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Closed-form algebraic expressions for the energy-release rate and the mode mixity are obtained for a debonded

sandwich (trimaterial). The most general case of an “asymmetric” sandwich is considered (i.e., the bottom face sheet

not necessarily of the samematerial or thickness as the top face sheet). The energy-release rate is obtainedbyuse of the

J-integral, and the expression is derived in termsof the forces andmoments at the debond section.Regarding themode

mixity, a closed-form expression is derived in terms of the geometry, material, and applied loading, and it is proven

that, in the trimaterial case, just as in the bimaterial case, the mode mixity can be obtained in terms of a single scalar

quantityω, which is independent of loading; theω value for a particular geometry andmaterial can be extracted from

a numerical solution for one loading combination. Thus, this analysis extends the existing formulas in the literature,

which are for either a delamination in a homogeneous composite or an interface crack in a bimaterial. These new

“trimaterial with a crack” formulas are also proven to yield the formulas for the limits of a bimaterial or for a

homogeneous section with a crack.

Nomenclature

Dd = bending rigidity of the debonded part
Db = bending rigidity of the base part
Ds = bending rigidity of the substrate part
Ec = Young’s modulus of the core, assumed to be equal in

tension and compression
Ef1 = Young’s modulus of the top face sheet, assumed to be

equal in tension and compression
Ef2 = Young’s modulus of the bottom face sheet, assumed to be

equal in tension and compression
eb = distance of neutral axis of base part from middle of core
es = distance of neutral axis of substrate from middle of core
G = energy-release rate
hc = thickness of the core
hf1 = thickness of the top face sheet
hf2 = thickness of the bottom face sheet
J = J-integral
K = stress intensity factor
β = Dundur’s bimaterial parameter
ϵ = bimaterial constant (oscillation index)
ψ = mode-mixity phase angle

Subscripts

d = debonded part
b = base part
s = substrate part

Superscripts

d = debonded part
b = base part
s = substrate part

I. Introduction

T YPICAL sandwich panels consist of two stiff metallic or
composite thin face sheets separated by a soft/stiff honeycomb

or foam thick core of low/high density. This configuration gives
the sandwich material system high stiffness and strength with little
resultant weight penalty and high-energy-absorption capability re-
lated to the application of sandwich structures in the construction of
aerospace vehicles (especially rotorcraft), naval vehicles, and wind
turbines.
In these sandwich structures, the interface between the face sheet

and the core is justifiably considered to be the weak link. This is
because debonding may occur at this interface, and such debonds
could grow and eventually completely delaminate the face sheet. The
most common cause of these defects is poor or missing bonding due
to careless manufacturing or a mismatch in the geometry. Similar
defects may also arise during service due to thermomechanical loads,
impact events, or structural fatigue. The latter decohesion is induced
primarily due to the elastic and/or thermal mismatch between face
sheet and core.
A loading that can be especially detrimental is compression

because these debonds are susceptible to buckling and subsequent
rapid growth during the postbuckling phase. Typically, postbuckling
solutions are derived in terms of forces and moments at the debond
section for both sandwich [1] or monolithic composites [2,3].
Therefore, expressions for the energy-release rate in terms of these
quantities are particularly useful. Such an expression was first
derived by Yin and Wang [4] for a delaminated homogeneous com-
posite; it was subsequently extended by Suo and Hutchinson [5] to
a delaminated bimaterial (thin film on a substrate). The sandwich
configuration is, however, a “trimaterial” (i.e., two face sheets),
which need not be the same, and a core in the middle. This is the
configuration treated in this paper. Specifically, we use the J-integral
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to obtain a closed-form algebraic expression for the energy-release
rate G of a debonded sandwich plate. The most general case of an
asymmetric sandwich is considered (i.e., the bottom face sheet not
necessarily of the same material or thickness as the top face sheet).
The expression derived is in terms of the debond forces andmoments,
which are typical outputs of postbuckling solutions. It should be
noted that the case of an interface crack in a symmetric sandwich was
also treated in Ostergaard and Sorensen [6], but that work contains a
derivation error.
In this paper, following the derivation of the energy-release rate

for a debond in a general asymmetric sandwich beam (a trimaterial),
the mode mixity is derived by following the approach of Suo and
Hutchinson [5] for a bimaterial. The approach is based on the as-
sumption of a constant scalar quantity ω, which enters in the com-
plex stress intensity factor expressions. This quantity is assumed to
depend only on the geometry andmaterial and not the loading. Under
the same assumption of a constant ω, we derive the relevant
relationships for the mode mixity of a trimaterial. This assumption is
then critically tested by extensive finite-element analyses (FEAs) for
a soft-core and a moderate-core sandwich configuration and six
different loading combinations. It is clearly shown that this ω is
nearly constant in all cases. It is also proven that the present formulas
yield the results in the literature for the bimaterial or the homo-
geneous material limiting cases.

II. Analysis for the Energy-Release Rate

We consider a sandwich beam consisting of face sheets of
thicknesses hf1 and hf2 and Young’s moduli Ef1 and Ef2, respec-
tively (assumed to be equal in tension and compression), and a core of
thickness hc, with a Young’s modulus Ec, again assumed to be equal
in tension and compression (Fig. 1a). Over the region of the debond,
the sandwich beam consists of two parts: the debonded upper face
sheet (referred to as the “debonded part”, of thickness hf1) and the
part below the debond (“substrate part,” of thickness hc � hf2, which
includes the core and the lower face sheet). A unit width is assumed.
The intact region of the beam to the right of the debond is referred to

as the “base part” and consists of the entire section of the sandwich
beam of thickness hf1 � hc � hf2. We shall denote the base part as
“b”, the debonded part as “d”, and the substrate part as “s”.
A characteristic of a sandwich beam with a debond is that the

neutral axes for the base and the substrate parts are, in general, no
longer at the geometrical midpoints of the corresponding sections.
With respect to a reference axis x through the middle of the core, the
neutral axis of the base section is located at a distance eb (Fig. 1a),
given by

eb�Ef1hf1 � Echc � Ef2hf2� � Ef2hf2
�
hf2
2
� hc

2

�

− Ef1hf1
�
hf1
2
� hc

2

�
(1a)

The neutral axis of the substrate part is at a distance es:

es�Echc � Ef2hf2� � Ef2hf2
�
hf2
2
� hc

2

�
(1b)

Moreover, for the debonded face sheet, which is homogeneous, the
bending rigidity per unit width is

Dd � Ef1
h3f1
12

(2a)

And for the base part the flexural rigidity per unit width, it is (Fig. 1a)

Db � Ef1
h3f1
12
� Ef1hf1

�
hf1
2
� hc

2
� eb

�
2

� Ef2
h3f2
12

� Ef2hf2
�
hf2
2
� hc

2
− eb

�
2

� Ec
h3c
12
� Echce2b (2b)

and for the substrate (again, per unit width), it is

Ds � Ec
h3c
12
� Echce2s � Ef2

h3f2
12
� Ef2hf2

�
hf2
2
� hc

2
− es

�
2

(2c)

Figure 1a shows a segment of the beam containing the debond front
(crack tip).
A section of the beamahead of the crack tip carries the compressive

axial force Pb and bending moment Mb, both per unit width (base
part loads).
Behind the crack tip, the cross section above the debond (debonded

part) carries the loads Pd and Md, and the cross section below the
debond (substrate part) carries the loadsPs andMs. It is assumed that
these forces and moments have already been determined from the
postbuckling solution of the plate. It should be noted that, in this
derivation, we consider only the effects of the axial forces and
bending moments; transverse shear forces are neglected.
Equilibrium of forces and moments (about the neutral axis of the

base part) yields

Pb � Pd � Ps (3a)

Mb −Md −Ms − Pd
�
hf1
2
� hc

2
� eb

�
� Ps�es − eb� � 0 (3b)

If we set

�EA�b � Ef1hf1 � Echc � Ef2hf2 (4)

then the axial stresses in the upper and lower face sheets and the core
in the base part are

Fig. 1 a) Sandwich elements with the acting forces and moments, and
b) The J-integral path.
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σ�b�xx �8>><
>>:
− Pb
�EA�b Ef1 −

MbEf1
Db

y if eb� hc
2
≤ y≤ eb� hc

2
�hf1 �debonded face�

− Pb
�EA�b Ec −

MbEc
Db

y if eb −
hc
2
≤ y≤ eb� hc

2
�core�

− Pb
�EA�b Ef2 −

MbEf2
Db

y if eb −
hc
2
−hf2 ≤ y≤ eb −

hc
2
�lower face�

(5)

Following the approach by Suo and Hutchinson [5] for a bimaterial
problem, superimposing −σ�b�xx on the stresses behind and ahead of
the debond front in the system in Fig. 1a, would result in the system in
Fig. 1b, whose energy-release rate and stress intensity factors would
be the same as in the original system (Fig. 1a) because the system of
base part stresses acting alone would produce a nonsingular stress
field. In thisway,we can have two parameters,P� andM�d, in terms of
which the energy-release rate may be expressed.
Therefore, the forces acting in the system in Fig. 1b are

P� �
Z
eb�hc2�hf1

eb�hc2
�−σ�b�xx � dy − Pd (6)

Substituting σ�b�xx from Eq. (5) and performing the integration results
in P� in the following form:

P� � C1Pb � C2Mb − Pd (7a)

where

C1 �
Ef1hf1
�EA�b

; C2 �
Ef1hf1
2Db

�2eb � hf1 � hc� (7b)

Likewise,

M�d � Md −
Z
eb�hc2�hf1

eb�hc2
�−σ�b�xx �

�
y −

�
eb �

hc
2
�
hf1
2

��
dy (8)

Substituting again σ�b�xx from Eq. (5) and performing the integration
results inM�d in the following form:

M�d � Md − C3Mb (9a)

where

C3 �
Ef1
Db

h3f1
12

(9b)

The correspondingmomentM�s in the substrate part, is obtained from
equilibrium (Fig. 1b):

M�s � P�
�
es �

hc
2
�
hf1
2

�
−M�d (10)

Referring now to Fig. 1b, the stresses acting on the debonded face
produced by the tensile load P� and the bending momentM�d are

σxx �
P�

hf1
� Ef1

M�d
Dd

η; −
hf1
2

≤ η ≤
hf1
2

(11a)

σyy � τxy ≃ 0 (11b)

where η is a vertical coordinate measured from the midplane of the
debonded face.
In Fig. 1b, the cross section of the sandwich ahead of the debond

front is subject to vanishing stress and strain. In the region behind the
debond front, we have ϵzz � 0 (plane strain). It follows that

σzz � ν�f1�xz σxx; ϵxx �
σxx − ν�f1�zx σzz

Ef1
� 1 − ν�f1�zx ν�f1�xz

Ef1
σxx (12)

where ν�f1�xz and ν�f1�zx are the Poisson ratios of the debonded
(orthotropic) face sheet.
Considering now the J-integral path shown in Fig. 1b, the

following expression holds along the vertical path across the
debonded face:

dJ � Wdy − T
∂u
∂x

ds; dy � −ds (13)

whereW is the strain energy density,T is the traction vector, and u is
the displacement vector [7].
Because

W � 1

2
�σxxϵxx � σzzϵzz� �

1

2
σxxϵxx; T

∂u
∂x
� −σxxϵxx (14a)

and because ds � dη, and by use of Eq. (12),

dJ � −
1

2
σxxϵxxds� σxxϵxxds �

1

2
σxxϵxxds �

1 − ν�f1�zx ν�f1�xz

Ef1
σ2xxdη

(14b)

Substituting σxx from Eq. (11a), we obtain the contribution from the
debonded face to the J-integral:

J1 �
Z hf1

2

−
hf1
2

�1 − ν�f1�zx ν�f1�xz �
2Ef1

�
P�

hf1
� Ef1

M�d
Dd

η

�
2

dη

� �1 − ν�f1�zx ν�f1�xz �
2Ef1

�
P�2

hf1
� E2

f1

M�2d
D2
d

h3f1
12

�
(15)

Similarly, if we set

�EA�s � Echc � Ef2hf2 (16)

then the stresses in the cross section below the debond in Fig. 1b,
which are produced by the compressive force P� and the bending
momentM�s , are:

σxx�8<
:
− P�

�EA�s Ec�
M�s Ec
Ds

ξ if − es −
hc
2
≤ ξ≤−es� hc

2
�core�

− P�

�EA�s Ef2�
M�s Ef2
Ds

ξ if − es� hc
2
≤ ξ≤−es� hc

2
�hf2 �lower face�

(17a)

and

σyy � τxy ≃ 0 (17b)

where ξ is a normal coordinate measured from the neutral axis of this
cross section. Again, following the same arguments as before, i.e.,
that the cross section of the sandwich ahead of the debond front is
subjected to vanishing stress and strain and that in the region behind
the debond front we have ϵzz � 0 (plane strain), we obtain the the
following expression for the J integral contribution from the vertical
path below the debond:

dJ � 1

2
σxxϵxxds − σxxϵxxds �

1 − ν�i�zx ν
�i�
xz

Ei
σ�i�2xx dξ (18a)

where i refers to the core (c) or the lower face sheet (f2).
Hence, the total contribution from the vertical path below the

debond to the J-integral is:
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J2 �
Z

−es�hc2

−es−
hc
2

�1 − ν�c�zx ν
�c�
xz �

2Ec
σ�c�2xx dξ

�
Z

−es�hc2�hf2

−es�hc2

�1 − ν�f2�zx ν�f2�xz �
2Ef2

σ�f2�2xx dξ (18b)

Substituting the corresponding expressions for the core and lower
face stresses from Eq. (17a) and performing the integration leads to

J2 �
P�2

�EA�2s
H1 �

P�M�s
�EA�sDs

H2 �
M�2s
D2
s

H3 (19a)

where

H1 �
1 − ν�c�zx ν

�c�
xz

2
Echc �

1 − ν�f2�zx ν�f2�xz

2
Ef2hf2 (19b)

H2 �
1 − ν�c�zx ν

�c�
xz

2
Echc2es �

1 − ν�f2�zx ν�f2�xz

2
Ef2hf2�2es − hc − hf2�

(19c)

and

H3�
1− ν�c�zx ν

�c�
xz

2
Echc

�
h2c
12
� e2s

�

� 1− ν�f2�zx ν�f2�xz

2
Ef2hf2

�
h2f2
3
�
�
hc
2
− es

��
hc
2
�hf2 − es

��

(19d)

The sum of the two integrals of Eqs. (15, 19a) delivers the energy-
release rate because the remaining portions of the path make no
contribution to the J-integral, i.e.,

G � J1 � J2 (20)

or

G � �1 − ν�f1�zx ν�f1�xz �
2Ef1

�
P�2

hf1
� E2

f1

M�2d
D2
d

h3f1
12

�

�
�
P�2

�EA�2s
H1 �

P�M�s
�EA�sDs

H2 �
M�2s
D2
s

H3

�
(21)

where H1, H2, and H3 are given in Eqs. (19b–19d).

III. Stress Intensity Factor Expressions for the
Asymmetric TriMaterial

Substituting Eq. (10) forM�s into Eq. (21), we canwrite the energy-
release rate in the following form:

G � a1P�2 � a2M�2d − a3P�M�d (22)

where

a1 �
�1 − ν�f1�zx ν�f1�xz �

2Ef1hf1
� H1

�EA�2s
� H2

�EA�sDs

�
es �

hc
2
�
hf1
2

�

�H3

D2
s

�
es �

hc
2
�
hf1
2

�
2

(23a)

a2 � �1 − ν�f1�zx ν�f1�xz �
Ef1h

3
f1

24D2
d

� H3

D2
s

(23b)

a3 �
H2

�EA�sDs
� 2

H3

D2
s

�
es �

hc
2
�
hf1
2

�
(23c)

The face sheet/core debond is an interface crack between two distinct
materials: the top face sheet (f1) and the core (c). Thus, we assume
that the asymptotic field is governed by the bimaterial interface crack
solution. The complex stress intensity factorK � K1 � iK2 has been
introduced (Rice [8] and Hutchinson et al. [9]) such that the stress a
distance r ahead of the crack tip is given by

σyy � iτxy �
K��������
2πr
p riϵ (24a)

where ϵ is the bimaterial constant (oscillation index):

ϵ � 1

2π
ln

1 − β

1� β
(24b)

In the previous expression, β is the Dundur’s bimaterial parameter:

β �
Gf1�κc − 1� −Gc�κf1 − 1�
Gf1�κc � 1� �Gc�κf1 � 1� (24c)

where

κ �
�
3 − 4ν for plane strain

�3 − ν�∕�1� ν� for plane stress
(24d)

In the previous expressions, Gk is the shear modulus, and νk is the
Poisson’s ratio for the upper face sheet, k � f1, and for the core,
k � c.
In addition, the energy-release rate in terms of the complex stress

intensity factor K is

G � BjKj2 (25a)

where

B �
Gc�κf1 � 1� �Gf1�κc � 1�

16Gf1Gc cosh
2 πε

(25b)

Therefore, by using Eq. (22), we obtain

jKj2 � 1

B
�a1P�2 � a2M�2d − a3P�M�d� (26)

To determine the real and imaginary parts of the complex stress
intensity factor, arguments similar to Thouless et al. [10] and
Hutchinson et al. [9] are exploited, as was also done in Suo and
Hutchinson [5], based on dimensional considerations and linearity.
Thus, we can write the complex stress intensity factor K in the
following form:

K � 1����
B
p

�
−aP�

�����
a1
p � bM�d

�����
a2
p

�
h−iϵf1 (27)

where a and b are complex numbers that depend on the geometry and
material properties but not on the loading.
From Eq. (26), we obtain in a similar fashion as in Suo and

Hutchinson [5]:

a � eiω; b � −iei�ω�γ� (28)

Notice that, because in this process we are essentially taking the
square root of Eq. (26), there is a second solution that can be obtained;
this can be achieved by setting a positive sign in front of the b
expression in Eq. (28). The first solution, outlined hereby, leads to a
value ofω that is practically independent of loading (aswill be proven
later); however, the second solution would lead to aω being strongly
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dependent on loading, which would invalidate the assumption of a
and b being complex numbers independent of loading and would be
of no use in establishing a closed-form approach for themodemixity.
The fact that the second solution would not lead to a constant ω was
firmly established from our extensive numerical results.
Now, we can rewrite Eq. (27) as

K � K1 � iK2 �
1����
B
p

�
−P�

�����
a1
p

− ieiγM�d
�����
a2
p

�
h−iϵf1 e

iω (29a)

where

sin γ � a3
2

����������
a1a2
p (29b)

Thus, we only need determine the parameterω, which should depend
only on the materials and geometry (but not on the loading).
For the determination of the mode-mixity phase angle, we shall

follow the suggestion in Rice [8], Hutchinson et al. [9], and
Charalambides et al. [11] to considerKhiϵf1 because jKj � jKhiϵf1j. In
this way, we obtain

Re�Khiϵf1� �
1����
B
p

�
−P�

�����
a1
p

cos ω�M�d
�����
a2
p

sin�ω� γ�
�

(30a)

Im�Khiϵf1� �
1����
B
p

�
−P�

�����
a1
p

sin ω −M�d
�����
a2
p

cos�ω� γ�
�

(30b)

We can thus define the phase angle or mode mixity ψ, from

Khiϵf1 � jKjeiψ (31)

Because Re�Khiϵf1� � jKj cos ψ and Im�Khiϵf1� � jKj sin ψ , we
obtain an expression for ψ by using Eqs. (30a, 30b) as

tan ψ � λ sin ω − cos�ω� γ�
λ cos ω� sin�ω� γ� (31a)

where

λ � −
P�

M�d

�����
a1
a2

r
(31b)

The structure of Eq. (31a) is similar to the one in Suo and Hutchinson
[5], which is for a bimaterial, but the λ expression in Eq. (31b) is for a
“trimaterial”, i.e., it includes the effect of the lower face sheet through
the a1 and a2 expressions defined in Eqs. (23a, 23b) and the γ
expression defined in Eqs. (29b, 23c). Note also that the force P�

defined in this paper is of sign opposite to the corresponding load in
[3].
Finite-element analysis will allow calculating the angle ω from

Eq. (31a) as follows:

ω � tan−1
�
cos γ � �λ� sin γ� tan ψ

λ� sin γ − cos γ tan ψ

�
(31c)

and examining if this is constant for a sandwich with fixed material
and geometric configuration under different loadings. This is the
subject of the next section.

IV. Extraction of ω from Finite-Element Analysis

The double cantilever beam specimen with uneven bending
moments (DCB-UBM), introduced by Sorensen et al. [12] and later
modified for sandwich specimens by Lundsgaard-Larsen et al. [13],
also described in the book by Carlsson and Kardomateas [14] (see
Fig. 2), was chosen for extraction of theω parameter in Eq. (31a) from
finite-element analysis. The DCB-UBM specimenwas chosen due to
the pure bending state in the specimen compatible with the analysis

presented previously. Furthermore, to investigate the variation of the
ω parameter for a range ofmode-mixity phase angles, theDCB-UBM
specimen allows for easy variation of the mode-mixity phase angle
(ψ) at the crack tip through changing the ratio between the two edge
moments; see Fig. 2.
Three demonstration cases were chosen to demonstrate the pro-

cedure to determine theω parameter for a specific material system as
well as to demonstrate the applicability of the analytical model for
typical material combinations. The three test-case specimens are
illustrated in Fig. 3. Specifically, two sandwich cases (Fig. 3a) with
moderate and high stiffnessmismatch over the face/core interface and
a bimaterial case (Fig. 3b) with a moderate stiffness mismatch were
examined. The geometry of the sandwich specimens were chosen
to reflect typical face/core thickness ratios. The face thickness
was constant for all cases, hf � 2 mm. For the bimaterial case, the
thickness of the thinner layer was kept equal to the face sheet
thicknesses in the sandwich cases, whereas the thicker layer was
chosen as the thickness of the core plus a face sheet from the
sandwich cases. The core thicknesses for the sandwich and bimaterial
caseswere 20 and 22mm, respectively. Furthermore, the length of the
specimenswere chosen sufficiently long (L � 500 mm) so that shear
stress fields originating from the crack tip region did not reach the
specimen edges and thus did not violate the assumptions in the
analytical model.
The crack length was a � 200 mm for all cases. We have

examined two symmetric sandwich configurations and in both cases
the face remains the same (i.e., aluminum). One of the cases involves
a soft core (H100) and the other a moderate core (aluminum foam).
We have also examined a bimaterial case consisting of one layer of
aluminum and one of aluminum foam. The material properties are
summarized in Table 1.

A. Details of the Finite-Element Model

Two-dimensional models of the sandwich and bimaterial DCB-
UBM specimens were developed using the ANSYS commercial
finite-element code. The face sheet, core, and bimaterials were

Fig. 2 Moment loading of DCB-UBM specimen.

Fig. 3 a) Loading of sandwich element, and b) bimaterial element.
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assumed to be isotropic and linear elastic (Table 1). Isoparametric
two-dimensional four- and eight-node elements (PLANE42 and
PLANE82) were used in the models, where the crack-tip region was
modeled using a highly refined mesh (Fig. 4), allowing an accurate
fracture analysis. The cracked region of the specimen was meshed
using a double set of nodes along the cracked interface. No contact
elements were used at the cracked interface.
To properly apply loads and boundary conditions on the model,

mimicking the bending moments and the reaction moment in the
analytical model, multipurpose constraint (MPC) conditions were
applied at the beam ends, enforcing the nodes at the end of the
cracked beam to remain on a straight line. The bending momentsMd

andMs were then applied to twomaster nodes at the center left end of
each beam. At the uncracked end of the specimen, clamping is
simulated by restricting x and y displacements of the nodes on the
upper and lower faces over a specific distance Ls (Ls � 50 mm)
from the uncracked specimen end; see Fig. 4.
Finite-element simulationswere used to calculate themode-mixity

phase angle ψ , defined in Eq. (31a).
The mode-mixity phase angle may be determined from the crack

flank displacements (Berggreen et al. [15]):

ψ � tan−1
�
δx
δy

�
− ε ln

�
x

h

�
� tan−1�2ε� (32)

where δx and δy are the relative crack flank opening and shearing
displacements, respectively, measured at a distance x behind the
crack tip; ϵ is the oscillatory index defined in Eq. (24b); and h is the
characteristic length, which for this case is chosen as the face-sheet
thickness (or the smallest bimaterial thickness in case the bimaterial
case). Both the mode-mixity phase angle ψ and the energy-release
rate G were determined from the finite-element analysis using the
CSDE (from “crack surface displacement extrapolation”) method
[15]. This method calculates the phase angle from the relative
opening and shearing displacements along the crack flanks and
extrapolates the values of phase angle and energy-release rate to the
crack tip. This approach has been used in Berggreen et al. [15] and a
more-detailed description can be found in that paper.
Three specimen configurations were analyzed according to the

previous description, i.e., two sandwich cases (soft andmoderate stiff
cores) and one bimaterial with moderate stiff core. To vary the mode
mixity, a large range of moment ratiosMd∕Ms was examined. In all
finite-element simulations, the magnitudes of Md and Ms, Fig. 3,
were selected to achieve an energy-release rate G ≃ 400 J∕m2.
Subsequently, the ω were determined from Eq. (31c) where the ψ
calculated from the finite-element analysis were used.

B. Results for ω Confirmation of the Nearly Constant ω Hypothesis

The first case considered was the sandwich with soft (130 MPa)
core. The rsults listed in Table 2 show that the analytical expression
[Eq. (22)] and the FEA provide energy-release rates that are in close
agreement. The mode-mixity phase angle varies from 52.6 to
−85.6 deg, and the parameter ω remains virtually constant with an
average of 73.7 deg, and all values are within 0.6% of this value.
Results for the sandwich with a moderately stiff core are listed in

Table 3. Again, the analytical solution and the FEA are in close
agreement for the energy-release rate, and the parameter ω is almost
constant, 57 deg on average, and all values are within 2.1% of this
value. An interesting observation is that ω for the moderate core
sandwich (Table 3) is less thanω for the soft core sandwich (Table 2).
Another interesting observation is that the soft core gives the least
variation in ω (most constant ω).
Table 4 (for a bimaterial, moderate core) gives an average ω of

57.19 deg, and all values are within 4.1% of this value. The values of
ω from our analysis for the bimaterial limit (Table 4) are also
confirmed by the corresponding values from the analysis of Suo and
Hutchinson [5]. An interesting observation is that the trimaterial
analysis results in more constant ω versus the corresponding
bimaterial case.
Notice also that ω is very similar for the trimaterial beam with

a moderately stiff core (Ec � 7 GPa) (Table 3) and the corre-
sponding bimaterial configuration (Table 4). Further studies, how-
ever, must be conducted on other configurations, such as asymmetric
sandwich beams.
Based on these results, the mode-mixity phase angle for any

trimaterial, ψ , can be obtained from Eq. (31a) for any loading
combination, after first extracting the ω value for the particular
geometry and material from a numerical solution for just one loading
combination.

Table 1 Material properties and geometry

Aluminum face (isotropic) H100 core (orthotropic) Aluminum foam core (orthotropic)

E � 70; 000 MPa Ex � Ey � Ez � 130 MPa Ex � Ey � Ez � 7; 000 MPa
G � 26; 923 MPa Gxy � Gyz � Gzx � 35 MPa Gxy � Gyz � Gzx � 2; 692.3 MPa
ν � 0.30 νxy � νyz � νzx � 0.32 νxy � νyz � νzx � 0.32

Fig. 4 Finite-element model of DCB-UBM specimen.

Table 2 H100 core (130 MPa) sandwich

Md, N · mm 75.6 129.6 196.1 118.6 71.1
Ms, N · mm −604.8 −518.4 −196.1 474.4 568.8
Ganal [Eq. (22)], N∕mm 0.4239 0.4350 0.4140 0.3613 0.3727
GFEA, N∕mm 0.4076 0.4214 0.4107 0.3553 0.3626
ψFEA, deg 52.6 35.6 1.11 −68.5 −85.4
ω [Eq. (31c) with ψFEA], deg 74.09 73.66 73.34 73.74 73.54

Table 3 Aluminum foam core (7 GPa) sandwich

Md, N · mm 8.340 76.80 157.7 199.4 159.5
Ms, Nmm −4170.0 −3840.0 −2523.4 −199.4 2552.0
Ganal [Eq. (22)], N∕mm 0.3969 0.3997 0.3963 0.3890 0.3862
GFEA, N∕mm 0.3848 0.3883 0.3895 0.3872 0.3819
ψFEA, deg 54.4 33.9 4.04 −30.9 −72.2
ω [Eq. (31c) with ψFEA], deg 58.20 57.60 56.87 56.34 56.04

Table 4 Bimaterial: aluminum (70 GPa) and aluminum foam
(7 GPa)

Md, N · mm 5.86 55.9 133.3 199.0 136.8
Ms, N · mm −2930.0 −2795.0 −2132.8 −199.0 2188.8
Ganal [Eq. (22)], N∕mm 0.3979 0.3997 0.3983 0.3890 0.3871
GFEA, N∕mm 0.3855 0.3875 0.3894 0.3871 0.3810
ψFEA, deg 54.9 40.1 14.0 −30.0 −84.1
ω [Eq. (31c) with ψFEA], deg 58.89 58.50 57.63 56.10 54.82
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V. Results on Energy-Release-Rate Trends

Let us first consider a sandwich configuration consisting of faces
withEf � 70 GPa and a corewithEc � 130 MPa, which are typical
of aluminum faces and PVC foam core materials. The geometry is
symmetric with hf1 � hf2 � hf � 3 mm. The core thickness hc is
variable. The total thickness is 2hf � hc. We shall first examine the
effect of core thickness and, in particular, the ratio hc∕hf on the
energy-release rate. We assume a loading of Pd � 100 MN,
Md � 500 MNmm, Ps � 5Pd, andMs � −5Md.
We shall also examine a bimaterial beam consisting of a top layer

of thickness hf and face material (70 Gpa) and bottom layer of
thickness hc � hf and core material (130 MPa), i.e., the total
thickness is still the same as the trimaterial case.
In the following results, we normalize with the energy-release rate

for the corresponding homogeneous construction, i.e., if the entire
section was made of the face sheet material (70 GPa).
Figure 5 shows the energy-release rate G plotted versus the core-

to-face thickness ratio, obtained from both the trimaterial formula
[Eq. (21)] and the bimaterial formula [5]. Because G is normalized
with the corresponding homogeneous limit, the first observation that
can be made is that a homogeneous section of face sheet material
would have a lower energy-release rate than either the tri- or the
bimaterial, actually substantially less for low ratios of hc∕hf. The
second observation to be made is that the bimaterial formula would
result in a higher energy-release rate than the trimaterial formula,
again substantially higher for the lower ratios of hc∕hf. Actually, for
hc∕hf � 10, the energy-release rate from the trimaterial formula is

about 43% less than the corresponding one from the bimaterial
formula and three times that of the homogeneous formula.
To examine the influence of core modulus on the energy-release

rate of a sandwich, we use the same loading as before, the same face
sheet modulus Ef � 70 GPa and face sheet thickness hf � 3 mm,
and a core thickness hc � 10hf. We vary the core material, so that
the ratio Ec∕Ef can be as high as 1000. The results in Fig. 6 again
show lower energy-release rate for the trimaterial case than the
corresponding bimaterial case, with the gap between the tri- and the
bimaterial formulas being larger for the more compliant cores (i.e.,
for a higher ratio Ec∕Ef). In fact, for Ec∕Ef � 1000, the energy-
release rate from the trimaterial formula is about 50% less than
that for the bimaterial case and about five times that of the homo-
geneous case.

VI. Conclusions

The J-integral was used to obtain a closed-form algebraic
expression for the energy-release rate G for a debonded sandwich
beam. The mode mixity was determined by deriving a closed-form
expression in terms of the geometry, material, and applied loading
and in terms of a single scalar quantity ω, which is independent of
loading. This loading-independence of ω is proven by extensive
numerical studies on sandwich configurations with either “soft” or
“moderate” core. Thus, for a particular geometry and material, ω can
be extracted from a single numerical solution for one loading
combination. In the present analysis, the most general case of an
asymmetric sandwich is considered (i.e., the bottom face sheet may
not necessarily be of the same material and thickness as the top face
sheet). These formulas extend the existing formulas in the literature,
which are limited to a delamination in a homogeneous composite or
an interface crack in a bimaterial beam.

Appendix A: Homogeneous Limit for the
Energy-Release Rate

For the case of a homogeneous section, the debond is just a
delamination at a distance hf1 from the top surface. Denoting the
total thickness by t, the expression derived herein converges to the
expression given by Yin and Wang [4]. In this case, denoting
�h � hf1∕t, Eqs. (7b, 9b) become

C1 � �h; C2 �
6 �h�1 − �h�

t
; C3 � �h3 (A1)

and the energy-release rate for the homogeneous limit becomes

G � �1 − νzxνxz�
2E1t

3

�
�tP��2
�h�1 − �h�

� 12M�2d
�h3
� 12�tP�∕2 −M�d�2

�1 − �h�3
�

(A2)

Appendix B: Bimaterial Limit for the
Energy-Release Rate

The limit of a bimaterial is obtained from the present expression if
we set hf2 � 0 (i.e., we only have the top face and the core). In this
case, the present expression converges to the expression given by Suo
and Hutchinson [5].
In terms of

η �
hf1
hc

; Σ �
�Ef1
�Ec

(B1a)

where

�E � E

1 − νzxνxz
(B1b)

and

Δ � 1� 2ηΣ� η2Σ
2η�1� ηΣ� ; β � Δ −

1

η
; A0 �

1

η
� Σ (B1c)

Fig. 5 Effect of core thickness on the energy-release rate.

Fig. 6 Effect of face modulus on the energy-release rate.
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I0 �
1

3

�
Σ�3β2 − 3β� 1� � 3

Δ
η
β� 1

η3

�
(B1d)

the constants in Eqs. (4c) and (5c) become

C1 �
Σ
A0

; C2 �
Σ

hf1I0

�
1

2
− β

�
; C3 �

Σ
12I0

(B2)

By also denoting

A � 1

1� Σ�4η� 6η2 � 3η3� ; I � 1

12�1� Ση3� ;

sin γ � 6Ση2�1� η�
������
AI
p (B3)

the energy-release rate for the bimaterial limit becomes

G � �1 − ν�f1�zx ν�f1�xz �
2Ef1

�
P�2

Ahf1
�M

�2
d

Ih3f1
− 2

P�M�d
h2f1

������
AI
p sin γ

�
(B4)

with P� andM�d defined by Eqs. (7b, 9b) with Ci from Eq. (B2).
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