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The linear dynamic elasticity problem formulation and solution for a generally asymmetric sandwich beam/wide

plate consisting of orthotropic core and face sheets subjected to blast loading is presented. The Laplace transform is

used to obtain ordinary differential equations in the complex Laplace space (the variable being the through-thickness

coordinate), which are subsequently solved in closed form for a simply supported beam. The time response is then

obtained by a numerical inverse Laplace transform by using the Euler method. The results for realistic material and

blast cases for the transient displacements and face sheet/core interfacial transverse normal and shear stresses are

presented. A comparison of the elasticity results is also made with first-order shear and high-order sandwich panel

theories. This solution can be used as a benchmark in assessing the accuracy of advanced sandwich panel theories.

Nomenclature

a = length of the sandwich beam
c = half thickness of the core (total core thickness is 2c)
cij = stiffness constants of the top face, bottom face, and core,

respectively
E1 = axial extensional (Young’s) modulus
~F�s� = Laplace transform of F�t�
f1;2 = thickness of the top face and bottom face, respectively
Gc13 = shear modulus of the core
κ = shear correction factor
ρ = mass density
t = time
u = axial displacement (along x)
w = transverse displacement (along z)

I. Introduction

E LASTICITY solutions are significant because they provide a
benchmark for assessing the performance of the various beam,

plate, or shell theories, or the various numerical methods, such as the
finite element method. For static problems involving laminated
composite or sandwich structures a few closed-form solutions exist,
namely in [1] for isotropic plates, in [2,3] for a beam and plate
configuration, respectively, both under restrictive assumptions,
extended in [4,5] for general sandwich plates and beams, respec-
tively, and for a sandwich shell configuration in [6].
Sudden dynamic loading problems are more demanding on plate

or beam theories than static problems or natural vibrations. Indeed,
when a plate/beam is subjected to an impulsive load reflections of
waves from the top and bottom surfaces, as well as higher modes and
short wavelength disturbances, are not easily accounted for by plate
or beam theories. The accurate prediction of stress and strain fields in
the transient phase of response is important in predicting possible
structural failure. It is generally believed that if the structure survives
the first fewmilliseconds, it has survived the blast. Thus, the elasticity
solutions, being most accurate, would determine the limitations of
various beam/plate theories in addressing sudden loading problems.

For the dynamic case, an elasticity solution for the free vibration of
homogeneous and laminated plates was presented in [7]. Moreover,
the elasto-dynamic approach in [8] was used to study mono-
lithic homogeneous-wide plates under lateral impulsive loadings.
However, there has not been yet a dynamic elasticity study of
sandwich beam/wide plates under impulse loading, which is the
objective of this work.
The formulation in this paper is based on the Laplace transform of

the dynamic elasticity equations. In this way, a set of ordinary
differential equations with the variable being the through-thickness
coordinate is obtained in the complex Laplace space. These are
solved in closed form for a simply supported beam and, subsequently,
the solution is obtained in the time space by the numerical inversion
of the Laplace space solutions. The latter is a critical part of this
research, as there existmany approaches to the numerical inversion of
Laplace transforms [9], and each method is suitable for certain
physical problems.
Results are derived for realistic sandwich material systems and

conditions of blast. To this extent, we had guidance from the blast
experiments on sandwich composites in [10]. The elasticity results
are also compared to the first-order shear and the recent extended
high-order sandwich panel theory (EHSAPT), which has been
proven to be very accurate for the static case [11].

II. Dynamic Elasticity Formulation

We consider a sandwich beam consisting of orthotropic face sheets
of thickness f1 and f2 and an orthotropic core of thickness 2c, such
that the various axes of elastic symmetry are parallel to the plate axes
x, y, and z (Fig. 1). The body is simply supported. Although the
elasticity solution is derived for any loading, results will be presented
for a sudden transverse distributed loading q0�x; t� applied on the
upper surface.
Let us denote each phase by i, where i � f1 for the upper face

sheet, i � c for the core, and i � f2 for the lower face sheet. The
displacements along x, y, and z are denoted by u, v, and w,
respectively.
The underlying assumption of the problem (two-dimensional) is

v � 0; u;w � fn�x; z; t� (1a)

Using the strain-displacement relations results in

ϵxx � u;x; ϵzz � w;z; γxz � u;z �w;x (1b)

and

ϵyy � γxy � γyz � 0 (1c)

Then, for each phase, the orthotropic strain-stress relations are
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where ciij are the stiffness constants (we have used the notation 1 ≡ x,
2 ≡ y, 3 ≡ z).
Accordingly, the nonzero stresses depend only on x, z, and the time

t. Thus, the dynamic equilibrium relations are

σxx;x � τxz;z � ρu;tt (3a)

τxz;x � σzz;z � ρw;tt (3b)

where ρ is the mass density.
This leads to the following governing field equations in terms of

the displacements for each of the phases:

ci11u;xx � ci55u;zz � �ci13 � ci55�w;xz � ρiu;tt (4a)

�ci13 � ci55�u;xz � ci55w;xx � ci33w;zz � ρiw;tt (4b)

In the following, we shall drop the superscript i that refers to the
phases (core or face sheets) with the understanding that the derived
relations hold within each phase.
For a simply supported beam/wide plate an appropriate solution

for the displacements would be in the form

u � U�z; t� cos px; w � W�z; t� sin px;

where p � nπ
a
�n � 1; 2; : : : � (5)

Note that these displacements, in conjunction with the corresponding
from Eqs. (1) and (2) stresses, would satisfy the simple support edge
conditions.
Thus, Eqs. (4a) and (4b) become

−c11p2U� c55U;zz � �c13 � c55�pW;z � ρU;tt (6a)

−�c13 � c55�pU;z − c55p2W � c33W;zz � ρW;tt (6b)

We denote the Laplace transform of a function F�t� by

~F�s� �
Z

∞

0

F�t�e−st dt (7)

Taking the Laplace transform of Eqs. (6a) and (6b) (and assuming
zero initial displacements and velocities) results in two homogeneous
ordinary differential equations for the Laplace transforms of the
displacements, ~U�z� and ~W�z�:

−�c11p2 � ρs2� ~U� c55 ~U;zz � �c13 � c55�p ~W;z � 0 (8a)

−�c13 � c55�p ~U;z − �c55p2 � ρs2� ~W � c33 ~W;zz � 0 (8b)

Assuming next that

� ~U�z�; ~W�z�� � � ~U0; ~W0�eλz (9)

where ~U0 and ~W0 are constants and substituting into Eqs. (8a) and
(8b) results in the following system of algebraic equations:

�c11p2 � ρs2 − c55λ2� ~U0 − �c13 � c55�pλ ~W0 � 0 (10a)

�c13 � c55�pλ ~U0 � �c55p2 � ρs2 − c33λ2� ~W0 � 0 (10b)

Nontrivial solutions of this system exist only if the determinant of the
coefficients vanishes, which leads to the equation

A0λ
4 � A1λ

2 � A2 � 0 (11)

where

A0 � c33c55; A2 � �c11p2 � ρs2��c55p2 � ρs2� (12a)

A1 � �c13 � c55�2p2 − �c11p2 � ρs2�c33 − �c55p2 � ρs2�c55
(12b)

With the substitution

μ � λ2 (13a)

Equation (11), which defines the parameter λ, can be written in the
form of a quadratic equation as

A0μ
2 � A1μ� A2 � 0 (13b)

Because the Laplace parameter, s, is in general complex, so are the
coefficients of Eq. (13b), thus, Eq. (13b) has two complex roots:

μ1;2 �
−A1 �

������������������������
A2
1 − 4A0A2

p
2A0

(13c)

which results in four complex roots of Eq. (11):

λ1;2 � �
�����
μ1
p

; λ3;4 � �
�����
μ2
p

(13d)

Corresponding to these four roots the transformed displacement
functions take the form

~U�z� �
X

i�1;2;3;4
aie

λiz; ~W�z� �
X

i�1;2;3;4
bie

λiz (14a)

where ai and bi are complex constants.
Of the eight constants appearing in Eq. (14) only four are

independent. The four relations that exist among these constants are
found by substituting the transformed displacements in Eq. (14)
into the equilibrium Eqs. (8a) and (8b). In this way, we obtain the
following relations for the coefficients in the transformed displace-
ment expression for ~W�z�, Eq. (14), in terms of the coefficients in the
expression for ~U�z�:

Fig. 1 Definition of the geometry and coordinate system for the
sandwich beam.
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bi �
��c11p2 � ρs2� − c55λ2i �
�c13 � c55�pλi

ai (14b)

Hence, if we consider as independent the four constants ai, i � 1; 4,
we can write the transformed displacement ~u�x; z� in the form

~u �
X

i�1;2;3;4
duiai cos px (15a)

with the z-dependent coefficients defined as

dui � eλiz (15b)

The transformed displacement ~w�x; z� is in the form

~w �
X

i�1;2;3;4
dwiai sin px (15c)

where the z-dependent coefficients are defined:

dwi �
�c11p2 � ρs2� − c55λ2i
�c13 � c55�pλi

eλiz (15d)

The corresponding stresses are derived by substituting the above
displacement expressions into Eqs. (1) and (2). We present the
explicit expressions for the stresses in the following equations.
The transformed transverse normal stress ~σzz�x; z� is in the form

~σzz �
X

i�1;2;3;4
bzziai sin px (16a)

with the z-dependent coefficients defined as

bzzi �
�
−c13p� c33

��c11p2 � ρs2� − c55λ2i �
�c13 � c55�p

�
eλiz (16b)

The transformed shear stress ~τxz�x; z� is in the form

~τxz �
X

i�1;2;3;4
bxziai cos px (17a)

with the z-dependent coefficients defined as

bxzi � c55
�
λi �
��c11p2 � ρs2� − c55λ2i �
�c13 � c55�λi

�
eλiz (17b)

Finally, the transformed axial stress ~σxx is in the form

~σxx �
X

i�1;2;3;4
bxxiai sin px (18a)

with the z-dependent coefficients defined as

bxxi �
�
−c11p� c13

��c11p2 � ρs2� − c55λ2i �
�c13 � c55�p

�
eλiz (18b)

From this analysis, we can see that within each phase �i�, where
i � f1; c; f2, there are four constants: a�i�j , j � 1; : : : 4. Therefore,
for the three phases, this gives a total of 12 constants to be determined.
There are two traction conditions at each of the two core/face sheet

interfaces giving a total of four conditions. In a similar fashion, there
are two displacement continuity conditions at each of the two core/
face sheet interfaces giving another four conditions. Finally, there are
2 traction boundary conditions on each of the 2-plate bounding
surfaces, giving another 4 conditions for a total of 12 equations.
Thus, the solution for the transformed displacements, stresses,

and strains follows accordingly as outlined above in terms of the
constants a�f2�j , a�c�j , and a�f1�j , j � 1, 4. These 12 constants are
determined as follows:

There are two traction conditions at the lower face sheet/core
interface, z � −c:
1) The ~σ�c�zz � ~σ�f2�zz at z � −c, which gives

X
j�1;2;3;4

b�c�zzj

����
z�−c

a�c�j �
X

j�1;2;3;4
b�f2�zzj

����
z�−c

a�f2�j (19a)

and
2) the ~τ�c�xz � ~τ�f2�xz at z � −c, which gives

X
j�1;2;3;4

b�c�xzj

����
z�−c

a�c�j �
X

j�1;2;3;4
b�f2�xzj

����
z�−c

a�f2�j (19b)

There are also two displacement continuity conditions at the lower
core/face sheet interfaces:
3) The ~U�c� � ~U�f2� at z � −c, which results in

X
j�1;2;3;4

d�c�uj

����
z�−c

a�c�j �
X

j�1;2;3;4
d�f2�uj

����
z�−c

a�f2�j (19c)

and finally
4) the ~W�c� � ~W�f2� at z � −c, which gives

X
j�1;2;3;4

d�c�wj

����
z�−c

a�c�j �
X

j�1;2;3;4
d�f2�wj

����
z�−c

a�f2�j (19d)

Next, there are two traction conditions at the upper face sheet/core
interface, z � �c:
5) ~σ�f1�zz � ~σ�c�zz at z � �c, which gives

X
j�1;2;3;4

b�c�zzj

����
z��c

a�c�j �
X

j�1;2;3;4
b�f1�zzj

����
z��c

a�f1�j (20a)

and
6) ~τ�f1�xz � ~τ�c�xz at z � �c, which gives

X
j�1;2;3;4

b�c�xzj

����
z��c

a�c�j �
X

j�1;2;3;4
b�f1�xzj

����
z��c

a�f1�j (20b)

The corresponding displacement continuity conditions at the upper
face sheet/core interface, z � �c are
7) ~U�f1� � ~U�c� at z � �c, which gives

X
j�1;2;3;4

d�c�uj

����
z��c

a�c�j �
X

j�1;2;3;4
d�f1�uj

����
z��c

a�f1�j (20c)

and
8) ~W�f1� � ~W�c� at z � �c, which gives

X
j�1;2;3;4

d�c�wj

����
z��c

a�c�j �
X

j�1;2;3;4
d�f1�wj

����
z��c

a�f1�j (20d)

Finally, two traction conditions exist on each of the two bounding
surfaces. The traction free conditions at the lower bounding surface,
z � −�c� f2�, can be written as follows:
9) ~σzzjz�−�c�f2� � 0, which gives

X
j�1;2;3;4

b�f2�zzj

����
z�−�c�f2�

a�f2�j � 0 (21a)

and
(10) ~τxzjz�−�c�f2� � 0, which gives

X
j�1;2;3;4

b�f2�xzj

����
z�−�c�f2�

a�f2�j � 0 (21b)
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We assume that a transverse distributed loading q0�x; t� per unit
width is applied at the top face sheet. If the form of the distributed
load is

q0�x; t� � Q0�t� sin
nπx

a
� Q0�t� sin px (22)

and the Laplace transform of Q0�t� is ~Q0�s�, then at the upper
bounding surface where the transverse load q0�x; t� is applied, we
have the condition
11) ~σzzjz��c�f1� � ~Q0�s� sin px which gives

X
j�1;2;3;4

b�f1�zzj

����
z��c�f1�

a�f1�j � ~Q0�s� (23a)

For example, for an exponential decay loading Q0�t� � A0e
−t∕c we

would have ~Q0�s� � A0c∕�1� sc�.
For a pulse loading of amplitude A0 and of infinite duration,
Q0�t� � A0H�t�, where H is the Heaviside unit function, we would
have ~Q0�s� � A0∕s and for a pulse loading of amplitude A0 and of
finite duration t0, we would have ~Q0�s� � A0�1 − e−t0s�∕s.
Moreover, we have the second traction condition at the bounding
surface of the top face sheet
12) ~τxzjz��c�f1� � 0, which gives

X
j�1;2;3;4

b�f1�xzj

����
z��c�f1�

a�f1�j � 0 (23b)

Therefore, we have a system of 12 linear algebraic equations in the 12
(in general complex) unknowns, a�f2�j , a�c�j , and a�f1�j , j � 1, 4.
Solving for these determines in closed form the Laplace transforms of
the displacement and stress fields.
The next step is the inversion back to the time space, which is done

numerically. This a critical part of this research, as there exist many
approaches to the numerical inversion of Laplace transforms [9] and
each method is suitable for certain physical problems, for example,
different methods would be needed for heat transfer problems as
opposed to structural vibration problems. The Euler method, as
described in [12], was found to provide excellent accuracy by
comparing its application to the closed-form classical beam theory
vibration equations of a simple homogeneous beam of the same
overall stiffness as our sandwich beam. The numerical inversion
based on the Euler method produced results in the time space that
were exactly the theoretical results up to a time of about 10 ms.
The Eulermethod, so named because it employs Euler summation,

is based on the Bromwich contour inversion integral, which can be
expressed as the integral of a real-valued function of a real variable by
choosing a specific contour [12]. The integral is calculated by the use
of the Fourier-series method (the Poisson summation formula) and
the Euler summation to accelerate convergence. In addition to
confirming the numerical inversion by comparing to the closed-form
simple vibration equation, the accuracy was further confirmed in the
time scale of interest by comparing with the results from the Post–
Widdermethod, again described in [12]. It should be noticed that both
the Euler and the Post–Widder methods are variants of the Fourier-
series method, but they are dramatically different so that they can be
expected to serve as useful checks on each other.

A. First-Order Shear Sandwich Beam Theory

For the first-order shear deformation (FOSD)model, if we let ψ be
the shear deformation then the governing dynamic equations with
shear effects can be written as

D11ψ ;xx�x; t� − κD55�ψ�x; t� �w;x�x; t�� � �ρI�eq
∂2ψ�x; t�

∂t2
(24a)

κD55�ψ ;x�x; t� �w;xx�x; t�� � q�x; t� � �ρh�eq
∂2w�x; t�

∂t2
(24b)

Although the shear correction factor in homogeneous sections is
taken typically as κ � 5∕6 in a sandwich section, the shear stress
distribution in the core is largely uniform and, therefore, we set κ � 1
as the shear correction factor. Moreover, in the general asymmetric
case, the neutral axis of the sandwich section is defined at a distance e
from the x axis (Fig. 1):

e�Et1f1 � Eb1f2� � Et1ft
�
f1
2
� c

�
− Eb1f2

�
f2
2
� c

�
(25a)

Therefore, the bending stiffness per unit width, D11, is

D11 � Et1
f31
12
� Et1f1

�
f1
2
� c − e

�
2

� Eb1
f32
12
� Eb1f2

�
f2
2
� c� e

�
2

(25b)

The core is assumed to be the only contributor to the sandwich shear
modulus, thus

D55 � Gc13�2c� (26)

Furthermore, �ρh�eq is defined from the densities and thicknesses of
the faces and the core as

�ρh�eq � ρtf1 � ρc�2c� � ρbf2 (27)

and �ρI�eq is defined from the densities and the moments of inertia of
the faces and the corewith respect to the neutral axis for the sandwich
section as

�ρI�eq � ρt

�
f31
12
� f1

�
f1
2
� c − e

�
2
�
� ρc

��2c�
12

3

� �2c�e2
�

� ρb

�
f32
12
� f2

�
f2
2
� c� e

�
2
�

(28)

Setting

w�x� � W�t� sin px; ψ�x� � Ψ�t� cos px; p � nπ
a
(29)

with the load in the same manner as Eq. (22), and substituting in
Eqs. (24a) and (24b) leads to

−D11p
2Ψ�t� − κD55�Ψ�t� � pW�t�� � �ρI�eq

d2Ψ�t�
dt2

(30a)

−κD55p�Ψ�t� � pW�t�� �Q�t� � �ρh�eq
d2W�t�
dt2

(30b)

Taking the Laplace transforms gives

−D11p
2 ~Ψ − κD55� ~Ψ� p ~W� � �ρI�eqs2 ~Ψ (31a)

−κD55�p ~Ψ� p2 ~W� � ~q � �ρh�eq ~s2W�t� (31b)

These two algebraic equations give

~W � ~Q0

s2�ρI�eq � p2D11 � kD55

�s2�ρh�eq � p2kD55��s2�ρI�eq � p2D11 � kD55� − p2k2D2
55

(32)

The inversion of the above equation is implemented in the same way
as for the elasticity, i.e., the Euler method, as described in [12].
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III. Results and Discussion

We produce results for a sandwich system material and loading
as in the experiments in [13]. The faces are made out of glass vinyl
ester with Ef1 � E

f
2 � E

f
3 � 13.6 GPa, νf12 � νf13 � 0.25 and

νf32 � 0.35, and the density ρf � 1800 kg∕m3. The core is made
out of Corecell foam with Ec1 � Ec2 � Ec3 � 0.032 GPa, νc12 �
νc13 � 0.25 and νc32 � 0.35, and the density ρc � 58.5 kg∕m3. The
sandwich is symmetric with the face thickness f � 5 mm, the core
thickness 2c � 38 mm, and the length a � 152.4 mm. The width
is b � 102 mm.
For the sake of simplicity, we assume a single half-wave sinusoidal

loading, i.e., in Eq. (22), n � 1. Note that a general loading can be
expanded in a series of terms of the type (22) anyway.
The time dependence of the loading is constructed from the shock

wave history reported in [13] and is expressed in the form of an
exponentially decaying blast:

Q0�t� � −0.51e−1.25t MN∕mm�t in sec�

Thus, the Laplace transform of the load is

~Q0�s� � −0.51∕�s� 1.25�

For each phase, the stiffness constants cij, that enter into the solution
are found from

c11 � E1

�1 − ν23ν32�
C0

; c13 � E3

�ν13 � ν12ν23�
C0

(33a)

c33 � E3

�1 − ν12ν21�
C0

; c55 � G31 (33b)

where

C0 � 1 − �ν12ν21 � ν23ν32 � ν13ν31� − �ν12ν23ν31 � ν21ν13ν32�
(33c)

Plotted in Fig. 2a is the transverse displacement, w, of the midtop
face, midcore, and midbottom face, and at midspan, x � a∕2, as a
function of time during the first 2 ms. It can be seen that the bottom
face is lagging the top face, whereas the core is also following a
different path. The displacements are of the same scale as the
measured ones in [10]. At about 0.6–0.7 ms, which is the peak of the
top face displacement, it can be seen that the top face is displacing by
3–4 mm more than the bottom face, thus, the core is substantially
compressed. This time scale of noticeable core reduction in
thickness agrees with the experimental observations in [13]. The
differences between faces and core become small beyond 1 ms, and
eventually both faces and the core displace in tandem (beyond
around 1.6 ms).
The FOSD displacements are shown in Fig. 2b, and it can be seen

in the following:
1) The FOSD theory cannot capture the divergences and lag

behavior between faces and core.
2) The FOSD theory significantly overestimates the dynamic

displacements.
On this observation, it should be noted that the results of the FOSD

theory depend heavily on the shear rigidity of the panel. As shown in
[11], which was for the static case, if the FOSD theory is formulated
with the panel shear rigidity based exclusively on the core, then the
FOSD theory transverse displacement is larger than that from
elasticity. If, however, the FOSD theory is formulated with the panel
shear rigidity including the face sheets, then the FOSD theory
transverse displacement is smaller than that from elasticity. In the
present paper, which is for the dynamic case, the FOSD theory was
formulated with the panel shear rigidity based exclusively on the

core, Eq. (26), thus, the results in Fig. 2b showing the FOSD theory
displacements larger than those from elasticity are not surprising.
Figure 3 shows the axial displacement, u, at themiddle of the faces

and the core at x � 0, and the important observation is the high
frequency and relatively large amplitude cyclic behavior in the core
unlike the faces.
The interfacial shear stress, τxz, during the first 2 ms at x � 0 is

shown in Fig. 4. Initially, the τxz is quite different between the two
interfaces, and at 0.5–0.7 ms the bottom face sheet interface shows
quite noticeably higher shear stress than the top one. However, after
about 1.6 ms the two interfaces exhibit the same shear stress. In this
time interval, the shear stress switches the sign and follows the cyclic
behavior of the transverse displacement. The magnitude of the shear
stress at the interfaces is considerable and, given the fact that inside
the core there would be shear stresses of similar magnitude, it can
explain the core cracking initiating after about 0.5 ms, which was
observed in the experiments [13].
On the contrary, the interfacial normal stress, σzz, follows the

cyclic behavior of the core and is shown in Fig. 5 at midspan,
x � a∕2. It can be seen that the bottom face/core interface goes into
appreciable tension, whereas the top face/core interface is always in
compression during the first 1 ms but can go into tension afterwards.
This, together with the high values of interfacial shear stress, can help
explain the skin delamination observed in the experiments after
1 ms [13].

Fig. 2 Transverse displacement, w, of the face sheets and midcore
during the first 2 ms: a) dynamic elasticity detail; b) FOSD vs elasticity.
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The dynamic elasticity results are next compared with results from
the recent dynamic EHSAPT [14]. Figure 6 shows a comparison of
the transverse displacement at the top face/core interface location.
The dynamic elasticity shows very good agreement with the dynamic
EHSAPT.

IV. Conclusions

A dynamic elasticity solution for the transient response of a
sandwich beam/wide plate consisting of orthotropic core and face
sheets subjected to blast loading at the top face was presented. The
problem was formulated in terms of Laplace transforms. The results
for a realistic material and blast case reveal that during the transient
phase the face and core displacements are different with the bottom
face exhibiting appreciable lagging as compared to the top face,
whereas the core is also following a different path. These divergences
and lag behavior between faces and the core cannot be captured by the
first-order shear deformation theory, but they are very well captured
by the extended high-order sandwich panel theory (EHSAPT).
Futhermore, the interfacial normal stress exhibits a cyclic behavior
during the transient phase with the bottom face/core interface going
into appreciable tension,whereas the top face/core interface is always
in compression. The interfacial shear stress is also quite different
between the two interfaces, and the bottom face/core interface shows
noticeably higher shear stress than the top one during the initial
phase. This elasticity solution can be used as a benchmark in
assessing the accuracy of the various sandwich panel theories.
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