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Abstract There exist several high-order sandwich panel theories, most notably, the first to be introduced high-
order sandwich panel theory (HSAPT) assumes a constant shear stress in the core. Recently, the extended high-
order sandwich panel theory (EHSAPT) was introduced, its novelty being that it allows for three generalized
coordinates in the core (the axial and transverse displacements at the centroid of the core, and the rotation at
the centroid of the core) instead of just one (shear stress in the core) of the earlier theory. In this paper, the
EHSAPT formulation for predicting the critical wrinkling load is presented for a simply supported sandwich
of general asymmetric construction. The cases of (i) applying the loading just on the face sheets with a linear
core assumption and (ii) applying uniform strain loading throughout the thickness of the panel and a nonlinear
core assumption are examined. The results are compared with a benchmark elasticity solution. In addition,
edgewise compression experiments were conducted on glass face/Nomex honeycomb core and the ensuing
wrinkling point is compared with the theoretical predictions. A comparison is also made with earlier edge-
wise compression experiments on aluminum face/granulated-cork core reported in literature. Other wrinkling
formulas that are included in the comparison are: Hoff–Mautner and the HSAPT.

Keywords Wrinkling · Sandwich · High order · Experiments · Elasticity · Beam ·
Compression · Buckling

1 Introduction

Sandwich composites are a unique structural system that consists of two stiff metallic or composite thin face
sheets separated by a thick core of low density. This configuration gives the sandwich material system high
stiffness and strength with little resultant weight penalty. The facings carry almost all of the axial stresses and
the core carries through the thickness and shear stresses. The core compressibility has an important influence
in the phenomenon known as face wrinkling or local buckling. Wrinkling is a local instability phenomenon
characterized by short-wave buckling of the faces as opposed to global column buckling (Euler buckling) as
depicted in Fig. 1. Typically, wrinkling loads are lower than Euler Global buckling loads when the face sheets
are very thin compared with the overall thickness of the panel. Wrinkling modes can be either symmetric or
asymmetric as shown in Fig 1.

Several formulas can be found in literature for the critical wrinkling load. A whole chapter is devoted
to these different formulas in Carlsson and Kardomateas [1]. Most notable among the simple formulas is the
Hoff–Mautner formula [2] and the Allen [3] formula and the former will be used in comparing with our results.
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Fig. 1 Global buckling versus wrinkling

In addition, in the recent literature, several high-order theories have been presented to model the behavior of
sandwich composites. The higher-order sandwich panel theory (HSAPT) [4] accounts for the transverse and
shear stiffness of the core, but neglects the axial stiffness of the core and assumes a constant shear stress in the
core, which is also one of the generalized coordinates of the theory. The most recent extended higher-order
sandwich panel theory (EHSAPT) [5] accounts for the axial, transverse, and shear stiffness in the core and
considers the rotation at the centroid of the core as one of the generalized coordinates. These theories were
compared in [5] with the elasticity solution for the case of a simply supported beam undergoing a distributed
sinusoidal transverse load; it was found that the EHSAPT is very close to the elasticity solution in terms of both
the displacements and the transverse stress or strain, as well as axial stress through the core, and, in addition,
the shear stress distributions in the core for core materials ranging from very soft to almost half the stiffness
of the facesheets, unlike the HSAPT which is reasonably accurate only for very soft cores.

Another relevant study is an analytical model derived by Vonach and Rammerstorfer [6] that leads to
a single explicit equation for the critical wrinkling load of sandwich plates with isotropic faces and thick
orthotropic cores. The authors performed a parametric study which showed that for highly orthotropic cores
(e.g., honeycombs), wrinkling depends strongly on the in-plane stiffness of the core. Their results matched
numerical solutions well for very thick cores that can be assumed infinitely thick, and no interaction between
the face sheets exists. This finding is important because the main difference between the recent EHSAPT and
the earlier HSAPT is that the latter does not account for the in-plane stiffness of the core.

Validation of the wrinkling results from the high-order theories can be achieved by comparing with the
elasticity solution for the wrinkling of a sandwich beam/wide plate, which was derived by Kardomateas [7].
In addition, validation can be achieved by comparing with experimental wrinkling loads. Historically, the
success of comparisons of experimental results with analytical wrinkling models has been limited. Several
semi-empirical derivations have been compared with various sandwich structure examples, however, obtaining
good correlation has been hampered by inadequate testing conditions, conservative material assumptions, and
manufacturing flaws [8]. Due to the sensitivity of buckling instability to the bond between the face sheet and
core constituent, many aspects of material manufacturing and specimen preparation affect the variations in
test results for determining the critical wrinkling stress. Wrinkling failure is a common failure mode for sand-
wich structures with thin face sheets and lightweight cores. During experimental tests, sandwich structures
may display no or little post-wrinkling load capacity; therefore, catastrophic failure is common. Additionally,
wrinkling refers to a local instability where the buckling wavelengths are typically less than the core thickness,
making detection and capture of such buckling modes difficult.

In this paper, the critical wrinkling load is determined using the nonlinear differential equations of the
new EHSAPT. The case study of a simply supported (S–S) sandwich beam undergoing compressive edgewise
loading with symmetric geometry and same face sheet materials is used for validation with two different exper-
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Wrinkling of sandwich wide panels/beams based on the extended high-order sandwich panel theory 1587

Fig. 2 The two loading cases: a loading on faces, linear core (PFLC); b uniform strain, nonlinear core (USNLC)

iments. The first set of these experiments was performed recently by the authors using a thin skin sandwich
structure commonly used in interior aircraft structures, namely glass face/Nomex honeycomb core. The second
set of experiments are the ones performed by Norris et al. [9] on aluminum face/granulated-cork core specimens.

In a recent study of global buckling of sandwich panels, three different solution procedures were inves-
tigated using the EHSAPT [10]: Case (a), in which the compressive loading is applied on the faces, and the
core strains are assumed linear, hereby denoted as PFLC; Case (b), in which a uniform compressive strain
is applied and the core strains are assumed linear, denoted by USLC; and Case (c), in which there is again
a uniform compressive strain through the thickness but now the core strains are assumed nonlinear, denoted
by USNLC. It was found that the EHSAPT Cases PFLC (loading on faces, linear core) and USNLC (uniform
strain, nonlinear core) are nearly identical for both the soft core and moderate core configurations and both are
very close to elasticity predictions, whereas Case USLC (uniform strain, linear core) diverges from elasticity
to more nonconservative values for moderate cores.

The present paper begins with the EHSAPT wrinkling formulations. Two methods of solving the EHSAPT
differential equations for wrinkling were undertaken, the PFLC (loading on faces, linear core) and USNLC
(uniform strain, nonlinear core) as described above. The two methods were investigated to see whether the
two approaches would result in different wrinkling loads. Next, the simple wrinkling formulas that will be
used for comparison are described. The results from the EHSAPT are compared with these simple wrinkling
formulas, as well as with the critical wrinkling loads from elasticity. Moreover, compression experiments were
conducted on glass face/Nomex honeycomb core and the experimental test setup is described followed by the
results and conclusions.

2 The extended high-order sandwich panel theory (EHSAPT) formulation for wrinkling

The EHSAPT [5] employs seven generalized coordinates: ut
0, wt

0, uc
0, φc

0, wc
0, ub

0, and wb
0, where the superscripts

{t, b, c} refer to the top, bottom, or core, respectively; u and w indicate the axial and transverse displacements,
respectively, and φ denotes the rotation; moreover, the subscript 0 indicates the centroidal line (commonly the
mid-line) of the respective phase.

The face sheets are assumed to be Euler-Bernoulli type beams. Referring to Fig. 2 for the definition of the
geometry and the coordinate system, the top face sheet displacement field is (c ≤ z ≤ c + ft ):

ut (x, z) = ut
0(x) −

(
z − c − ft

2

)
wt

0,x (x), (1a)
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1588 C. N. Phan et al.

wt (x, z) = wt
0(x), (1b)

and the bottom face sheet displacement field is (−(c + fb) ≤ z ≤ −c):

ub(x, z) = ub
0(x) −

(
z + c + fb

2

)
wb

0,x (x), (1c)

wb(x, z) = wb
0(x). (1d)

The core displacements (−c ≤ z ≤ c) are as follows:

uc(x, z) = z

(
1 − z2

c2

)
φc

0(x) + z2

2c2

(
1 − z

c

)
ub

0(x) +
(

1 − z2

c2

)
uc

0(x)

+ z2

2c2

(
1 + z

c

)
ut

0(x) + fbz2

4c2

(
−1 + z

c

)
wb

0,x (x) + ft z2

4c2

(
1 + z

c

)
wt

0,x (x), (2a)

wc(x, z) =
(

− z

2c
+ z2

2c2

)
wb

0(x) +
(

1 − z2

c2

)
wc

0(x) +
(

z

2c
+ z2

2c2

)
wt

0(x), (2b)

that is, the core displacements are O(z3) and O(z2) for the axial and transverse displacement fields, respec-
tively. The displacement field of the core satisfies the displacement continuity at the top and bottom face–core
interface.

Nonlinear axial strain-displacement relations for the face sheets are needed for the buckling/wrinkling
formulation:

εt,b
xx (x, z) = ut,b

,x (x, z) + 1

2

[
w

t,b
0,x (x)

]2
. (3a)

In the core, however, the strains are considered linear, that is, εc
xx (x, z) = uc

,x (x, z). Later in the paper, we
shall examine the effect of including nonlinear axial strains in the core, in which case the core nonlinear axial
strains will be:

εc
xx (x, z) = uc

,x (x, z) + 1

2

[
wc

,x (x, z)
]2

. (3b)

In the following, we use the notation 1 ≡ x , 3 ≡ z, and 55 ≡ xz. The constitutive relations of the face
sheets are:

σ t,b
xx = Ct,b

11 εt,b
xx ; σ t,b

zz = Ct,b
13 εt,b

xx , (4a)

where the stiffness constants for a beam are: Ct,b
11 = Et,b

11 and Ct,b
13 = ν

t,b
31 Et,b

11 . The core constitutive properties
(assuming orthotropic core) are:

⎡
⎣σ c

xx
σ c

zz
τ c

xz

⎤
⎦ =

⎡
⎣Cc

11 Cc
13 0

Cc
13 Cc

33 0
0 0 Cc

55

⎤
⎦

⎡
⎣ εc

xx
εc

zz
γ c

xz

⎤
⎦ , (4b)

where Ct,b,c
i j , i j = 11, 13, 33, 55 are the corresponding stiffness constants.

The seven coupled nonlinear differential equations that govern the behavior of the sandwich were derived
using a variational principle which considered the axial strain energy of the face sheets and the axial, trans-
verse, and shear strain energy of the core. The derivation of the governing equations and boundary conditions
follows the same pattern as for the case of global buckling and can be found in Phan et al. [10]. The following
sections detail how the EHSAPT wrinkling loads are determined for two different loading approaches. The first
approach (PFLC) is a simple formulation in which linear axial strains in the core are considered and loading
is applied only to the face sheets. The second approach (USNLC) is a more involved formulation which takes
into account nonlinear axial strains in the core and loading is applied as a uniform strain through the thickness.
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2.1 Loading on the faces, linear axial strain in the core (PFLC)

In this approach, concentrated compressive loads (per unit width) κ t P and κb P are applied on the top and
bottom facesheets, respectively, such that they sum up to the total applied load P , and the prebuckled axial
strains εi

xxp = ai
11σ

i
xxp for i = t, b are equal on the top and bottom faces (Fig. 2a). Imposing these conditions

leads to:

κ t = ab
11 ft

at
11 fb + ab

11 ft
, κb = at

11 fb

at
11 fb + ab

11 ft
. (5a)

The critical load for an asymmetric geometry and material configuration can be determined using the
perturbation approach:

N i (x) = N i
p(x) + ξ N i

s (x) (i = t, b, c), (5b)

ui
0(x) = u p(x) + ξui

0s(x) (i = t, b), (5c)

wi
0(x) = ξwi

0s(x), Mi (x) = ξ Mi
s (x), (i = t, b, c), (5d)

uc
0(x) = ξuc

0s(x), φc
0(x) = ξφc

0s(x), V c(x) = ξV c
s (x). (5e)

where N i is the axial stress resultant (per unit width), Mi is the moment stress resultant (per unit width),
and V i is the shear stress resultant (per unit width) for i = t, b, or c. The subscript p stands for the primary
(prebuckled) state, while the subscript s stands for the secondary (perturbed) state, and ξ is an infinitesimally
small quantity. In the PFLC approach, N i

p(x) = −κ i P(i = t, b), where the negative sign is introduced because
positive N is tensile and the applied load is compressive.

The wrinkling mode n for the simply supported beam is in the form:

ut,b,c
0s = U t,b,c

0n cos
nπx

a
, φc

0s = �c
0n cos

nπx

a
, w

t,b,c
0s = W t,b,c

0n sin
nπx

a
. (6)

The perturbation assumption with the assumed modes leads to seven algebraic equations that contain the
loading per unit width P (the eigenvalue to be solved for), and these are: for the top face two equations:

U b
0

(
− 7

30c
Cc

55 + cn2π2

35a2 Cc
11

)
+ U c

0n

(
− 4

3c
Cc

55 + 2cn2π2

15a2 Cc
11

)

+�c
0

(
−4

5
Cc

55 + 2c2n2π2

35a2 Cc
11

)
+ U t

0

(
47

30c
Cc

55 + 6cn2π2

35a2 Cc
11 + ft n2π2

a2 Ct
11

)

+ W b
0

(
−c fbn3π3

70a3 Cc
11 − ηb

2
nπ

a

)
+ W c

0
nπβ1

a
+ W t

0

(
3c ft n3π3

35a3 Cc
11 + ηt

3
nπ

a

)
= 0 (7a)

U b
0

(
c ft n3π3

70a3 Cc
11 + ηt

2
nπ

a

)
+ U c

0

(
c ft n3π3

15a3 Cc
11 − ηt

6
nπ

a

)
+ �c

0

(
c2 ft n3π3

35a3 Cc
11 − ηt

4
nπ

a

)

+ U t
0

(
3c ft n3π3

35a3 Cc
11 + nπ

a
ηt

3

)
+ W b

0

(
Cc

33

6c
− c fb ft n4π4

140a4 Cc
11 − β2

n2π2

a2

)
+ W c

0

(
− 4

3c
Cc

33−ηt
7

n2π2

a2

)

+ W t
0

(
−κ t P

n2π2

a2 + 7

6c
Cc

33 + 3c f 2
t n4π4

70a4 Cc
11 + f 3

t n4π4

12a4 Ct
11 − ηt

8
n2π2

a2

)
= 0 (7b)

for the core three equations:

U b
0

(
− 4

3c
Cc

55 + 2cn2π2

15a2 Cc
11

)
+ U c

0

(
8

3c
Cc

55 + 16cn2π2

15a2 Cc
11

)
+ U t

0

(
− 4

3c
Cc

55 + 2cn2π2

15a2 Cc
11

)

+ W b
0

(
ηb

6nπ

a
− c fbn3π3

15a3 Cc
11

)
+ W t

0

(
c ft n3π3

15a3 Cc
11 − ηt

6nπ

a

)
= 0 (7c)

U b
0

(
4

5
Cc

55 − 2c2n2π2

35a2 Cc
11

)
+ �c

0

(
8c

5
Cc

55 + 16c3n2π2

105a2 Cc
11

)
+ U t

0

(
−4

5
Cc

55 + 2c2n2π2

35a2 Cc
11

)
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+ W b
0

(
c2 fbn3π3

35a3 Cc
11 − ηb

4nπ

a

)
+ W c

0n

(
4cβ1nπ

3a

)
+ W t

0

(
c2 ft n3π3

35a3 Cc
11 − ηt

4nπ

a

)
= 0 (7d)

−U b
0

(
β1nπ

a

)
+ �c

0

(
4cβ1nπ

3a

)
+ U t

0

(
β1nπ

a

)
− W b

0

(
4

3c
Cc

33 + ηi
7n2π2

a2

)

+W c
0

(
8

3c
Cc

33 + 16cn2π2

15a2 Cc
55

)
− W t

0

(
4

3c
Cc

33 + ηi
7n2π2

a2

)
= 0 (7e)

and for the bottom face two equations as follows:

U b
0

(
47

30c
Cc

55 + 6cn2π2

35a2 Cc
11 + fb

n2π2

a2 Cb
11

)
+ U c

0

(
− 4

3c
Cc

55 + 2cn2π2

15a2 Cc
11

)

+�c
0

(
4

5
Cc

55 − 2c2n2π2

35a2 Cc
11

)
+ U t

0

(
− 7

30c
Cc

55 + cn2π2

35a2 Cc
11

)
+ W b

0

(
−3c fbn3π3

35a3 Cc
11 − ηb

3
nπ

a

)

−W c
0

(nπ

a
β1

)
+ W t

0

(
c ft n3π3

70a3 Cc
11 + ηt

2
nπ

a

)
= 0 (7f)

U b
0

(
−3c fbn3π3

35a3 Cc
11 − ηb

3
nπ

a

)
+ U c

0

(
−c fbn3π3

15a3 Cc
11 − ηb

6
nπ

a

)
+ �c

0n

(
c2 fbn3π3

35a3 Cc
11 − ηb

4
nπ

a

)

+U t
0

(
−c fbn3π3

70a3 Cc
11 − ηb

2
nπ

a

)
+ W b

0

(
−κb P

n2π2

a2 + 7

6c
Cc

33 + 3c f 2
b n4π4

70a4 Cc
11 + f 3

b n4π4

12a4 Cb
11−

+ ηb
8

n2π2

a2

)
+ W c

0

(
− 4

3c
Cc

33 − ηb
7

n2π2

a2

)
+ W t

0

(
Cc

33

6c
− c fb ft n4π4

140a4 Cc
11 − β2

n2π2

a2

)
= 0 (7g)

These can be cast in the following matrix form:

{[KLC] − n2π2

a2 �Ga�[ I ]}{U } = {0}. (7h)

where [KLC] is a 7 × 7 matrix involving material stiffnesses and sandwich dimensions, and each element is
given in Appendix A. The subscript LC is used to denote that the sandwich system has linear strains in the core.
Later in the paper another matrix, the KNLC will represent additional terms that account for nonlinear axial
strains in the core. The loading vector is represented by �Ga� = �0, 0, 0, 0, κb P, 0, κ t P�. Seven unknown
displacement amplitudes make up the vector {U } = �U b

0 , U c
0 , �c

0, U t
0, W b

0 , W c
0 , W t

0�T . The critical load is
determined by finding the value of P for which the system has a nontrivial solution or finding P by zeroing
the determinant:

det{[KLC] − n2π2

a2 �Ga�[ I ]} = 0. (7i)

2.2 Uniform strain loading, nonlinear axial strain in the core (USNLC)

In this case (Fig. 2b), the top and bottom phases are compressively loaded with concentrated loads (per unit
width) κ t P and κb P , respectively, and the core is loaded with a compressive uniformly distributed load (per
unit width) κc P

2c , such that they sum up to the total applied load P , and each phase has the same axial strain
εi

xxp = ai
11σ

i
xxp for i = t, b, c. Imposing these conditions leads to:

κ t = ab
11ac

11 ft

ab
11at

112c + ab
11ac

11 ft + at
11ac

11 fb
, (8a)

κb = at
11ac

11 fb

ab
11at

112c + ab
11ac

11 ft + at
11ac

11 fb
, (8b)
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κc = at
11ab

112c

ab
11at

112c + ab
11ac

11 ft + at
11ac

11 fb
. (8c)

When a uniform strain exists in the core, the face sheets have a nonzero transverse displacement at the
primary state, which is due to the Poisson’s effect on the core during compression (as opposed to the previous
case). Thus, the top and bottom face sheets have primary state transverse displacements that are equal, yet
opposite in direction, that is, wp and −wp, respectively; furthermore, they are constant along x. Moreover,
when the loading is uniform strain, the axial displacement at the primary state in each phase is the same,
denoted by u p. Therefore, in this case, the displacements in the perturbation approach are:

ui
0(x) = u p(x) + ξui

0s(x) (i = t, b, c), (9a)

φc
0(x) = ξφc

0s(x), (9b)

wt
0(x) = wp + ξwt

0s(x), (9c)

wc
0(x) = ξwc

0s(x), (9d)

wb
0(x) = −wp + ξwb

0s(x). (9e)

In the study of global buckling using EHSAPT in Phan et al. [10], it was shown that when loading on
the core exists, nonlinear axial strain in the core needs to be considered. In fact, it was shown that neglecting
nonlinear axial strains in this case would lead to inaccurate and nonconservative results. Linear axial strains
in the core are acceptable in the PFLC case because the core is not loaded in that case.

The resulting wrinkled state equations in matrix form are:

{[KLC] + [KNLC] − n2π2

a2 �Gc�[ I ]}{U } = {0}, (10a)

where [KLC] is the same as in the PFLC approach, and [KNLC] contains the additional terms that account for
nonlinear axial strains in the core:

KNLC = n2π2

a2

(
cCc

11u p,x + Cc
13wp

)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 4

15
2
15 − 1

15
0 0 0 0 2

15 − 14
15

2
15

0 0 0 0 − 1
15

2
15

4
15

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10b)

Note that [KNLC] depends on the primary state displacements, in particular, on u p,x , (the x-derivative of
the uniform axial displacement) and wp (the uniform transverse displacement of the top face sheet due to the
Poisson’s effect in the axially loaded core). The solution to the primary state displacements can be obtained
by solving the prebuckled-state equations and are:

u p = −at
11κ

t P

ft
x = −ab

11κ
b P

fb
x = −ac

11κ
c P

2c
x; wp = −cCc

13

Cc
33

u p,x . (10c)

We should note that the solution procedure for this case becomes more complicated because both primary
and secondary generalized coordinates appear in the wrinkled state set of equations. For the case of global
buckling in [10], the extra work required to solve both sets of equations did not make significant gains in
accuracy compared with the PFLC approach.

Now that the nonlinear axial strain of the core is considered, the resultant load on each phase appears in
the force vector:

Gc = [0, 0, 0, 0, κ t P, κc P, κb P]t . (10d)

Again, the critical load is determined by solving the value of P which gives a nontrivial solution to the
buckled state equations, that is, by zeroing the determinant:

det{[KLC] + [KNLC] − n2π2

a2 �Gc�[ I ]} = 0. (10e)
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3 Critical wrinkling load from the HSAPT and other wrinkling formulas

An earlier high-order theory for sandwich panels is the HSAPT, which assumes constant shear in the core
and accounts for the transverse and shear stiffness of the core, but assumes that the axial stress in the core is
negligible [4]. The wrinkling formulas from HSAPT are derived in [11].

In the case of a symmetrical construction in which the two skins are identical, the symmetric wrinkling
critical load per unit width from the HSAPT is:

Pcr,HSAPT,symm = 2[Ec
33 + c (E I ) α4

n]
c α2

n
, (11a)

where

E I = E f
11 f 3/12; αn = nπ/a. (11b)

In the case of antisymmetric wrinkling, the critical load from the HSAPT is:

Pcr,HSAPT,antisymm = Pe

⎧⎪⎪⎨
⎪⎪⎩

1 +
[

1 + (2c)2Gc
31n2π2

12Ec
3a2

](
Pef
Pc

− P2
e f

Pc Pe

)

1 +
[
1 + (2c)2Gc

31n2π2

12Ec
3a2

]
(Pe−Pef )

Pc

⎫⎪⎪⎬
⎪⎪⎭

, (12a)

where

Pe = E f
11

n2π2

a2

[
f 3

6
+ f (2c + f )2

2

]
, (12b)

Pef = E f
11

n2π2

a2

f 3

6
; Pc = Gc31

(2c + f )2

2c
, (12c)

Among the other simple wrinkling formulas, which are outlined in Carlsson and Kardomateas [1], Hoff
and Mautner’s formula is mostly known and used in the form:

σcr,HoffMautner = 0.5(E f
11 Ec

33Gc
31)

(1/3), (13a)

where the critical stress refers to the face sheets. The cubic root form of the Hoff–Mautner equation was
derived using an energy approach for the problem of symmetric wrinkling of a sandwich (with isotropic mate-
rial and negligible axial rigidity in the core). The theoretical approach led to a coefficient of 0.91 in front of
the cubic root of the Hoff–Mautner formulation ([2]). However, a conservative version of the formula with
a coefficient of 0.5 instead of 0.91 is commonly used. The formula is independent of the sandwich geome-
try and mode of wrinkling and has been used as a wrinkling failure approximation for sandwich design. As
can be seen in Hoff–Mautner’s simple formula, the transverse stiffness of the core in particular is critical in
improving the susceptibility of a sandwich material to wrinkling failure. For the case of uniform strain load-
ing on a sandwich with a symmetric configuration, the Hoff–Mautner critical load can also be expressed as
Pcr,HoffMautner = σcr,HoffMautner(2 f b), that is, the entire load is assumed to be carried by the face sheets.

4 Comparison of theories with elasticity

An elasticity solution to the wrinkling phenomenon of a simply supported sandwich beam was presented by
Kardomateas [7]. This elasticity solution can serve as a benchmark to determine the accuracy of the different
sandwich panel theories and simple wrinkling formulas. Tables 1 through 4 give the critical loads (normalized
with the Euler load) for sandwich beams with length ratio a/htot = 5 and varying thickness ratios f/htot, where
htot = 2( f +c) is the total beam thickness. The four tables correspond to the following material configurations:
Isotropic face and core with Ef/Ec = 1,000, Isotropic face and core with Ef/Ec = 500, E-glass/polyester faces
with PVC/R75 foam core, and graphite/epoxy faces with glass/phenolic honeycomb core, respectively. These
tables compare the elasticity results to the wrinkling predictions from the two methods of EHSAPT (PFLC
and USNLC), the HSAPT, and the Hoff–Mautner (semi-empirical constant = 0.5). The tables also show the
mode and percent Error with respect to elasticity.
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Table 1 Critical loads for Ef/Ec = 1,000; normalized with the Euler load (w/o shear)

f/htot Elasticity Hoff HSAPT EHSAPTa EHSAPTb

(n) (n) (n) (n) (n)
(Error %) (Error %) (Error %) (Error %)

0.01 0.07381 0.04038 0.02654 0.07909 0.08228
(A24) (27) (S20) (A22) (A22)

(−45.3 %) (−64.0 %) (+7.2 %) (+11.5 %)
0.02 0.07393 0.04154 0.03902 0.07080 0.07212

(A12) (13) (S12) (A12) (A12)
(−43.8 %) (−47.2 %) (−4.2 %) (−2.5 %)

0.03 0.07288 0.04251 0.04945 0.06967 0.07040
(A7) (9) (S9) (A8) (A8)

(−41.7 %) (−32.2 %) (−4.4 %) (−3.4 %)
0.04 0.06489 0.04345 0.05900 0.06389 0.06391

(A1) (7) (S7) (A1) (A1)
(−33.0 %) (−9.1 %) (−1.5 %) (−1.5 %)

0.05 0.05411 0.04439 0.05336 0.05336 0.05337
(A1) (5) (A1) (A1) (A1)

(−18.0 %) (−1.4 %) (−1.4 %) (−1.4 %)

Superscripts a and b are for method PFLC and USNLC, respectively. A and S in the wave numbers stand for anti-symmetric and
symmetric, respectively

Table 2 Critical loads for Ef/Ec = 500; normalized with the Euler load (w/o shear)

f/htot Elasticity Hoff HSAPT EHSAPTa EHSAPTb

(n) (n) (n) (n) (n)
(Error %) (Error %) (Error %) (Error %)

0.01 0.1222 0.0631 0.0370 0.1370 0.1479
(A30) (34) (S24) (A26) (A26)

(−48.4 %) (−69.8 %) (+12.1 %) (+21.1 %)
0.02 0.1210 0.0654 0.0548 0.1162 0.1207

(A15) (17) (S14) (A15) (A15)
(−45.9 %) (−54.7 %) (−4.0 %) (−0.3 %)

0.03 0.1211 0.0672 0.0698 0.1143 0.1169
(A10) (11) (S11) (A10) (A10)

(−44.5 %) (−42.3 %) (−5.6 %) (−3.4 %)
0.04 0.1188 0.0687 0.0836 0.1128 0.1144

(A6) (9) (S9) (A7) (A7)
(−42.1 %) (−29.6 %) (−5.0 %) (−3.7 %)

0.05 0.1027 0.0703 0.0962 0.1003 0.1003
(A1) (7) (S7) (A1) (A1)

(−31.6 %) (−6.3 %) (−2.3 %) (−2.3 %)

Superscripts a and b are for method PFLC and USNLC, respectively. A and S in the wave numbers stand for anti-symmetric and
symmetric, respectively

For Tables 1 and 2, results are produced for the following configuration: isotropic faces and core with
Ef/Ec = 1,000 and 500, ν f = 0.35 and νc = 0. Table 3 gives results for E-glass/polyester unidirectional

facings and R75 cross-linked PVC foam core with the facings moduli (in GPa): E f
1 = 40, E f

2 = E f
3 = 10,

G f
23 = 3.5, G f

12 = G f
31 = 4.5; and the facings Poisson’s ratios: ν

f
12 = 0.26, ν

f
23 = 0.40, ν

f
31 = 0.065. The

PVC core is isotropic with modulus Ec = 0.075 GPa and Posson’s ratio νc = 0.3. The axial modulus ratio of
the facings and the core is close to 500. In general, we can make the following conclusions for the isotropic
core case:

(1) Sandwich structures will exhibit local wrinkling as f/htot becomes small (i.e., sandwiches with relatively
thin faces), and global buckling as f/htot becomes bigger (i.e., sandwiches with relatively thick faces).

(2) The semi-emprical Hoff–Mautner formula is always very conservative between 18 and 50 % under that
of elasticity.

(3) The HSAPT is inaccurate in predicting wrinkling loads for sandwiches with very thin faces, underpre-
dicting the critical load by as much as 70 % for the more moderately stiffer core configuration with
E f /Ec = 500 and f/htot = 0.01.
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Table 3 Critical loads for E-glass/polyester faces and PVC/R75 foam core; normalized with the Euler load (w/o shear)

f/htot Elasticity Hoff HSAPT EHSAPTa EHSAPTb

(n) (n) (n) (n) (n)
(Error %) (Error %) (Error %) (Error %)

0.01 0.10230 0.05549 0.03586 0.10775 0.11583
(A30) (32) (S23) (A25) (A25)

(−45.8 %) (−65.0 %) (+5.3 %) (+13.2 %)
0.02 0.10120 0.05749 0.05307 0.09593 0.09932

(A15) (16) (S14) (A14) (A14)
(−43.2 %) (−47.6 %) (−5.2 %) (−1.9 %)

0.03 0.10080 0.05898 0.06751 0.09533 0.09720
(A9) (11) (S10) (A9) (A9)

(−41.5 %) (−33.0 %) (−5.4 %) (−3.6 %)
0.04 0.09096 0.06035 0.08080 0.08953 0.08957

(A1) (8) (S8) (A1) (A1)
(−33.6 %) (−11.2 %) (−1.6 %) (−1.5 %)

0.05 0.07596 0.06170 0.07486 0.07495 0.07497
(A1) (6) (A1) (A1) (A1)

(−18.8 %) (−1.4 %) (−1.3 %) (−1.3 %)

Superscripts a and b are for method PFLC and USNLC, respectively. A and S in the wave numbers stand for anti-symmetric and
symmetric, respectively

Table 4 Critical loads for graphite/epoxy faces and glass/phenolic honeycomb core; normalized with the Euler load (w/o shear)

f/htot Elasticity Hoff HSAPT EHSAPTa EHSAPTb

(n) (n) (n) (n) (n)
(Error %) (Error %) (Error %) (Error %)

0.01 0.07037 0.04277 0.03947 0.07099 0.07147
(A26) (15) (S24) (A25) (A25)

(−39.2 %) (−43.9 %) (+0.9 %) (+1.6 %)
0.02 0.06552 0.04371 0.05773 0.06506 0.06517

(A1) (7) (S14) (A9) (A9)
(−33.3 %) (−11.9 %) (−0.7 %) (−0.5 %)

0.03 0.04576 0.04463 0.04558 0.04559 0.04559
(A1) (5) (A1) (A1) (A1)

(−2.5 %) (−0.4 %) (−0.4 %) (−0.4 %)
0.04 0.03577 0.04556 0.03564 0.03564 0.03564

(A1) (4) (A1) (A1) (A1)
(+27.4 %) (−0.4 %) (−0.4 %) (−0.4 %)

0.05 0.02988 0.04652 0.02978 0.02978 0.02978
(A1) (3) (A1) (A1) (A1)

(+55.7 %) (−0.3 %) (−0.3 %) (−0.3 %)

Superscripts a and b are for method PFLC and USNLC, respectively. A and S in the wave numbers stand for anti-symmetric and
symmetric, respectively

(4) The EHSAPT is the most accurate with the USNLC approach (uniform strain, nonlinear core) predicting
slightly higher critical loads than the PFLC approach (loading on faces, linear core). In general, USNLC
is more accurate than the PFLC when the beam wrinkles for all f/htot other than 0.01. The deviation
from elasticity for the USNLC is no more than about 4 %.

(5) The EHSAPT PFLC approach has good accuracy for the range of thickness ratios with at most 12 % Error
for the extreme case of f/htot = 0.01 for isotropic face and core with E f /Ec = 500 (Table 2).

(6) The HSAPT predicts symmetric wrinkling modes, while the EHSAPT predicts antisymmetric wrinkling
modes, similar to elasticity.

Table 4 gives results for graphite/epoxy unidirectional facings and hexagonal glass/phenolic honeycomb
core with the facings moduli (in GPa): E f

1 = 181, E f
2 = E f

3 = 10.3, G f
23 = 5.96, G f

12 = G f
31 = 7.17;

and the facings Poisson’s ratios: ν
f

12 = 0.28, ν
f

23 = 0.49, ν
f

31 = 0.0159. The honeycomb core moduli are in
(GPa): Ec

1 = Ec
2 = 0.032, Ec

3 = 0.390, Gc
23 = Gc31 = 0.048, Gc

12 = 0.013; and the core Posson’s ratio
νc

31 = νc
32 = νc

21 = 0.25. For this orthotropic core case, the following observations are made:

(7) According to elasticity, the beam wrinkles only at f/htot = 0.01 and globally buckles for the relatively
thicker faces.
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(8) The semi-emprical Hoff–Mautner formula is always very conservative with respect to elasticity when the
beam wrinkles, but can be nonconservative when the beam globally buckles (it would not be expected to
be applicable for global buckling, anyway).

(9) The HSAPT is very conservative when the beam wrinkles, but becomes more accurate for thicker faces.
(10) The EHSAPT (both PFLC and USNLC approaches) is very accurate even at the extreme case of f/htot =

0.01.

The wrinkling results display some trends that were seen when studying the global buckling phenomenon
in Phan et al. [10], such as that the HSAPT tends to become less accurate and underpredicts critical loads
for very thin faces and that both the HSAPT and the EHSAPT (PFLC and USNLC) converge for thicker
faces (bigger f/htot). The discrepancy between HSAPT and EHSAPT for very low f/htot (when the beam is
most susceptible to wrinkling), but convergence for higher f/htot (when the beam tends to globally buckle),
indicates that including the axial rigidity of the core is important during wrinkling. Though both high-order
theories have the same order of displacements in z in the core, the theories differ in shear stress distribution
through the core. The HSAPT ignores the axial rigidity of the core, which makes the shear stress through the
thickness constant. The EHSAPT accounts for the axial rigidity in the core and the shear stress is parabolic.
In Kardomateas [7], the most accurate formula for wrinkling of isotropic faces and cores was that of Goodier
and Neou [12], which accounts for the compressive axial stress in the core. However the Goodier and Neou
formula no longer exhibited good accuracy when the phases were orthotropic. The EHSAPT, however, can
show good accuracy in these cases.

5 Experimental study

Sandwich construction consisting of a Nomex honeycomb core with a glass fiber and phenolic resin facesheet
is common in aerospace applications. The material for this study is a panel consisting of 0.5- mm-thick glass-
phenolic facesheets (L528-7781) and a 24.4- mm Nomex honeycomb core (HRH 10-3.0). Sandwich panels
were manufactured using layers of honeycomb core, adhesive and pre-impregnated face sheets, which are
consolidated in a heated press. Due to the nature of honeycomb, the core properties are anisotropic with a large
transverse stiffness compared with the in-plane properties. The stiffer ribbon direction of the core was aligned
with the loading or compression direction for all tests. Specimen geometry is shown in Figure 3 and illustrates
the area of core removed and replaced with epoxy resin. This region of potting was required to prevent edge
failure of the structure during loading whereby the face sheet delaminates from the core at the boundary due
to the contact with the loading platen at this point. Premature edge failure occurs at a significantly lower load
than the anticipated failure mode of skin wrinkling. After the edges were potted, they were post-machined to
ensure the ends were parallel and square. The data for the materials used are in Table 5.

The residual strength testing was carried out using an edgewise compression test method ASTM C364-07.
The test fixture shown in Figure 3 was made of two identical loading plates with bars to lightly clamp the
specimen to assist in preventing end failures. A spherical head was used to evenly distribute the load over the
top plate. The load was applied at a displacement rate of 0.5 mm/ min and wrinkling failure occurred within
3–6 min.

Seven specimens were instrumented with strain gauges to measure longitudinal or compressive strain in the
center of the face sheets during edgewise loading. The purpose of the direct strain measurement was to ensure
even distribution of the load between the face sheets. Strain was recorded to the data acquisition program
in real-time. Prior to testing, a 50 N compressive preload was applied and the strain in each face sheet was
measured. The spherical head was then adjusted until the strain distribution between the face sheets was within
5 %. This preload ensured that a more even loading distribution of the face sheets was achieved. Without this
preloading alignment, and adjustment of the spherical head, the average critical load reduced by 12 %.

Table 6 shows the measured critical loads P for the 7 specimens tested. The average compressive critical
load was 17.8 kN with a standard deviation of 0.646 kN. The onset of wrinkling failure was catastrophic. The
specimens were examined after failure and the face sheets were observed to have failed between the loading
platens with a crack propagating from one edge of the specimen. It is believed that wrinkling was the cause of
failure and not face crushing because the compressive stress in the face at the time of failure was 22 % below
the yield strength of the virgin face sheet material. The variation in critical load was also very good with only
a 3.6 % coefficient of variation from the seven tests (attributed to the careful alignment of the loading platens
via strain measurement). Though the variation in critical load among the seven specimens was small, scatter in
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Fig. 3 Details of the test setup

Table 5 Material and geometry data for glass-phenolic facesheet and Nomex honeycomb core sandwich

Facesheet Core
glass-phenolic Nomex honeycomb 1/8-3.0

Thickness, mm 0.5 24.4
Width, mm 75 75
Length, mm 115 115
E1, MPa 22,000 0.44
E2, MPa 22,000 0.29
E3, MPa – 138
G13, MPa – 40
G23, MPa – 25
ν13 – 0.01
ν31 – 3.136
Longitudinal tensile strength σ1, MPa 300 –
In-plane transverse tensile strength σ2, MPa 300 –
Compressive out-of-plane strength σ3, MPa – 2.3

Table 6 Wrinkling experiments on glass face/Nomex honeycomb core sandwich specimens and comparison with theories

Sample Wrinkling load (kN)

1 17.161
2 17.006
3 18.659
4 17.278
5 18.644
6 18.072
7 17.489

Average experimental (SD) Hoff–Mautner HSAPT EHSAPT (PFLC) EHSAPT (USNLC)

17.758 18.57 15.281 17.158 17.164
(0.646) (4.6 %) (−13.9 %) (−3.4 %) (−3.3 %)

(S17) (S16) (S16)

A and S in the wave numbers stand for anti-symmetric and symmetric, respectively

the experimental results may be due to the slight waviness of the face sheets that occur during manufacturing
process of the sandwich specimens.

In Table 6, the experimental results are compared with the predictions from the various approaches. It
should be noted that the theories do not take into account initial imperfections such as waviness of the faces
that can occur during manufacturing. Therefore, perfect agreement between experiment and theory is not to
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Table 7 Comparison of the theories with the wrinkling experiments of Norris et al. [9]

Face Core Ratio Length Experimental Hoff– HSAPT EHSAPT EHSAPT
f , in. 2c, in. 2c/ f a, in. average Mautner (PFLC) (USNLC)

σcr , ksi σcr , ksi σcr , ksi σcr , ksi σcr , ksi
(% Error) (% Error) (% Error) (% Error)

(n) (n) (n)

0.0196 1 51.0 3.63 9.817 5.986 8.264 8.51 8.491
(−39.0 %) (−15.8 %) (−13.3 %) (−13.5 %)

(S4) (A2) (A2)
0.0120 0.75 62.5 2.87 10.422 5.986 7.452 9.19 9.175

(−42.6 %) (−28.5 %) (−11.8 %) (−12.0 %)
(S5) (A4) (A4)

0.0120 1 83.3 3.85 10.418 5.986 6.492 9.61 9.597
(−42.5 %) (−37.7 %) (−7.8 %) (−7.9 %)

(S6) (A6) (A6)
Aluminum face/granulated-cork core

be expected. Yet, both EHSAPT approaches are remarkably close to the experimental data and provide the
most accurate predictions compared with all other available approaches. In particular, the Hoff–Mautner’s
conservative formula predicts a nonconservative critical stress in the face sheets and is within 4.6 % error. Both
the HSAPT and the EHSAPT predict the wrinkling mode to be symmetric and conservative loads. However,
the EHSAPT is closest to experiments (within 3.4 % error for both approaches), while the HSAPT is more
conservative (underpredicting by about 14 %).

6 Comparison with wrinkling tests in the literature

Experimental wrinkling stresses of sandwich panels with 24ST clad aluminum face sheets and granulated-cork
core (with 0.35 specific gravity) are reported in Norris et al. [9] for three different geometric core-to-facesheet
thickness ratios of 2c/ f = {3.63, 2.87, 3.85}. The aluminum face sheets had a modulus E f = 107 psi, and the
granulated-cork core had the following mechanical properties: Ec

1 = 1.18 ksi, Ec
3 = 0.52 ksi, Gc

31 = 0.33 ksi
and νc

31 = 0.06. The width of all the specimens were 2 in. For a given sandwich configuration, only specimens
that had the same exact lengths were considered for comparison. Only 3 specimens had a length of 3.63 in for
the 2c/ f ratio of 3.63, while there were 5 specimens each for configurations with 2c/ f of 2.87 and 3.85. This
set of experimental data was chosen for comparison because it is known that wrinkling was the cause of failure
and the tests had good repeatability; the standard deviation is no greater than 0.78 ksi for all 3 configurations.

Table 7 shows the average wrinkling stress in the faces from the experiments as well as those predicted
from Hoff–Mautner, HSAPT, and EHSAPT (both PFLC and USNLC methods). The Hoff–Mautner is very
conservative (generally about 40 % lower) and is the same for the three configurations because the formula is
independent of the geometry. The EHSAPT is in best agreement with the experimental data, staying within
14 % of the experimental results for the three configurations and is always conservative. Moreover, both EHS-
APT approaches are close to each other for all three configurations. The HSAPT is less accurate, being as much
as 38 % below the experimental data and becomes less accurate as the ratio of 2c/ f increases. The predicted
mode of the high-order theories are also shown in parenthesis. S and A stand for symmetric and antisymmet-
ric, respectively, and is followed by the semi-wave number. The HSAPT predicts symmetric wrinkling mode,
unlike the EHSAPT, which predicts antisymmetric wrinkling.

7 Conclusions

The wrinkling formulation based on the EHSAPT was presented. Two different solution procedures were
pursued using the EHSAPT: Case (a), in which the compressive loading is applied on the faces and the core
strains are assumed linear (PFLC) and Case (b), in which a uniform compressive strain through the thickness
is applied and the core strains are assumed nonlinear (USNLC).

The wrinkling predictions of the EHSAPT, the earlier HSAPT, and the Hoff–Mautner’s semi-empirical
formula are compared with (a) predictions from elasticity and (b) wrinkling experiments. Two experimen-
tal sets are chosen for comparison: one set is experiments conducted by the authors on Glass face/Nomex
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Honeycomb core sandwich specimens and the other set is experiments from the literature on Aluminum
faces/granulated-cork core system.

In all cases, the EHSAPT was the closest to both the elasticity predictions and the experimental data. There
was little difference between the two formulations of the EHSAPT, which argues for the much simpler PFLC
(loading on faces, linear core) approach. The earlier HSAPT was in significant error for the relatively thinner
faces. The large discrepancy between HSAPT and EHSAPT for very low f/htot (when the beam is most
susceptible to wrinkling), and the associated smaller discrepancy for higher f/htot (when the beam tends to
buckle globally), indicates that including the axial rigidity of the core is very important during wrinkling.

The comparison of the different wrinkling formulations with elasticity shows that in general the semi-
empirical Hoff–Mautner formula is quite conservative, yet less so than the HSAPT. The good agreement of
the EHSAPT with the experiments on honeycomb core sandwich specimens shows that although the EHSAPT
models the core as a homogenous material with global properties, the theory can be used to predict critical
loads of nonhomogeneous honeycomb cores just as well as for homogeneous solid cores.
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Appendix A: Elements of the [KLC] matrix

The [KLC] matrix is 7 × 7 symmetric matrix and has the following elements, ki j , i, j = 1, . . . , 7:

k11 = 47

30c
Cc

55 + 6cα2
n

35
Cc

11 + Cb
11 fbα

2
n; k12 = − 4

3c
Cc

55 + 2cα2
n

15
Cc

11, (A1a)

k13 = 4

5
Cc

55 − 2c2α2
n

35
Cc

11; k14 = − 7

30c
Cc

55 + cα2
n

35
Cc

11, (A1b)

k15 = −3c fbα
3
n

35
Cc

11 − ηb
3αn; k16 = −αnβ1; k17 = c ftα

3
n

70
Cc

11 + ηt
2αn. (A1c)

k22 = 8

3c
Cc

55 + 16cα2
n

15
Cc

11; k23 = 0; k24 = k12, (A2a)

k25 = −c fbα
3
n

15
Cc

11 + ηb
6αn; k26 = 0; k27 = c ftα

3
n

15
Cc

11 − ηt
6αn . (A2b)

k33 = 8c

5
Cc

55 + 16c3α2
n

105
Cc

11; k34 = −4

5
Cc

55 + 2c2α2
n

35
Cc

11, (A3a)

k35 = c2 fbα
3
n

35
Cc

11 − ηb
4αn; k36 = 4cβ1αn

3
; k37 = c2 ftα

3
n

35
Cc

11 − ηt
4αn . (A3b)

k44 = 47

30c
Cc

55 + 6cα2
n

35
Cc

11 + Ct
11 ftα

2
n; k45 = −c fbα

3
n

70
Cc

11 − ηb
2αn, (A4a)

k46 = β1αn; k47 = 3c ftα
3
n

35
Cc

11 + ηt
3αn . (A4b)

k55 = 7

6c
Cc

33 + 3c f 2
b α4

n

70
Cc

11 + f 3
b α4

n

12
Cb

11 − ηb
8α2

n; k56 = − 4

3c
Cc

33 − ηb
7α2

n, (A5a)

k57 = 1

6c
Cc

33 − c fb ftα
4
n

140
Cc

11 − β2α
2
n . (A5b)

k66 = 8

3c
Cc

33 + 16cα2
n

15
Cc

55; k67 = − 4

3c
Cc

33 − ηt
7α

2
n . (A6)

k77 = 7

6c
Cc

33 + 3c f 2
t α4

n

70
Cc

11 + f 3
t α4

n

12
Ct

11 − ηt
8α

2
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where

αn = nπ

a
, ηi

2 = 1

30
Cc

13 +
(

1

30
− 7 fi

60c

)
Cc

55, (A8a)

ηi
3 = −11

30
Cc

13 +
(

19

30
+ 47 fi

60c

)
Cc

55, ηi
4 = 4c

15
Cc

13 +
(

4c

15
+ 2 fi

5

)
Cc

55, (A8b)

ηi
6 = 2

3
Cc

13 +
(

2

3
+ 2 fi

3c

)
Cc

55, ηi
7 = − fi

5
Cc

13 −
(

2c

15
+ fi

5

)
Cc

55 (A8c)

ηi
8 = 11 fi

30
Cc

13 −
(

4c

15
+ 19 fi

30
+ 47 fi

2

120c

)
Cc

55, ηi
4a = ηi

4 −
(

2c

3
+ fi

)
Cc

55 (A8d)

ηi
6a = Cc

13 − ηi
6, ηi

7a = 2c + 3 fi

6
Cc

55 + ηi
7

ηi
8a = 11 fi

60
Cc

13 − ηi
8, (A8e)

and

β1 = 2

5
(Cc

13 + Cc
55), (A9a)

β2 = fb + ft

60
Cc

13 +
(

c

15
+ fb + ft

60
− 7 fb ft

120c

)
Cc

55, (A9b)
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