core, the face sheets have a
nonzero transverse displacement at the primary state, which is due to
the Poisson’s effect on the core during compression (as opposed to
the previous case). Thus, the top and bottom face sheets have primary
state transverse displacements that are equal, yet opposite in
direction, i.e., wp and �wp, respectively; furthermore they are
constant along x. Moreover, when the loading is uniform strain, the
axial displacement at the primary state in the face sheets and the core
is the same, denoted by up. Therefore, in this case the displacements
in the perturbation approach are

ui0�x� � up�x� � �ui0s�x� �i� t; b; c� (15a)
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�c0�x� � ��c0s�x� (15b)

wt0�x� �wp � �wt0s�x� (15c)

wc0�x� � �wc0s�x� (15d)

wb0�x� � �wp � �wb0s�x� (15e)

Since the axial stresses at the primary state are

�ixxp � Ci11up;x; i� t; b and �cxxp � Cc11up;x � Cc13
wp
c
(16a)

the following relations hold true at the primary state:

Ct11f
tup;x ���tP; Cb11f

bup;x ���bP
2Cc13wp � 2cCc11up;x ���cP (16b)

These relationships are also confirmed by solving the prebuckling
state equations.

Substituting these displacements into the EHSAPT governing
equations again, leads to the same system of equations as for case (a),
but this time the �t;b are given by Eq. (14b) and include the
contribution of the core.

Therefore, the critical load can be determined by solving the
buckled state Eq. (11), which can be set in the form�

�KLC� �
	2

a2
bGbc�I�

�
fUg � f0g (17a)

where �KLC� is the same as that given in case (a) because the core still
has linear axial strains, but now bGbc � b0; 0; 0; 0; �bP; 0; �tPc
where the �is are those given in this section, Eq. (14b). Note that even
though there is a distributed axial load on the core, ~nc ���cP=�2c�,
it is not present in the loading vector because nonlinear axial strains
in the core were neglected. Again, the critical load is determined by
solving the value of P, which gives a nontrivial solution to the
buckled state equations, i.e., by zeroing the determinant:

det

�
�KLC� �

	2

a2
bGbc�I�

�
� 0 (17b)

C. Case (c): Uniform Strain Loading with Nonlinear Axial

Strains in the Core

If the nonlinear axial strain in the core is considered, the axial load
appears in the “buckled state” equations for the core as well. The
nonlinear axial strain for the core is

�cxx�x; z� � uc;x�x; z� �
1

2
�wc;x�x; z��2 (18)

and involves many terms if expanded out in terms of the generalized
coordinates.Wewould like to note that the solution procedure for this
case becomes quite complicated because both primary and
secondary generalized coordinates appear in the buckled state set of
equations. Later in the paper, the results section will show that the
extra work required to solve both sets of equations did not make
significant gains in accuracy. We shall summarize the solution
procedure for this case, which involves the perturbation approach
with the same assumed deformation as in case (b), and neglecting
higher-order terms of �. The resulting buckled state equations is�

�KLC� � �KNLC� �
	2

a2
bGcc�I�

�
fUg � f0g (19a)

where �KLC� is the same as in cases (a) and (c), and �KNLC� contains
the additional terms that account for nonlinear axial strains in the
core:

KNLC �
	2

a2
�cCc11up;x

� Cc13wp�

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 4
15

2
15

� 1
15

0 0 0 0 2
15

� 14
15

2
15

0 0 0 0 � 1
15

2
15

4
15

2
666666664

3
777777775

(19b)

Note that �KNLC� depends on the primary state displacements, in
particular, on up;x, (the x-derivative of the uniform axial
displacement) and wp (the uniform transverse displacement of the
top face sheet due to the Poisson’s effect in the axially loaded core),
see case (b). The solution to the primary state displacements can be
obtained by solving the prebuckled-state equations and are

up ��
�tP

Ct11
x�� �

bP

Cb11
x�� �

cP

Cc11
x (19c)

wp ��
cCc13
Cc33

up;x (19d)

Now that the nonlinear axial strain of the core is considered, not only
the loading on the face sheets but also the loading on the core appears
in the force vector:

Gc � �0; 0; 0; 0; �tP; �cP; �bP�t (19e)

Again, the critical load is determined by solving thevalue ofP, which
gives a nontrivial solution to the buckled state equations, i.e., by
zeroing the determinant:

det

�
�KLC� � �KNLC� �

	2

a2
bGcc�I�

�
� 0 (19f)

Finally, it should be noted that the solution procedure results in a
usual eigenvalue problem and subsequently zeroing out a
determinant. For cases (a) and (b), this results in a characteristic
equation that is quadratic in P, and for case (c) it results in a cubic
equation in P.

IV. Results for a Symmetric Sandwich Configuration

We consider a sandwich configuration with symmetric geometry
(ft � fb � f) and same face sheet material, leading to the loading

condition ~Nt � ~Nb ��P=2 on the top and bottom face sheets for

case (a) (loading on face sheets) and ~Nt � ~Nb ���fP and ~nc �
��cP=�2c� for cases (b) and (c) (uniform strain, linear, and nonlinear
core, respectively), where the �s are given in Eqs. (14b) and (14c).

Two material system sandwich configurations will be considered:
1) carbon/epoxy unidirectional faces with hexagonal glass/phenolic
honeycomb, which represents a sandwich with a very soft core (axial
stiffness of core very small compared with that of the face sheets,

Ec1=E
f
1 < 0:001) and 2) e-glass/polyester unidirectional faces with

balsa wood core, which represents a sandwich with a moderate core

(Ec1=E
f
1 on the order of 0.01). The moduli and Poisson’s ratios for

these materials are given in Table 1.
The total thickness is considered constant at htot � 2f�

2c� 30 mm, the length over total thickness a=htot � 30, and we
examine a range of face thicknesses defined by the ratio of face sheet
thickness over total thickness, f=htot, between 0.02 and 0.20.

The results will be produced for 1) the simple sandwich buckling
formula by Allen [6] (thick faces version), which has been proven to
be the most accurate among the simple sandwich buckling formulas,
and which considers the transverse shear effects of the core, 2) the
HSAPT,which takes into account the core’s transverse shear and also
the core’s transverse compressibility effects but neglects the core’s
axial stiffness effects, and 3) the present EHSAPT, which takes into
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account all three effects, namely the core’s transverse shear and
transverse compressibility effects as well as the core’s axial stiffness
effects. The benchmark values are the critical loads from the
elasticity solution (Kardomateas [5]). The global critical loads for the
Allen [6] thick faces formula and the HSAPT are given in
Appendix C.

The results are normalized with the Euler load PE0:

PE0 �
	2

a2
2

�
Ef
f3

12
� Eff

�
f

2
� c

�
2

� Ec
c3

3

�
(20a)

Figure 2 shows the comparison of the theories to elasticity for the
case of soft core and length ratio a=htot � 30, as an error %,
calculated as

Error%�
Pcr;theory � Pcr;elasticity

Pcr;elasticity

� 100 (20b)

We can see that the errors are of the order of �0:5%, very small,
i.e., for this sandwich configuration all predictions are very close to
the elasticity. For this material system, the Allen thick faces formula,
the HSAPT and the EHSAPT cases (a) and (c) are all conservative
and give practically identical results for the entire range of face sheet
thicknesses. On the contrary, the EHSAPT case (b) approach is less
conservative and even becomes nonconservative for the very small
ratios of f=htot. It should also be noted that the critical loads are
significantly less than the Euler critical load, thus showing the
importance of transverse shear in sandwich structures.

Figure 3 shows that for the moderate core sandwich and length
ratio a=htot � 30, the theories diverge as the face sheet thickness
becomes thinner compared with the overall thickness of the
sandwich cross section. Allen’s formula and HSAPT give almost
identical results and are the most conservative and can be as much as
15%below the elasticity value. TheEHSAPT cases (a) and (c) are the
most accurate, within 1% of the elasticity value, and on the

conservative side. The EHSAPT case (b) is quite nonconservative,
and can be as much as 40% above the elasticity value, i.e., it is the
most inaccurate. This result shows the importance of including the
nonlinear axial strain in the core for the actual uniform strain loading
solution. However, it is also remarkable that the simplified approach
of case (a) is identical to the most complex EHSAPT approach that
has been considered, case (c).

Figures 4a and 4b show the effect of length for the moderate core
configuration, i.e., results for a=htot � 20 and 10, respectively. For
these shorter beam configurations, the EHSAPT cases (a) and (c) are
consistently close to the elasticity solution for the entire range of the
face sheet thicknesses, and stay within about 1% error, i.e., the most
accurate. The other theories all diverge from elasticity for small
f=htot. The Allen [6] thick faces formula and the HSAPT are again
identical and most conservative, and the EHSAPT case (b) is again
nonconservative and most inaccurate. Moreover, as the beam length
decreases, in all cases the predictions become somewhat less
conservative. For the soft core configuration the EHSAPT, HSAPT,
and Allen formula all predict practically the same critical load for all
three length cases examined.

Thus, we can conclude that, when we deal with the critical load of
sandwich structures, the present EHSAPT produces results very
close to the elasticity for a wide range of cores, as opposed to the
other theories of formulas, which seem to be accurate only when the
core is very soft. It is important, however, how this theory is
implemented, in the sense that this high accuracy is obtained for
either case (a) or case (c), but not for case (b).

An argument that explains the apparent inaccuracy of case (b) can
bemade as follows: In case (b), loads are distributed to both the faces
and the core, but the load vectorGb has only the stress resultants from
the faces and does not have a contribution from the core, thus the
loads ofGb would sum to a value less than the applied loadP. On the
contrary, in case (c), the load vectorGc has stress resultants fromboth
faces and the core (because now nonlinear strains are considered in

Table 1 Material properties, with moduli data in GPa

Material constants Graphite epoxy face E-glass polyester face Balsa wood core Glass-phenolic honeycomb core

E1 181.0 40.0 0.671 0.032
E2 10.3 10.0 0.158 0.032
E3 10.3 10.0 7.72 0.300
G23 5.96 3.5 0.312 0.048
G31 7.17 4.5 0.312 0.048
G12 7.17 4.5 0.200 0.013
�32 0.40 0.40 0.49 0.25
�31 0.016 0.26 0.23 0.25
�12 0.277 0.065 0.66 0.25

Fig. 2 Percent error (from elasticity) for the critical load of the various

theories for the case of soft core and length a� 30htot.

Fig. 3 Critical load (normalized with the Euler load) for the various

theories for the case of moderate core and length a� 30htot.
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the core) and these stress resultants would sum toP. In case (a), loads
were only applied to the faces, so although the load vector Ga
contains only the stress resultants in the faces, thesewould again sum
up to P.

Finally, a common observation in all these plots is that the Allen [6]
thick faces formula and the HSAPT give almost identical predictions.
In fact, it can be proven that the HSAPT critical load resuces to that of
the Allen thick faces formula if only transverse shear effects are
included (i.e., the HSAPT applied without the core’s transverse
compressibility effects). This derivation is outlined in Appendix C.

V. Conclusions

The governing equations for the EHSAPT, which takes into
account the axial, transverse, and shear stiffness of the core were
presented. The buckling equations were subsequently derived. Three
different solution procedures were formulated using EHSAPT: case
(a), in which the compressive loading is applied on the faces and the
core strains are assumed linear; case (b), in which a uniform
compressive strain is applied and the core strains are assumed linear;
and case (c), in which there is again a uniform compressive strain
through the thickness but now the core strains are assumed nonlinear.
The perturbation approach was used for determining the critical load
of a simply supported sandwich beam with a general asymmetric
geometry and different face sheet materials. A simple case study of a
symmetric geometry and same face sheet material sandwich
configuration was used to compare the predictions of the simple
sandwich buckling formula by Allen [6] (thick faces version), the
HSAPT and the present EHSAPT. Sandwich configurations with a
soft core and a moderate core were analyzed.

The following conclusions are drawn by comparing the critical
loads from these different theories with the benchmark critical load
predicted by elasticity:

1) The EHSAPT cases (a) and (c) are nearly identical for both the
soft core and moderate core configurations.

2) For the soft core sandwich configurations (Ec1=E
f
1 � 0:001) all

three theories (Allen [6] thick faces formula, HSAPT, and EHSAPT)
predict the critical load within 1% of the critical load from elasticity.

3) For the moderate core sandwich configurations (Ec1=E
f
1 
 0:01),

the EHSAPT cases (a) and (c) are consistently within about 1% of the
critical load from elasticity. On the contrary, the Allen [6] thick faces
formula, theHSAPT, and the EHSAPTcase (b) diverge fromelasticity
for smaller f=htot. But the Allen thick faces formula and the HSAPT
diverge to more conservative values whereas the EHSAPT Case (b)
diverges to more nonconservative values for the smaller values of the
ratio f=htot (i.e., thinner faces). The latter is also the least accurate and
can be in significant error for these small f=htot ratios.

4) It is important how the compressive loading is applied, in the
sense that loading the faces and assuming a linear core gives almost

identical results to the most complex case of uniform strain loading
and a nonlinear core. However, assuming uniform strain loadingwith
a linear core gave quite inaccurate results for moderately stiff cores.

Appendix A: Governing Equations
and Boundary Conditions

The variational principle (5) leads to the following governing
ordinary differential equations and associated boundary conditions:

Top face sheet:

�ut0: � Nt;x �
�
4

5
Cc55 �

2c2

35
Cc11

@2

@x2

�
�c0

�
�

7

30c
Cc55 �

c

35
Cc11

@2

@x2

�
ub0 �

�
4

3c
Cc55 �

2c

15
Cc11

@2

@x2

�
uc0

�
�
47

30c
Cc55 �

6c

35
Cc11

@2

@x2

�
ut0 �

�

b2
@

@x
� cfb

70
Cc11

@3

@x3

�
wb0

� �1

@wc0
@x
�
�

t3
@

@x
� 3cft

35
Cc11

@3

@x3

�
wt0 � 0 (A1a)

and

�wt0: � Nt;xwt0;x �Mt
;xx � Ntwt0;xx �

�

t4
@

@x
� c

2ft
35

Cc11
@3

@x3

�
�c0

�
�
�
t2

@

@x
� cft

70
Cc11

@3

@x3

�
ub0 �

�

t6
@

@x
� cft

15
Cc11

@3

@x3

�
uc0

�
�
�
t3

@

@x
� 3cft

35
Cc11

@3

@x3

�
ut0 �

�
1

6c
Cc33 � �2

@2

@x2

� cfbft
140

Cc11
@4

@x4

�
wb0 �

�
� 4

3c
Cc33 � 
t7

@2

@x2

�
wc0

�
�
7

6c
Cc33 � 
t8

@2

@x2
� 3cf2t

70
Cc11

@4

@x4

�
wt0 � 0 (A1b)

Core:

�uc0: � Nc;x �
�
� 4

3c
Cc55 �

c

5
Cc11

@2

@x2

�
ub0

�
�
8

3c
Cc55 �

4c

15
Cc11

@2

@x2

�
uc0 �

�
� 4

3c
Cc55 �

c

5
Cc11

@2

@x2

�
ut0

�
�

b6a

@

@x
� cfb

10
Cc11

@3

@x3

�
wb0 �

�

t6a

@

@x
� cft

10
Cc11

@3

@x3

�
wt0 � 0

(A2a)

Fig. 4 Critical load (normalized with the Euler load) for the various theories for the case of moderate core and a) length a� 20htot and b) length

a� 10htot.
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��c0: V
c �Mc

;x �
�
8c

5
Cc55 �

4c3

35
Cc11

@2

@x2

�
�c0

�
�
9

5
Cc55 �

c2

7
Cc11

@2

@x2

�
ub0 �

�
� 9

5
Cc55 �

c2

7
Cc11

@2

@x2

�
ut0

�
�
3

2

b4a

@

@x
� c

2fb
14

Cc11
@3

@x3

�
wb0 � 2c�1

@wc0
@x

�
�
3

2

t4a

@

@x
� c

2ft
14

Cc11
@3

@x3

�
wt0 � 0 (A2b)

and

�wc0: � Vc;x �
4c

3
�1

@�c0
@x
� ��1 � Cc55�

�
@ub0
@x
� @u

t
0

@x

�

�
�
4

3c
Cc33 � 
b7a

@2

@x2

�
wb0 �

�
8

3c
Cc33 �

4c

15
Cc55

@2

@x2

�
wc0

�
�
4

3c
Cc33 � 
t7a

@2

@x2

�
wt0 � 0 (A2c)

Bottom face sheet:

�ub0 : � Nb;x �
�
4

5
Cc55 �

2c2

35
Cc11

@2

@x2

�
�c0

�
�
47

30c
Cc55 �

6c

35
Cc11

@2

@x2

�
ub0 �

�
4

3c
Cc55 �

2c

15
Cc11

@2

@x2

�
uc0

�
�

7

30c
Cc55 �

c

35
Cc11

@2

@x2

�
ut0

�
�
�
b3

@

@x
� 3cfb

35
Cc11

@3

@x3

�
wb0 � �1

@wc0
@x

�
�

t2
@

@x
� cft

70
Cc11

@3

@x3

�
wt0 � 0 (A3a)

and

�wb0 : � Nb;xwb0;x �Mb
;xx � Nbwb0;xx �

�

b4
@

@x
� c

2fb
35

Cc11
@3

@x3

�
�c0

�
�

b3
@

@x
� 3cfb

35
Cc11

@3

@x3

�
ub0 �

�

b6
@

@x
� cfb

15
Cc11

@3

@x3

�
uc0

�
�

b2
@

@x
� cfb

70
Cc11

@3

@x3

�
ut0

�
�
7

6c
Cc33 � 
b8

@2

@x2
� 3cf2b

70
Cc11

@4

@x4

�
wb0

�
�
� 4

3c
Cc33 � 
b7

@2

@x2

�
wc0

�
�
1

6c
Cc33 � �2

@2

@x2
� cfbft

140
Cc11

@4

@x4

�
wt0 � 0 (A3b)

The following constants, which were used in the governing
Eqs. (A1–A3), are defined (i� t; b):


i2 �
1

30
Cc13 �

�
1

30
� 7fi
60c

�
Cc55 (A4a)


i3 ��
11

30
Cc13 �

�
19

30
� 47fi

60c

�
Cc55


i4 �
4c

15
Cc13 �

�
4c

15
� 2fi

5

�
Cc55 (A4b)


i6 �
2

3
Cc13 �

�
2

3
� 2fi

3c

�
Cc55; 
i7 ��

fi
5
Cc13 �

�
2c

15
� fi

5

�
Cc55

(A4c)


i8 �
11fi
30

Cc13 �
�
4c

15
� 19fi

30
� 47f2i

120c

�
Cc55


i4a � 
i4 �
�
2c

3
� fi

�
Cc55 (A4d)


i6a � Cc13 � 
i6; 
i7a �
2c� 3fi

6
Cc55 � 
i7


i8a �
11fi
60

Cc13 � 
i8 (A4e)

and

�1 �
2

5
�Cc13 � Cc55� (A4f)

�2 �
fb � ft

60
Cc13 �

�
c

15
� fb � ft

60
� 7fbft

120c

�
Cc55 (A4g)

At each end there are nine boundary conditions, three for each face
sheet and three for the core. The corresponding boundary conditions
at x� 0 and x� a, read as follows:

For the top face sheet:
1) Either �ut0 � 0 or

Nt �
�
2c2

35
Cc11

�
�c0;x �

�
c

35
Cc11

�
ub0;x �

�
2c

15
Cc11

�
uc0;x

�
�
6c

35
Cc11

�
ut0;x �

�
1

30
Cc13 �

cfb
70
Cc11

@2

@x2

�
wb0 �

2

5
Cc13w

c
0

�
�
11

30
Cc13 �

3cft
35

Cc11
@2

@x2

�
wt0 � ~Nt � ~ncc

3

(A5a)

where ~Nt is the end axial force per unit width at the top face. 2) Either
�wt0 � 0 or

Ntwt0;x �Mt
;x �

�
2�2c� 3ft�

15
Cc55 �

c2ft
35

Cc11
@2

@x2

�
�c0

�
�
�2c � 7ft�

60c
Cc55 �

cft
70
Cc11

@2

@x2

�
ub0 �

�
2�c� ft�

3c
Cc55

� cft
15
Cc11

@2

@x2

�
uc0 �

�
�38c� 47ft�

60c
Cc55 �

3cft
35

Cc11
@2

@x2

�
ut0

�
��
fb
60
Cc13 � �2

�
@

@x
� cfbft

140
Cc11

@3

@x3

�
wb0 � 
t7

@wc0
@x

�
�

t8a

@

@x
� 3cf2t

70
Cc11

@3

@x3

�
wt0 � 0 (A5b)

3) Either �wt0;x � 0 or

Mt �
�
c2ft
35

Cc11

�
�c0;x �

�
cft
70
Cc11

�
ub0;x �

�
cft
15
Cc11

�
uc0;x

�
�
3cft
35

Cc11

�
ut0;x �

�
ft
60
Cc13 �

cfbft
140

Cc11
@2

@x2

�
wb0

�
�
ft
5
Cc13

�
wc0 �

�
11ft
60

Cc13 �
3cf2t
70

Cc11
@2

@x2

�
wt0 �

~nccft
6

(A5c)

where ~Mt is the end moment per unit width at the top face (at the end
x� 0 or x� a).
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For the core:
1) Either �uc0 � 0 or

Nc �
�
c

5
Cc11

�
ub0;x �

�
4c

15
Cc11

�
uc0;x �

�
c

5
Cc11

�
ut0;x

�
�
1

3
Cc13 �

cfb
10
Cc11

@2

@x2

�
wb0 �

�
1

3
Cc13 �

cft
10
Cc11

@2

@x2

�
wt0

� 4 ~ncc

3
(A6a)

2) Either ��c0 � 0 or

�Mc �
�
4c3

35
Cc11

�
�c0;x �

�
c2

7
Cc11

�
ub0;x �

�
c2

7
Cc11

�
ut0;x

�
�
2c

5
Cc13 �

c2fb
14

Cc11
@2

@x2

�
wb0 �

4c

5
Cc13w

c
0

�
�
2c

5
Cc13 �

c2ft
14

Cc11
@2

@x2

�
wt0 � 0 (A6b)

3) Either �wc0 � 0 or

Vc �
�
8c

15
�c0 �

3

5
ub0 �

3

5
ut0 �

�2c� 3fb�
10

wb0;x �
4c

15
wc0;x

� �2c� 3ft�
10

wt0;x

�
Cc55 � 0 (A6c)

For the bottom face sheet:
1) Either �ub0 � 0 or

Nb �
�
2c2

35
Cc11

�
�c0;x �

�
6c

35
Cc11

�
ub0;x �

�
2c

15
Cc11

�
uc0;x

�
�
c

35
Cc11

�
ut0;x �

�
11

30
Cc13 �

3cfb
35

Cc11
@2

@x2

�
wb0 �

2

5
Cc13w

c
0

�
�
� 1

30
Cc13 �

cft
70
Cc11

@2

@x2

�
wt0 � ~Nb � ~ncc

3
(A7a)

where ~Nb is the end axial force per unit width at the bottom face;
2) Either �wb0 � 0 or

Nbwb0;x �Mb
;x �

�
2�2c� 3fb�

15
Cc55 �

c2fb
35

Cc11
@2

@x2

�
�c0

�
�
� �38c� 47fb�

60c
Cc55 �

3cfb
35

Cc11
@2

@x2

�
ub0

�
�
2�c� fb�

3c
Cc55 �

cfb
15
Cc11

@2

@x2

�
uc0 �

�
��2c� 7fb�

60c
Cc55

� cfb
70
Cc11

@2

@x2

�
ut0 �

�

b8a

@

@x
� 3cf2b

70
Cc11

@3

@x3

�
wb0

�
�

b7
@

@x

�
wc0 �

��
ft
60
Cc13 � �2

�
@

@x
� cfbft

140
Cc11

@3

@x3

�
wt0 � 0

(A7b)

3) Either �wb0;x � 0 or

Mb �
�
c2fb
35

Cc11

�
�c0;x �

�
3cfb
35

Cc11

�
ub0;x �

�
cfb
15
Cc11

�
uc0;x

�
�
cfb
70
Cc11

�
ut0;x �

�
11fb
60

Cc13 �
3cf2b
70

Cc11
@2

@x2

�
wb0

� fb
5
Cc13w

c
0 �

�
fb
60
Cc13 �

cfbft
140

Cc11
@2

@x2

�
wt0 ��

~nccfb
6

(A7c)

In the above equations, the superscript~denotes the known external
boundary values.

Appendix B: Elements of the �KLC�Matrix

The �KLC�matrix is symmetric and has the following elements kij
i; j� 1; . . . 7:

k11 �
47

30c
Cc55 �

6c	2

35a2
Cc11 � Cb11fb

	2

a2

k12 ��
4

3c
Cc55 �

2c	2

15a2
Cc11 (B1a)

k13 �
4

5
Cc55 �

2c2	2

35a2
Cc11; k14 ��

7

30c
Cc55 �

c	2

35a2
Cc11

(B1b)

k15 ��
3cfb	

3

35a3
Cc11 � 
b3

	

a
; k16 ��

	

a
�1

k17 �
cft	

3

70a3
Cc11 � 
t2

	

a
(B1c)

k22 �
8

3c
Cc55 �

16c	2

15a2
Cc11; k23 � 0; k24 � k12 (B2a)

k25 ��
cfb	

3

15a3
Cc11 � 
b6

	

a
; k26 � 0

k27 �
cft	

3

15a3
Cc11 � 
t6

	

a
(B2b)

k33 �
8c

5
Cc55 �

16c3	2

105a2
Cc11; k34 ��

4

5
Cc55 �

2c2	2

35a2
Cc11

(B3a)

k35 �
c2fb	

3

35a3
Cc11 � 
b4

	

a
; k36 �

4c�1	

3a

k37 �
c2ft	

3

35a3
Cc11 � 
t4

	

a
(B3b)

k44 �
47

30c
Cc55 �

6c	2

35a2
Cc11 � Ct11ft

	2

a2

k45 ��
cfb	

3

70a3
Cc11 � 
b2

	

a
(B4a)

k46 � �1

	

a
; k47 �

3cft	
3

35a3
Cc11 � 
t3

	

a
(B4b)

k55 �
7

6c
Cc33 �

3cf2b	
4

70a4
Cc11 �

f3b	
4

12a4
Cb11 � 
b8

	2

a2

k56 ��
4

3c
Cc33 � 
b7

	2

a2
(B5a)

k57 �
1

6c
Cc33 �

cfbft	
4

140a4
Cc11 � �2

	2

a2
(B5b)

k66 �
8

3c
Cc33 �

16c	2

15a2
Cc55; k67 ��

4

3c
Cc33 � 
t7

	2

a2
(B6)

k77 �
7

6c
Cc33 �

3cf2t 	
4

70a4
Cc11 �

f3t 	
4

12a4
Ct11 � 
t8

	2

a2
(B7)
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Appendix C: Critical Load from HSAPT and
Allen’s Buckling Formula

The sandwich buckling formula of Allen [6] (thick faces version)
considers the shear stress in the core, and neglects the axial and
transverse stiffnesses of the core. The critical load for global
buckling from this formula is given in Allen for a symmetric
configuration as

Pcr;Allen � PE2

2
41� PEf

Pc
� P2

Ef

PcPE2

1� PE2
Pc
� PEf

Pc

3
5 (C1a)

where

PE2 � Ef1
	2

a2

�
f3

6
� f�2c� f�

2

2

�
(C1b)

PEf � Ef1
	2

a2
f3

6
; Pc �Gc31

�2c� f�2
2c

(C1c)

i.e., PE2 represents the Euler load of the sandwich column in the
absence of core shear strain with the bending stiffness of the core
ignored, but with local bending stiffness of the faces included; PEf
represents the sum of the Euler loads of the two faces when they
buckle as independent struts (i.e., when the core is absent), and Pc is
the contribution to the buckling load due to shear.

The critical load from the HSAPT is found from solving for the
load P in the governing equation for the nontrivial solution (Frostig
and Baruch [3]):

Pcr;HSAPT �
2	2��EA��EI��2c�g1	2 � 6Ec3G

c
31g2a

2�
�EA�Gc31�2c�3	4 � 12�EA�Ec3�2c�	2a2 � 24Ec3G

c
31a

4

(C2a)

where EA and EI are, respectively, the axial and bending stiffnesses
per unit width of a sandwich beam that is geometrically uniform
along the span, i.e.,

EA� Ef1f; EI � E
f
1f

3

12
(C2b)

and we have defined

g1 �Gc31�2c�2
	2

a2
� 12Ec3

g2 � �EA�f2 � 2�EA��2c�f� �EA��2c�2 � 4�EI� (C2c)

This original formulation of the critical global buckling load of
HSAPT can be algebraicallymanipulated bymaking use of theAllen
[6] thick parameters above to appear in the following form:

Pcr;HSAPT � PE2

8>>><
>>>:
1�

�
1� �2c�

2Gc
31
	2

12Ec
3
a2

��
PEf
Pc
� P2

Ef

PcPE2

�

1�
�
1� �2c�

2Gc
31
	2

12Ec
3
a2

�
�PE2�PEf�

Pc

9>>>=
>>>;

(C3)

Thus, when Ec3 goes to infinity (an incompressible core) the
Pcr;HSAPT approaches the Pcr;Allen formula.

Acknowledgments

The financial support of the Office of Naval Research, grant no.
N00014-07-10373, and the interest and encouragement of the Grant
Monitor Y. D. S. Rajapakse are both gratefully acknowledged.

References

[1] Frostig, Y., Baruch, M., Vilnay, O., and Sheinman, I., “High-Order
Theory for Sandwich-Beam Behavior with Transversely Flexible
Core,” Journal of Engineering Mechanics, Vol. 118, No. 5, May 1992,
pp. 1026–1043.
doi:10.1061/(ASCE)0733-9399(1992)118:5(1026)

[2] Phan, C. N., Frostig, Y., and Kardomateas, G. A., “Analysis of
Sandwich Panels with a Compliant Core and with In-Plane Rigidity-
Extended High-Order Sandwich Panel Theory Versus Elasticity,”
Journal of Applied Mechanics, Vol. 79, 2011, pp. 041001–041011.
doi:10.1115/1.4005550

[3] Frostig, Y., and Baruch, M., “High-Order Buckling Analysis of
Sandwich Beams with Transversely Flexible Core,” Journal of

Engineering Mechanics, Vol. 119, No. 3, March 1993, pp. 476–495.
doi:10.1061/(ASCE)0733-9399(1993)119:3(476)

[4] Carlsson, L. A., and Kardomateas, G. A., Structural and Failure

Mechanics of Sandwich Composites, Springer, Dordrecht, The
Netherlands, 2011, Chap. 7.

[5] Kardomateas, G. A., “An Elasticity Solution for the Global Buckling of
Sandwich Beams/Wide Panels with Orthotropic Phases,” Journal of

Applied Mechanics, Vol. 77, No. 2, March 2010, Paper 021015.
doi:10.1115/1.3173758

[6] Allen, H. G., Analysis and Design of Structural Sandwich Panels,
Pergamon, Oxford, England, U.K., 1969, Chap. 8.

[7] Engesser, F., “Die Knickfestigheit Gerader Stabe,” Zentralblatt der

Bauverwaltung, Vol. 11, 1891, pp. 483–486.
[8] Huang,H., andKardomateas, G. A., “Buckling and Initial Postbuckling

Behavior of Sandwich Beams Including Transverse Shear”, AIAA

Journal, Vol. 40, No. 11, Nov. 2002, pp. 2331–2335.
doi:10.2514/2.1571

S. Pellegrino
Associate Editor

1716 PHAN, KARDOMATEAS, AND FROSTIG

D
ow

nl
oa

de
d 

by
 G

eo
rg

ia
 T

ec
h 

L
ib

ra
ry

 o
n 

O
ct

ob
er

 2
8,

 2
01

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

05
14

54
 

http://dx.doi.org/10.1061/(ASCE)0733-9399(1992)118:5(1026)
http://dx.doi.org/10.1115/1.4005550
http://dx.doi.org/10.1061/(ASCE)0733-9399(1993)119:3(476)
http://dx.doi.org/10.1115/1.3173758
http://dx.doi.org/10.2514/2.1571

