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Blast Response of a Sandwich
Beam/Wide Plate Based on the
Extended High-Order Sandwich
Panel Theory and Comparison
With Elasticity
This paper presents a one-dimensional analysis for the blast response of a sandwich
beam/wide plate with a compressible core. The dynamic version of the recently developed
extended high-order sandwich panel theory (EHSAPT) is first formulated. Material, geo-
metric, and loading parameters are taken from blast experiments reported in literature.
The novelty of EHSAPT is that it includes axial rigidity of the core and allows for three
generalized coordinates in the core (the axial and transverse displacements at the cent-
roid of the core and the rotation at the centroid of the core) instead of just one (shear
stress in the core) of the earlier high-order sandwich panel theory (HSAPT). The solution
procedure to determine the dynamic response to a general load applied on the top face
sheet of a general asymmetric simply supported configuration is outlined. Although the
dynamic EHSAPT is formulated in its full nonlinear version, the solution is for the linear
problem so the accuracy of EHSAPT, along with the other theories, can be assessed by
comparison to an available dynamic elasticity solution. Results show that the EHSAPT is
very accurate and can capture the complex dynamic phenomena observed during the ini-
tial, transient phase of blast loading. [DOI: 10.1115/1.4023619]

1 Introduction

Sandwich composites are utilized in the naval, aerospace, and
wind engineering industries for their beneficial properties of high
stiffness and strength while being lightweight. The sandwich con-
figuration consists of two thin stiff face sheets and a thick low
density core material as depicted in Fig. 1. Such structures may be
subjected to highly transient loads such as blast, gusts, or impact,
with surface pressure spread over the entire structure or over a
certain area. It is believed that if the structure survives the initial,
transient phase of blast loading (time scale of a few milliseconds)
then it has survived the blast. Thus, the transient response of sud-
denly loaded structural configurations is essential in ensuring their
integrity. In the study of the response of a sandwich structure sub-
ject to static loading or a dynamic loading of long duration, it has
been customary to neglect the deformation of the core in the trans-
verse direction as shown in the early textbooks of Allen (1969) [1]
and Plantema (1966) [2]. Under this simplifying assumption, the
core is assumed to be infinitely rigid in the thickness direction and
can only carry the shear stresses. This model has been shown to
be inaccurate in predicting displacements for very soft core sand-
wich configurations under quasi-static loading (Kardomateas and
Phan [3]). More importantly, experimental results [4–8] have
shown that the core can undergo significant transverse deforma-
tion when the sandwich structure experiences a sudden, impulsive
loading and the core plays an important role in the absorption of
the impact energy. Therefore, a more accurate sandwich compos-
ite model should account for the transverse compressibility of the
core.

In 1992, Frostig et al. [9] developed the high-order sandwich
panel theory (HSAPT), a compressible core theory that accounts
for the transverse and shear rigidity of the core but neglects
the axial rigidity of the core. Neglecting the axial rigidity of the
core results in a constant shear stress distribution through the
thickness of the core that is a good approximation for sandwich
constructions with very soft cores undergoing quasi-static loading
[3]. Recently, the extended high-order sandwich panel theory
(EHSAPT) has been formulated to account for the axial, trans-
verse, and shear rigidity of the core (Phan et al. [10]). This new
theory includes the axial rigidity of the core and allows for an
accurate prediction of the shear stress distribution through the
thickness of the core in a wide range of core stiffnesses [10].

In the authors’ previous work (Phan et al. [10]) the EHSAPT
was presented in its static version and the accuracy of all the high-
order theories was assessed for static problems. In this paper we
shall assess the theories for a dynamical loading problem. In this
paper the dynamic version (equations of motion and boundary
conditions) of the new EHSAPT is presented. A solution

Fig. 1 Definition of the sandwich configuration
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procedure to obtain the response of a simply supported sandwich
beam to a dynamic load applied on the top face is outlined. The
sandwich composite is of a general asymmetric construction, and
the dynamic load has a general spatial and temporal profile. The
solution is for the linear response so comparison can be made
with an elastodynamic solution of the same problem, which was
recently formulated (Kardomateas et al. [11]).

A numerical case study was chosen using the material, geome-
try, and blast loading data that were reported in the blast experi-
ments of Gardner et al. [4]. The load is simplified to half-sine
distributed load that exponentially decays in time. Comparison
between EHSAPT, HSAPT, and elasticity is made for displace-
ments and stresses. Additional results for the shear stresses are
shown for EHSAPT and HSAPT for two other sandwich configu-
rations: one that represents a sandwich composite with a very soft
core and another that represents a sandwich composite with a
moderate core, both with very thin faces. The paper ends with
conclusions.

2 Formulation of the Governing Equations of Motion

Figure 1 shows a sandwich panel of length a with a core of
thickness 2c and top and bottom face sheet thicknesses ft and fb,
respectively. A unit width of the beam is assumed. A Cartesian
coordinate system ðx; y; zÞ is defined at one end of the beam and
its origin is placed at the middle of the core. Only loading in the
x� z plane is considered to act on the beam that solely causes dis-
placements in the x and z directions designated by u and w,
respectively. The superscripts t, b, and c shall refer to the top face
sheet, bottom face sheet, and core, respectively. The subscript 0
refers to the middle surface of the corresponding phase.

The displacement field of the top and bottom face sheets is
assumed to satisfy the Euler–Bernoulli assumptions: that planes
remain plane and perpendicular to the constituent’s deformed
axis, and the face sheets are infinitely rigid in the transverse direc-
tion. Therefore, the displacement field for the top face sheet
c � z � cþ ft is

wtðx; z; tÞ ¼ wt
0ðx; tÞ;

utðx; z; tÞ ¼ ut
0ðx; tÞ � z� c� ft

2

� �
wt

0;x; ðx; tÞ (1a)

and for the bottom face sheet �ðcþ fbÞ � z � �c

wbðx; z; tÞ ¼ wb
0ðx; tÞ;

ubðx; z; tÞ ¼ ub
0ðx; tÞ � zþ cþ fb

2

� �
wb

0;x; ðx; tÞ (1b)

The only nonzero strain in the faces is the axial strain, which
in the general nonlinear case (necessary, for example, for buck-
ling) is

�t;b
x;xðx; z; tÞ ¼ ut;b

x ðx; z; tÞ þ
1

2
wt;b

0;xðx; tÞ
h i2

(1c)

If a linear analysis is pursued, the second (squared) term in
Eq. (1c) is neglected.

While the face sheets can change their length only longitudi-
nally, the core can change its height and length. The displacement
field that satisfies the compatibility conditions at the upper and the
lower face core interfaces (same core and face sheet transverse
and axial displacements) is (Phan et al. [10])

wcðx; z; tÞ ¼ � z

2c
þ z2

2c2

� �
wb

0ðx; tÞ þ 1� z2

c2

� �
wc

0ðx; tÞ

þ z

2c
þ z2

2c2

� �
wt

0ðx; tÞ (2a)

ucðx; z; tÞ ¼ z 1� z2

c2

� �
/c

0ðx; tÞ þ
z2

2c2
1� z

c

� �
ub

0

þ 1� z2

c2

� �
uc

0 þ
z2

2c2
1þ z

c

� �
ut

0

þ fbz2

4c2
�1þ z

c

� �
wb

0;x þ
ftz

2

4c2
1þ z

c

� �
wt

0;x (2b)

where wc
0 and uc

0 are the transverse and in-plane displacements,
respectively, and /c

0 is the slope at the centroid of the core.
Therefore, this theory is in terms of seven generalized coordi-

nates (unknown functions of x and t): two for the top face sheet,
wt

0, ut
0; two for the bottom face sheet, wb

0, ub
0; and three for the

core, wc
0, uc

0, and /c
0.

The strains can be obtained from the displacements using the
linear strain-displacement relations. The explicit relationships for
the transverse normal and the shear strain in the core can also be
found in Phan et al. [10]. There is also a nonzero linear axial strain
in the core �c

xx, which has the same structure as Eq. (2b) but with
the generalized function coordinates replaced by one order higher
derivative with respect to x.

In the following Ct;b;c
ij are the corresponding stiffness constants

and we have used the notation 1 � x, 3 � z, and 55 � xz. We
assume orthotropic face sheets; thus, the nonzero stresses for the
faces are

rt;b
xx ¼ Ct;b

11�
t;b
xx ; rt;b

zz ¼ Ct;b
13�

t;b
xx (3a)

where, in terms of the extensional (Young’s) modulus Et;b
1 and the

Poisson’s ratio �t;b
31 , the stiffness constants for a beam are

Ct;b
11 ¼ Et;b

1 and Ct;b
13 ¼ �

t;b
31 Et;b

1 . Notice that the rt;b
zz does not ulti-

mately enter into the variational equation because the correspond-

ing strain �t;b
zz is zero.

We also assume an orthotropic core with stress-strain relations

rc
xx

rc
zz

sc
xz

264
375 ¼ Cc

11 Cc
13 0

C0
13 Cc

33 0

0 0 Cc
55

264
375 �c

xx

�c
zz

cc
xz

264
375 (3b)

where the components Cc
ij constitute the stiffness matrix, which is

the inverse of the compliance matrix, whose components ac
ij are

expressed in terms of the extensional and shear moduli and Pois-
son’s ratio of the core as

ac
11 ¼

1

Ec
1

; ac
13 ¼ �

�c
31

Ec
3

; ac
33 ¼

1

Ec
3

; ac
55 ¼

1

Gc
31

(3c)

The equations of motion and appropriate boundary conditions
are derived from Hamilton’s principleðt2

t1

dðU þ V � TÞdt ¼ 0 (4a)

where U is the strain energy of the sandwich beam, V is the poten-
tial due to the applied loading, and T is the kinetic energy. The
first variation of the strain energy of the sandwich beam and the
first variation of the external potential due to several general load-
ing conditions can be found in Phan et al. [10].

The kinetic energy term is

dT ¼
ða

0

ðb

0

� ð�c

�ðcþfbÞ
qbð _ubd _ub þ _wbd _wbÞdz

þ
ðc

�c

qcð _ucd _uc þ _wcd _wcÞdz

þ
ðcþft

c

qtð _utd _ut þ _wtd _wtÞdz

�
dydx (4b)
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where q is the mass density. The superscript t denotes the corre-
sponding quantity for the top face sheet, whereas t, when appear-
ing in the variables list of a function, refers to time.

For the sandwich plates made out of orthotropic materials, we
can substitute the stresses in terms of the strains from the constitu-
tive relations and then the strains in terms of the displacements
and the displacement profiles and finally apply the variational
principle; thus, we can write a set of nonlinear governing equa-
tions in terms of the seven unknown generalized coordinates as
follows.

Top Face Sheet

dut
0 :� 4

5
Cc

55 þ
2c2

35
Cc

11

@2

@x2
� 2c2qc

35

@2

@t2

� �
/c

0

� 7

30c
Cc

55 þ
c

35
Cc

11

@2

@x2
� cqc

35

@2

@t2

� �
ub

0

� 4

3c
Cc

55 þ
2c

15
Cc

11

@2

@x2
� 2cqc

15

@2

@t2

� �
uc

0

þ 47

30c
Cc

55 � at
1

@2

@x2
þ 6cqc

35
þ ftq

t

� �
@2

@t2

� �
ut

0

� ab
2

@

@x
� cfb

70
Cc

11

@3

@x3
þ cfbqc

70

@3

@x@t2

� �
wb

0 þ b1

@

@x

� �
wc

0

þ at
3

@

@x
� 3cft

35
Cc

11

@3

@x3
þ 3cftqc

35

@3

@x@t2

� �
wt

0 ¼ ept þ Ft
u

(5a)

where Ft
u is the nonlinear term

Ft
u ¼ Ct

11ftw
t
0;xwt

0;xx (5b)

and ept is the distributed in-plane force (along x) per unit width at
the top face, and

dwt
0 : at

4

@

@x
þ c2ft

35
Cc

11

@3

@x3
� c2ftqc

35

@3

@x@t2

� �
/c

0

þ at
5

@

@x
þ cft

70
Cc

11

@3

@x3
� cftqc

70

@3

@x@t2

� �
ub

0

þ at
6

@

@x
þ cft

15
Cc

11

@3

@x3
� cftqc

15

@3

@x@t2

� �
uc

0

þ �at
3

@

@x
þ 3cft

35
Cc

11

@3

@x3
� 3cftqc

35

@3

@x@t2

� �
ut

0

þ
�

1

6c
Cc

33 þ b2

@2

@x2
� cfbft

140
Cc

11

@4

@x4
� cqc

15

@2

@t2

þ cfbftqc

140

@4

@x2@t2

�
wb

0 þ � 4

3c
Cc

33 þ at
7

@2

@x2
þ 2cqc

15

@2

@t2

� �
wc

0

þ
�

7

6c
Cc

33 þ at
8

@2

@x2
þ at

9

@4

@x4
þ 4cqc

15
þ ftq

t

� �
@2

@t2

� 3cf 2
t qc

70
þ f 3

t qt

12

� �
@4

@x2@t2

�
wt

0 ¼ eqt � emt
;x þ Ft

w (6a)

where Ft
w is the nonlinear term

Ft
w ¼ Ct

11ft wt
0;xut

0;xx þ ut
0;xwt

0;xx þ
3

2
ðwt

0;xÞ
2wt

0;xx

� �
(6b)

and eqt is the distributed transverse force (along z) per unit width
and emt is the distributed moment per unit width along the top face
sheet.

Core

duc
0 :� 4

3c
Cc

55 þ
2c

15
Cc

11

@2

@x2
� 2cqc

15

@2

@t2

� �
ub

0

þ 8

3c
Cc

55 �
16c

15
Cc

11

@2

@x2
þ 16cqc

15

@2

@t2

� �
uc

0

� 4

3c
Cc

55 þ
2c

15
Cc

11

@2

@x2
� 2cqc

15

@2

@t2

� �
ut

0

þ ab
6

@

@x
þ cfb

15
Cc

11

@3

@x3
� cfbqc

15

@3

@x@t2

� �
wb

0

� at
6

@

@x
þ cft

15
Cc

11

@3

@x3
� cftqc

15

@3

@x@t2

� �
wt

0 ¼ 0 (7)

d/c
0 :

8c

5
Cc

55 �
16c3

105
Cc

11

@2

@x2
þ 16c3qc

105

@2

@t2

� �
/c

0

þ 4

5
Cc

55 þ
2c2

35
Cc

11

@2

@x2
� 2c2qc

35

@2

@t2

� �
ub

0

� 4

5
Cc

55 þ
2c2

35
Cc

11

@2

@x2
� 2c2qc

35

@2

@t2

� �
ut

0

� ab
4

@

@x
þ c2fb

35
Cc

11

@3

@x3
� c2fbqc

35

@3

@x@t2

� �
wb

0 þ b3

@

@x

� �
wc

0

� at
4

@

@x
þ c2ft

35
Cc

11

@3

@x3
� c2ftqc

35

@3

@x@t2

� �
wt

0 ¼ 0 (8)

and

dwc
0 :� b3

@

@x

� �
/c

0 þ b1

@

@x

� �
ub

0 � b1

@

@x

� �
ut

0

þ � 4

3c
Cc

33 þ ab
7

@2

@x2
þ 2cqc

15

@2

@t2

� �
wb

0

þ 8

3c
Cc

33 �
16c

15
Cc

55

@2

@x2
þ 16cqc

15

@2

@t2

� �
wc

0

þ � 4

3c
Cc

33 þ at
7

@2

@x2
þ 2cqc

15

@2

@t2

� �
wt

0 ¼ 0 (9)

Bottom Face Sheet

dub
0 :

4

5
Cc

55 þ
2c2

35
Cc

11

@2

@x2
� 2c2qc

35

@2

@t2

� �
/c

0

þ 47

30c
Cc

55 � ab
1

@2

@x2
þ 6cqc

35
þ fbq

b

� �
@2

@t2

� �
ub

0

� 4

3c
Cc

55 þ
2c

15
Cc

11

@2

@x2
� 2cqc

15

@2

@t2

� �
uc

0

� 7

30c
Cc

55 þ
c

35
Cc

11

@2

@x2
� cqc

35

@2

@t2

� �
ut

0

þ �ab
3

@

@x
þ 3cfb

35
Cc

11

@3

@x3
� 3cfbqc

35

@3

@x@t2

� �
wb

0 � b1

@

@x

� �
wc

0

þ at
2

@

@x
� cft

70
Cc

11

@3

@x3
þ cftqc

70

@3

@x@t2

� �
wt

0 ¼ epb þ F̂b
u

(10a)

where Fb
u is the nonlinear term

Fb
u ¼ Cb

11bfbwb
0;xwb

0;xx (10b)

and epb is the distributed in-plane force (along x) per unit width at
the bottom face, and
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dwb
0 : ab

4

@

@x
þ c2fb

35
Cc

11

@3

@x3
� c2fbqc

35

@3

@x@t2

� �
/c

0

þ ab
3

@

@x
� 3cfb

35
Cc

11

@3

@x3
þ 3cfbqc

35

@3

@x@t2

� �
ub

0

� ab
6

@

@x
þ cfb

15
Cc

11

@3

@x3
� cfbqc

15

@3

@x@t2

� �
uc

0

� ab
5

@

@x
þ cfb

70
Cc

11

@3

@x3
� cfbqc

70

@3

@x@t2

� �
ut

0

þ
�

7

6c
Cc

33 þ ab
8

@2

@x2
þ ab

9

@4

@x4
þ 4cqc

15
þ fbq

b

� �
@2

@t2

� 3cf 2
b qc

70
þ f 3

b qb

12

� �
@4

@x2@t2

�
wb

0 þ
�
� 4

3c
Cc

33 þ ab
7

@2

@x2

þ 2cqc

15

@2

@t2

�
wc

0 þ
�

1

6c
Cc

33 þ b2

@2

@x2
� cfbft

140
Cc

11

@4

@x4

� cqc

15

@2

@t2
þ cfbftqc

140

@4

@x2@t2

�
wt

0 ¼ eqb � emb
;x þ Fb

w

(11a)

where Fb
w is the nonlinear term

Fb
w ¼ Cb

11bfb wb
0;xub

0;xx þ ub
0;xwb

o;xx þ
3

2
ðwb

0;xÞ
2wb

0;xx

� �
(11b)

and eqb is the distributed transverse force per unit width and emb is
the distributed moment applied per unit width along the bottom
face sheet.

In the above expressions, the following constants are defined:

ai
1 ¼

6c

35
Cc

11 þ fiC
i
11; ai

2 ¼
1

30
Cc

13 þ
1

30
� 7fi

60c

� �
Cc

55 (12a)

ai
3 ¼ �

11

30
Cc

13 þ
19

30
þ 47fi

60c

� �
Cc

55;

ai
4 ¼

4c

15
Cc

13 þ
4c

15
þ 2fi

5

� �
Cc

55 (12b)

ai
5 ¼ �ai

2; ai
6 ¼

2

3
Cc

13 þ
2

3
þ 2fi

3c

� �
Cc

55 (12c)

ai
7 ¼ �

fi

5
Cc

13 �
2c

15
þ fi

5

� �
Cc

55 (12d)

ai
8 ¼

11fi

30
Cc

13 �
4c

15
þ 19fi

30
þ 47f 2

i

120c

� �
Cc

55 (12e)

ai
9 ¼

f 3
i

12
Ci

11 þ
3cf 2

i

70
Cc

11 (12f )

and

b1 ¼
2

5
ðCc

13 þ Cc
55Þ (13a)

b2 ¼
fb þ ft

60
Cc

13 þ
c

15
þ fb þ ft

60
� 7fbft

120c

� �
Cc

55 (13b)

The corresponding boundary conditions at x¼ 0 and a read as
follows (at each end there are nine boundary conditions, three for
each of the two face sheets and three for the core).

For the top face sheet:

(i) Either dut
0 ¼ 0, or

2c2

35
Cc

11

@

@x

� �
/c

0 þ
c

35
Cc

11

@

@x

� �
ub

0 þ
2c

15
Cc

11

@

@x

� �
uc

0

þ at
1

@

@x

� �
ut

0 þ
1

30
Cc

13 �
cfb
70

Cc
11

@2

@x2

� �
wb

0

� 2

5
Cc

13

� �
wc

0 þ
11

30
Cc

13 þ
3cft
35

Cc
11

@2

@x2

� �
wt

0

¼ eNt þ encc

3
þ Bt

u (14a)

where eNt is the end axial force at the top face per unit
width and enc is the (uniformly distributed) end axial force
at the core per unit width (at the end x ¼ 0 or x ¼ a) and
Bt

u is the nonlinear term

Bt
u ¼ �

ft

2
Ct

11ðwt
0;xÞ

2
(14b)

(ii) Either dwt
0 ¼ 0, or
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15

Cc
55 þ

c2ft
35

Cc
11

@2

@x2

� �
/c

0

þ ð2c� 7ftÞ
60c

Cc
55 �

cft

70
Cc

11

@2

@x2

� �
ub

0

� 2ðcþ ftÞ
3c

Cc
55 þ

cft

15
Cc

11

@2

@x2

� �
uc

0

þ ð38cþ 47ftÞ
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55 �

3cft
35

Cc
11

@2

@x2

� �
ut

0

þ fb

60
Cc

13 � b2

� �
@

@x
þ cfbft

140
Cc

11

@3

@x3

� �
wb

0

� at
7

@

@x

� �
wc

0 þ
11ft

60
Cc

13 � at
8

� �
@

@x
� at

9

@3

@x3

� �
wt

0 þ Lt
w

¼ eVt þ emt þ evcc

3
þ Bt

w (15a)

where Lt
w is the inertial term

Lt
w ¼

ft

420

�
35f 2

t qt @
3wt

0

@x@t2
þ qc

�
12c2 @

2/c
0

@t2
þ 6c

@2ub
0

@t2

þ 28c
@2uc

0

@t2
þ 36c

@2ut
0

@t2
� 3cfb

@3wb
0

@x@t2
þ 18cft

@3wt
0

@x@t2

��
(15b)

and Bt
w is the nonlinear term

Bt
w ¼ �

ft

2
Ct

11wt
0;x 2ut

0;x þ ðwt
0;xÞ

2
h i

(15c)

and eVt is the end shear force at the top face per unit width
and evc is the (uniformly distributed) end shear force at the
core (at the end x ¼ 0 or x ¼ a).

(iii) Either dwt
0;x ¼ 0, or

c2ft

35
Cc

11

@

@x

� �
/c

0 þ
cft

70
Cc

11

@

@x

� �
ub

0 þ
cft
15

Cc
11

@

@x

� �
uc

0

þ 3cft

35
Cc

11

@

@x

� �
ut

0 þ
ft
60

Cc
13 �

cfbft

140
Cc

11

@2

@x2

� �
wb

0

� ft

5
Cc

13

� �
wc

0 þ
11ft

60
Cc

13 þ at
9

@2

@x2

� �
wt

0 ¼ eMt þ enccft

6

(16)

where eMt is the end moment per unit width at the top face
(at the end x ¼ 0 or x ¼ a).
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For the core:

(i) Either duc
0 ¼ 0, or

2c

15
Cc

11

@

@x

� �
ub

0 þ
16c

15
Cc

11

@

@x

� �
uc

0 þ
2c

15
Cc

11

@

@x

� �
ut

0

� 2

3
Cc

13 þ
cfb

15
Cc

11

@2

@x2

� �
wb

0 þ
2

3
Cc

13 þ
cft

15
Cc

11

@2

@x2

� �
wt

0

¼ 4encc

3
(17)

(ii) Either d/c
0 ¼ 0, or

16c3

105
Cc

11

@

@x

� �
/c

0 �
2c2

35
Cc

11

@

@x

� �
ub

0 þ
2c2

35
Cc

11

@

@x

� �
ut

0

þ 4c

15
Cc

13 þ
c2fb

35
Cc

11

@2

@x2

� �
wb

0 �
8c

15
Cc

13

� �
wc

0

þ 4c

15
Cc

13 þ
c2ft

35
Cc

11

@2

@x2

� �
wt

0 ¼ 0 (18)

(iii) Either dwc
0 ¼ 0, or

Cc
55

�
8c

15
/c

0 �
2

5
ub

0 þ
2

5
ut

0 þ
ð2cþ 3fbÞ

15
wb

0;x

þ 16c

15
wc

0;x þ
ð2cþ 3ftÞ

15
wt

0;x

�
¼ 4

3
evcc (19)

For the bottom face sheet:

(i) Either dub
0 ¼ 0, or

� 2c2

35
Cc

11

@

@x

� �
/c

0 þ ab
1

@

@x

� �
ub

0 þ
2c

15
Cc

11

@

@x

� �
uc

0

þ c

35
Cc

11

@

@x

� �
ut

0 �
11

30
Cc

13 þ
3cfb

35
Cc

11

@2

@x2

� �
wb

0

þ 2

5
Cc

13

� �
wc

0 þ � 1

30
Cc

13 þ
cft
70

Cc
11

@2

@x2

� �
wt

0

¼ eNb þ encc

3
þ Bb

u (20a)

where eNb is the end axial force per unit width at the bot-
tom face and Bb

u is the nonlinear term

Bb
u ¼ �

fb
2

Cb
11ðwb

0;xÞ
2

(20b)

(ii) Either dwb
0 ¼ 0, or

� 2ð2cþ 3fbÞ
15

Cc
55 þ

c2fb
35

Cc
11

@2

@x2

� �
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0

þ �ð38c� 47fbÞ
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� �
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� �
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60c
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70
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11
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� �
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0

þ 11fb
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Cc

13 � ab
8

� �
@

@x
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9

@3

@x3

� �
wb

0 � ab
7

@

@x

� �
wc

0

þ ft

60
Cc

13 � b2

� �
@

@x
þ cfbft

140
Cc

11

@3

@x3

� �
wt

0 þ Lb
w

¼ eVb þ emb þ evcc

3
þ Bb

w (21a)

where Lb
w is the inertial term

Lb
w ¼

fb

420

�
35f 2

b qb @
3wb

0

@x@t2
þ qc

�
12c2qc @

2/c
0

@t2
� 36c

@2ub
0

@t2

� 28c
@2uc

0

@t2
� 6c

@2ut
0

@t2
þ 18cfb

@3wb
0

@x@t2
� 3cft

@3wt
0

@x@t2

��
(21b)

and Bb
w is the nonlinear term

Bb
w ¼ �

fb

2
Cb

11wb
0;x 2ub

0;x þ ðwb
0;xÞ

2
h i

(21c)

and eVb is the end shear force per unit width at bottom
face.

(iii) Either dwb
0;x ¼ 0, or

c2fb

35
Cc

11

@

@x

� �
/c

0 �
3cfb

35
Cc

11

@

@x

� �
ub

0 �
cfb

15
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11
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� �
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0

� cfb
70

Cc
11

@

@x

� �
ut

0 þ
11fb

60
Cc

13 þ ab
9

@2

@x2

� �
wb

0

� fb
5

Cc
13

� �
wc

0 þ
fb
60

Cc
13 �

cfbft

140
Cc

11

@2

@x2

� �
wt

0

¼ eMb � enccfb
6

(22)

where eMb is the end moment per unit width at the bottom
face. The superscript e denotes in the above equations the
known external boundary values.

Thus, Hamilton’s principle results in seven coupled partial differ-
ential equations, as given in Eqs. (5)–(13), four of which are non-
linear due to the consideration of nonlinear axial strains in the
face sheets. The order of the equations of motion is 18. Therefore,
there are 18 boundary conditions, nine at each end at x ¼ 0 and
x ¼ a given by Eqs. (14)–(22). Since the rotation of the face
sheets is assumed to be the derivative of the transverse displace-
ment with respect to x, there exists inertial terms Lt

w and Lb
w in the

boundary conditions in Eqs. (15b) and (21b). The seven unknowns
of EHSAPT are: ut

0ðx; tÞ, uc
0ðx; tÞ, ub

0ðx; tÞ, /c
0ðx; tÞ, wt

0ðx; tÞ,
wc

0ðx; tÞ, and wb
0ðx; tÞ.

2.1 Dynamic Load Applied to Top Face Sheet. In this sec-
tion the linear response of a sandwich beam that is initially at rest,
simply supported throughout its thickness at each end, and then
subjected to the load on the top face sheet

eqtðx; tÞ ¼ TðtÞ
X1
n¼1

Qn sin anxð Þ; an ¼
np
a

(23)

is studied. The loading profile takes a general form via a Fourier
series. The solution approach is outlined next. Afterwards, a
numerical case study of a blast load with a half-sine profile (only
n ¼ 1) is investigated. The case study is used to assess the accu-
racy of the high-order theories, EHSAPT and HSAPT, with the
elastodynamic solution used as the benchmark.

In order to enable direct comparison with the linear elastody-
namic benchmark solution, we outline the solution for the linear
EHSAPT. Therefore, the nonlinear terms in the equations of
motion and the boundary conditions are ignored. The boundary
conditions are simply supported at both ends and throughout the
entire beam thickness. Therefore, the solution must satisfy at
x ¼ 0 and a, the three kinematic boundary conditions

wt
0 ¼ wb

0 ¼ wc
0 ¼ 0 (24)

and the right-hand sides of the six natural boundary conditions in
Eqs. (14a), (16), (17), (18), (20a), and (22) are equal to zero.
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The following displacement shape functions satisfy these
boundary conditions:

ut
0 ¼

X1
n¼1

Ut
nðtÞ cos

px

a
; uc

0 ¼
X1
n¼1

Uc
nðtÞ cos

px

a
;

/c
0 ¼

X1
n¼1

Uc
nðtÞ cos

px

a
; ub

0 ¼
X1
n¼1

Ub
nðtÞ cos

px

a
;

wt
0 ¼

X1
n¼1

Wt
nðtÞ sin

px

a
; wc

0 ¼
X1
n¼1

Wc
nðtÞ sin

px

a
;

wb
0 ¼

X1
n¼1

Wb
nðtÞ sin

px

a
(25)

Substituting Eq. (25) into Eqs. (5a) and (11b) (neglecting the non-
linear terms), turns the partial differential equations of motion
into linear ordinary differential equations in time

½Mn�f €UnðtÞg þ ½Kn�fUnðtÞg ¼ fFnðtÞg (26a)

where the 7� 7 matrices ½Mn� and ½Kn� are the mass matrix con-
taining the inertial terms and the stiffness matrix of the nth Fourier
term, respectively. The rows of the equations of motion in (26a)
correspond to Eqs. (10a), (7), (8), (5a), (11a), (9), and (6a),
respectively. The vector of the unknown generalized coordinates
are

fUnðtÞg ¼ fUb
nðtÞ;Uc

nðtÞ;Uc
nðtÞ;Ut

nðtÞ;Wb
nðtÞ;Wc

nðtÞ;Wt
nðtÞg

T

(26b)

and the load vector fFnðtÞg ¼ TðtÞf0; 0; 0; 0; 0; 0;QngT
. The ordi-

nary differential equations can be solved using standard numerical
integration methods.

In the next section we will use a particular blast loading case
study to assess the accuracy of EHSAPT as well as the earlier
HSAPT that does not take into account the axial rigidity of the
core. Notice that in this paper we focus on the high-order theories
whereas a comparison with the first order shear deformation
theory (FOSDT) that does not consider the transverse compressi-
bility of the core was done in Kardomateas et al. [11]. The earlier

high-order sandwich panel theory (HSAPT) is outlined in
Appendix B.

2.2. Special Case of Exponentially Decaying Blast
Loading. In this section the dynamic response of a simply sup-
ported sandwich beam, initially at rest, then subjected to a
temporal blast load that exponentially decays in time and has a
half-sine spatial profile along the beam is studied. Only the first
term in the Fourier series is needed. The applied load in kN/m
(with time t in milliseconds) is

eqtðx; tÞ ¼ 510 sin
px

a
e�ð1:25tÞ (27)

which decays to less than 0.1% of its original magnitude after 5.5
milliseconds (ms). The above blast load parameters, as well
as the material and geometry data, were taken from the experi-
mental investigations of Gardner et al. [4]. The faces are E-glass
vinyl-ester composite: Young’s modulus Ec

1 ¼ 13; 600 MPa, den-
sity qf ¼ 1800 kg/m3, and the isotropic core is Corecell(tm) A300

Fig. 2 Transverse displacement at the top face, middle of core,
and bottom face at the midspan location for elasticity, EHSAPT,
and HSAPT during the initial phase of blast

Fig. 3 (a) Transverse displacement at the top face, middle of
core, and bottom face at the midspan location from EHSAPT
and HSAPT during the first 50 ls showing the cavitation-like
behavior of the core. (b) Transverse displacement at the middle
of core at the midspan location from elasticity showing the cav-
itation-like behavior of the core around 20 ls.
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styrene acrylonitrile (SAN) foam: Young’s modulus Ec¼ 32 MPa,
qc¼ 58.5 kg/m3, Poisson’s ratio �c ¼ 0:3, and shear modulus
Gc ¼ Ec=½2ð1þ �cÞ�. The geometry of the sandwich configuration
is: face thickness ft ¼ fb ¼ 5 mm, core thickness 2c¼ 38 mm,
width b¼ 102 mm, and span of beam a¼ 152.4 mm.

The transverse displacements wt
0, wc

0, and wb
0 at the midspan

location x ¼ a=2 versus time are shown in Fig. 2. In this figure we
show the results from elasticity, EHSAPT, and HSAPT. The two
high-order sandwich panel theories are practically on top of each
other and display the same trend in behavior of the top, core, and
bottom displacements as elasticity, i.e., that the top face travels
down first, followed by the core, then the bottom face sheet.
Differences between the high-order theories and elasticity can be
distinguished by focusing on the time between 0.5 and 0.8 ms
when the different phases first reach their maximum values as
shown in Fig. 2. EHSAPT and HSAPT match the midcore
transverse displacement of elasticity. The high order theories
overestimate the maximum displacement of the top face by a
modest amount, no more than 5%. The bottom face transverse dis-
placements from EHSAPT and HSAPT do not exactly follow
elasticity but give values within less than 6% error over the time
range in Fig. 2.

It should also be noted that the first order shear deformation
theory (FOSDT) can be very inaccurate in its prediction of
transverse displacement (Kardomateas et al. [11]) and, of course,
cannot capture the differences in the displacements of the face
sheets and the core. The FOSDT actually significantly overpre-
dicts the magnitude of the transverse displacement (Kardomateas
et al. [11]).

An interesting phenomenon is shown in Fig. 3(a). The high-
order theories show a very small positive value of the transverse
displacement of the core between 15 and 25 ls. Afterwards, the
displacement is negative (i.e., in the direction of the blast). This is
similar to the cavitation zone in water that occurs behind a shock
wave front. The dynamic elasticity also shows such behavior, as
shown in Fig. 3(b) but at a much smaller scale of positive dis-
placement values.

Figure 4 shows the axial displacements ut
0, uc

0, and ub
0 at the

edge x ¼ 0 versus time. EHSAPT and HSAPT capture the high
cyclic behavior of uc

0 that elasticity displays, with EHSAPT being
closer in value to elasticity than HSAPT. The first peak in the core

axial displacement, uc
0 of EHSAPT, is 10% under elasticity, while

the first peak in uc
0 of HSAPT is 32% under elasticity. Both

high-order theories and elasticity predict very similar behavior
with time of the top and bottom face sheet axial displacements ut

0

and ub
0.

The transverse stress at the top and bottom face/core interfaces
at the midspan rzz is shown in Fig. 5(a). EHSAPT and HSAPT
predict similar behavior in stresses versus time. The maximum
compressive transverse stress at the top face/core interface pre-
dicted by the high order theories (at around 0.23 ms) overpredicts
the elasticity value by 5%. The maximum compressive transverse
stress at the bottom face/core interface predicted by the high-order
theories (at around 0.2 ms) overpredicts the elasticity value by
6%. The high-order theories correctly predict that the bottom
face/core interface undergoes a tensile stress at the bottom/face
core interface over time. The first maximum tensile transverse
stress at the bottom face/core interface predicted by the high-order
theories (at around 0.44 ms) overpredicts the elasticity value by
14%.

There is also an associated “cavitation” phenomenon in rzz, in
that a tensile stress wave occurs in the bottom face/core interface
just after the blast (within the first 50 ls) as shown in Fig. 5(b).
Afterwards, the compressive stress wave reaches the bottom face.

Fig. 4 Axial displacement at the top face, middle of core, and
bottom face at the support location (x 5 0) for elasticity,
EHSAPT, and HSAPT during the initial phase of blast

Fig. 5 (a) The transverse normal stress rzz , at the top (T) and
bottom (B) face/core interfaces during the initial phase of blast.
(b) The transverse normal stress rzz at the bottom face/core
interfaces from the high-order theories, showing the cavitation-
like behavior (tensile stress during the first 50 ls).
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A similar phenomenon is predicted from the dynamic elasticity
within the first 50 ls, albeit at a smaller value of peak tensile
stress.

The shear stress at the top and bottom face/core interfaces at
x ¼ 0 is shown in Fig. 6. EHSAPT is the only theory that can
show the differences in the shear stresses at the top and bottom
face/core interfaces like elasticity, while HSAPT predicts that the
shear stress is constant throughout the thickness and seems to be
about the average value of EHSAPT and elasticity. EHSAPT
gives a minimum shear stress (most negative shear stress) at the
top and bottom face/core interface under the minimum elasticity
values by just 0.5%, whereas the corresponding HSAPT values
are within 6% of elasticity’s predictions.

It was shown in the authors’ previous work (Phan et al. [10])
that the HSAPT and EHSAPT show very different behavior in sxz

for soft core and moderate core configurations. The soft core
configuration is graphite epoxy faces with a glass phenolic honey-
comb core (Ef

1=Ec
1 < 0:001) and the moderate core configuration

is E-glass faces with a Balsa wood core (Ef
1=Ec

1 � 0:02). Details
of material data for the two configurations are given in Table 1.
Both configurations are for a ratio of face sheet to total thickness
f=htot¼ 0.02 and a total thickness of htot ¼ 48 mm, width
b¼ 25.4 mm, and length a¼ 30 htot all other geometric parame-
ters kept the same. It can be seen from Fig. 7(a) that for soft cores
the shear stresses at the top and bottom face/core interfaces can be
very different, as predicted by the EHSAPT. For the soft core case
the HSAPT predicts an average value of the shear stress at the top
and bottom face core interfaces. The picture is very different for

the moderate core case (Fig. 7(b)), which shows that the HSAPT
predicts a shear stress that is not between the top and bottom inter-
face shear stresses but overpredicts the magnitude of the negative
shear stress of the top and bottom face/core interfaces by about
10%.

Table 1 Material properties. Moduli data are in GPa. Densities are in kg/m3

Graphite epoxy face E-glass polyester face Balsa wood core Glass-phenolic honeycomb core

E1 181.0 40.0 0.671 0.032
E2 10.3 10.0 0.158 0.032
E3 10.3 10.0 7.72 0.300
G23 5.96 3.5 0.312 0.048
G31 7.17 4.5 0.312 0.048
G12 7.17 4.5 0.200 0.013
�32 0.40 0.40 0.49 0.25
�31 0.016 0.26 0.23 0.25
�12 0.277 0.065 0.66 0.25
q 1632 2000 250 64

Fig. 7 (a) The shear stress sxz at the top (T) and bottom (B)
face/core interfaces from the higher-order theories for the soft
core configuration. (b) The shear stress sxz at the top (T) and
bottom (B) face/core interfaces from the higher order theories
for the moderate core configuration.

Fig. 6 The shear stress sxz at the top (T) and bottom (B) face/
core interfaces during the initial phase of blast
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Conclusions

The dynamic formulation of the extended high-order sandwich
panel theory (EHSAPT) is accomplished via the Hamilton’s
principle for a general asymmetric sandwich configuration, and
nonlinear axial strains of the face sheets are taken into account.
The solution procedure to determine the linear dynamic response
of a sandwich composite that is simply supported and loaded just
on the top face sheet is outlined. A case study involving an expo-
nentially decaying blast load with a spatial half-sine profile across
the top of the beam is used to compare the EHSAPT and the
earlier high-order sandwich panel theory (HSAPT) to a dynamic
elasticity benchmark. The case study showed that both theories
capture well the general trends of the transverse and axial dis-
placements, as well as the transverse normal and shear stresses,
with the EHSAPT being more accurate, i.e., closer to the dynamic
elasticity. The high-order theories predict well the complex nature
of the transient response to blast, including a “cavitation-like”
phenomenon during the first 50 ls, i.e., a tensile transverse stress
wave and displacement opposite to the direction of the blast at the
bottom face/core interface.
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Appendix A Mass and Stiffness Matrix for the EHSAPT

The mass matrix ½Mn� is symmetric and contains elements
mij ¼ mji. With the definition an ¼ np=a, these are (per unit
width):

m11 ¼ fbq
b þ 6cqc

35
; m12 ¼

2cqc

15
(A1a)

m13 ¼ �
2c2qc

35
; m14 ¼

cqc

35
(A1b)

m15 ¼ �
3cfbqcan

35
; m16 ¼ 0; m17 ¼

cftqcan

70
(A1c)

m22 ¼
16cqc

15
; m23 ¼ 0; m24 ¼ m12 (A1d)

m25 ¼ �
cfbqcan

15
; m26 ¼ 0; m27 ¼

cftqcan

15
(A1e)

m33 ¼
16c3qc

105
; m34 ¼

2c2qc

35
(A1f )

m35 ¼
c2fbqcan

35
; m36 ¼ 0; m37 ¼

c2ftqcan

35
(A1g)

m44 ¼
6cqc

35
þ ftq

t; m45 ¼ �
cfbqcan

70
(A1h)

m46 ¼ 0; m47 ¼
3cftqcan

35
(A1i)

m55 ¼ fbqb þ
4cqc

15
þ f 3

b qb

12
þ 3cf 2

b qc

70

� �
a2

n; m56 ¼ m12 (A1j)

m57 ¼ �
cqc

15
� cfbftqca2

n

140
(A1k)

m66 ¼
16cqc

15
; m67 ¼ m12 (A1l)

m77 ¼
4cqc

15
þ ftq

t þ 3cf 2
t qc

70
þ f 3

t qt

12

� �
a2

n (A1m)

The stiffness matrix ½Kn� is also symmetric and contains
elements kij ¼ kji, which are as follows (per unit width):

k11 ¼
47

30c
Cc

55 þ ab
1a

2
n; k12 ¼ �

4

3c
Cc

55 þ
2ca2

n

15
Cc

11 (A2a)

k13 ¼
4

5
Cc

55 �
2c2a2

n

35
Cc

11; k14 ¼ �
7

30c
Cc

55 þ
ca2

n

35
Cc

11 (A2b)

k15 ¼ �
3cfba3

n

35
Cc

11 þ gb
3an

� �
; k16 ¼ �b1an;

k17 ¼
cfta3

n

70
Cc

11 þ gt
2an (A2c)

k22 ¼
8

3c
Cc

55 þ
16ca2

n

15
Cc

11; k23 ¼ 0; k24 ¼ k12 (A2d)

k25 ¼ �
cfba3

n

15
Cc

11 þ gb
6an; k26 ¼ 0; k27 ¼

cfta3
n

15
Cc

11 � gt
6an

(A2e)

k33 ¼
8c

5
Cc

55 þ
16c3a2

n

105
Cc

11; k34 ¼ �
4

5
Cc

55 þ
2c2a2

n

35
Cc

11 (A2f )

k35 ¼
c2fba3

n

35
Cc

11 � gb
4an; k36 ¼

4cb1an

3
;

k37 ¼
c2fta3

n

35
Cc

11 � gt
4an (A2g)

k44 ¼
47

30c
Cc

55 þ at
1a

2
n; k45 ¼ �

cfba3
n

70
Cc

11 þ gb
2an

� �
(A2h)

k46 ¼ b1an; k47 ¼
3cfta3

n

35
Cc

11 þ gt
3an (A2i)

k55 ¼
7

6c
Cc

33 � gb
8a

2
n þ gb

9a
4
n; k56 ¼ �

4

3c
Cc

33 þ gb
7a

2
n

� �
(A2j)

k57 ¼
1

6c
Cc

33 �
cfbfta4

n

140
Cc

11 � b2a
2
n (A2k)

k66 ¼
8

3c
Cc

33 þ
16ca2

n

15
Cc

55; k67 ¼ �
4

3c
Cc

33 þ gt
7a

2
n

� �
(A2l)

k77 ¼
7

6c
Cc

33 � gt
8a

2
n þ gt

9a
4
n (A2m)

Appendix B High-Order Sandwich Panel Theory

(HSAPT)

The high-order sandwich panel theory accounts for the shear
and transverse normal stresses in the core and assumes that the
axial stresses in the core are null. There are two models of HSAPT
that exist in literature. The first model (model I) is a mixed formu-
lation in which the five generalized coordinates are: the two axial
displacements at the top and bottom face sheet ut

0ðxÞ, ub
0ðxÞ; the

two transverse displacements at the top and bottom face sheets
wt

0ðxÞ, wb
0ðxÞ; and the shear stress (constant through the thickness)

in the core and scðxÞ. In model I, the accelerations are assumed a
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priori to vary linearly through the core. The second model (model
II) is a displacement based formulation in which the five general-
ized coordinates are: ut

0ðxÞ, ub
0ðxÞ, wt

0ðxÞ, wb
0ðxÞ, and the midcore

transverse displacement wc
0ðxÞ (instead of the shear stress scðxÞ).

In model II, the accelerations in the core are allowed to be nonlin-
ear through the core.

HSAPT–mixed formulation (model I). The free vibration analy-
sis for the mixed formulation (model I) was presented in detail in
Schwarts-Givli et al. [12]. The mass and stiffness matrix are
explicitly written for the free vibration of a sandwich beam that is
simply supported throughout its thickness at each end. In the
mixed formulation ucðx; z; tÞ and wcðx; z; tÞ are functions of
scðx; tÞ.

HSAPT–displacements based formulation (model II). In this
formulation, the generalized coordinate of shear stress scðx; tÞ is
replaced with the midcore transverse displacement wc

0ðx; tÞ. The
axial and transverse displacement fields of the top and bottom
face sheet, as well as the transverse displacement field of the core
are the same as ESHAPT shown in Eqs. (1) and (2a). Model II dif-
fers from EHSAPT in that the axial displacement field between
�c < z < c is defined as

ucðx; z; tÞ ¼ 1

2
þ z

2c

� �
ut

0ðx; tÞ þ
1

2
� z

2c

� �
ub

0ðx; tÞ

þ � z

3
þ z3

3c2

� �
wc

0;xðx; tÞ þ
�
� fb

4
þ c

4

� �
þ 1

6
þ fb

4c

� �
zþ 1

4c
z2 � 1

6c2
z3

�
wb

0;xðx; tÞ

þ ft

4
þ c

4

� �
þ 1

6
þ ft

4c

� �
z� 1

4c
z2 � 1

6c2
z3

� �
wt

0;xðx; tÞ

(B1)

The governing equations of motion of a simply supported sand-
wich beam undergoing the load in Eq. (23) using HSAPT is in
general the 5� 5 system of equations:

½Mn�f €UnðtÞg þ ½Kn�fUnðtÞg ¼ fFnðtÞg (B2)

where the 5� 5 matrices ½Mn� and ½Kn� are the mass matrix con-
taining the inertial terms and the stiffness matrix of the nth Fourier
term, respectively.

The 5� 5 symmetric mass matrix for the HSAPT, having
mij ¼ mji, is (per unit width)

m11 ¼
1

3
3fbq

b þ 2cqc
� 	

; m12 ¼
1

3
cqc (B3a)

m13 ¼ �
1

90
cqcan 30fb þ 17cð Þ; m14 ¼

2

45
c2qcan (B3b)

m15 ¼
1

90
cqcan 13cþ 15ftð Þ (B3c)

m22 ¼
1

3
2cqc þ 3ftq

tð Þ; m23 ¼ �
1

90
cqcan 15fb þ 13cð Þ (B3d)

m24 ¼ �
2

45
c2qcan; m25 ¼

1

90
cqcan 17cþ 30ftð Þ (B3e)

m33 ¼
1

72

�
2a2

n

105
ð714c2fbq

c þ 630cf 2
b qc þ 315f 3

b qb þ 268c3qcÞ

þ 24

5
ð15fbq

b þ 4cqc

�
(B3f )

m34 ¼
1

72

2

105
�84c2fbq

ca2
n � 32c3qca2

n

� 	
þ 48cqc

5

� �
(B3g)

m35 ¼
1

72
� 2

105
cqca2

n 273c fb þ ftð Þ þ 315fbft þ 236c2
� 	

� 24cqc

5

� �
(B3h)

m44 ¼
1

36

64

105
c3qca2

n þ
192cqc

5

� �
(B3i)

m45 ¼
1

36

24cqc

5
� 4

105
c2qca2

n 8cþ 21ftð Þ
� �

(B3j)

m55 ¼
a2

n½2cqc 134c2 þ 357cft þ 315f 2
t

� 	
þ 315f 3

t qt�
3780

þ 1

15
4cqc þ 15ftq

tð Þ (B3k)

and the 5� 5 symmetric stiffness matrix with kij ¼ kji has the fol-
lowing elements (per unit width):

k11 ¼
Gc

31

2c
þ fbEb

1a
2
n (B4a)

k12 ¼ �
Gc

31

2c
; k13 ¼ �

Gc
31an 3fb þ 2cð Þ

12c
(B4b)

k14 ¼ �
2

3
Gc

31an; k15 ¼ �
Gc

31an 2cþ 3ftð Þ
12c

(B4c)

k22 ¼
Gc

31

2c
þ fta

2
nEt

1 (B4d)

k23 ¼
Gc

31an 3fb þ 2cð Þ
12c

; k24 ¼
2

3
Gc

31an (B4e)

k25 ¼
Gc

31an 2cþ 3ftð Þ
12c

(B4f )

k33 ¼
1

72

Gc
31a

2
n 3fb þ 2cð Þ2

c
þ 6f 3

b Eb
1a

4
n þ

84Ec
3

c

" #
(B4g)

k34 ¼
1

72
8Gc

31a
2
n 3fb þ 2cð Þ � 96Ec

3

c

� �
(B4h)

k35 ¼
1

72

Gc
31a

2
n 3fb þ 2cð Þ 2cþ 3ftð Þ

c
þ 12Ec

3

c

� �
(B4i)

k44 ¼
1

36
32cGc

31a
2
n þ

96Ec
3

c

� �
;

k45 ¼
1

36
4Gc

31a
2
n 2cþ 3ftð Þ � 48Ec

3

c

� �
(B4j)

k55 ¼
Gc

31a
2
n 2cþ 3ftð Þ2

72c
þ 7Ec

3

6c
þ 1

12
f 3
t a4

nEt
1 (B4k)

The vector of the unknown generalized coordinates in Eq. (B2) is

fUnðtÞg ¼ fUb
nðtÞ;Ut

nðtÞ;Wb
nðtÞ;Wc

nðtÞ;Wt
nðtÞg

T
(B5)

and the load vector fFnðtÞg ¼ TðtÞf0; 0; 0; 0;QngT
. The ordinary

differential Eq. (B2) in time can be solved using standard numeri-
cal integration methods.
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