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Abstract 
The free vibration response of a unidirectional sandwich panel with a compressible and 
incompressible core using the various computational models is presented and com­
pared with closed-form elasticity solutions and finite element results. The mathematical 
formulations for various models along with the numerical investigation are presented in 
two parts. In the first part compressible core are considered using the elasticity closed­
form solution and various high-order computational models such as the high-order 
sandwich panel theory (HSAPT) and the extended HSAPT model (EHSAPT). The 
second part is dedicated to incompressible cores and includes classical models. first­
order and high-order shear deformable models. and zig-zag displacement pattern 
model. ordinary sandwich panel theory. The elasticity-based model serving as the 
benchmark solution (in first part) assumes isotropic, orthotropic. as well as layered 
core types. The mathematical formulation utilizes Hamilton's principle to derive the 
general equations of motion. A closed-form solution of the elasticity model is available 
only for a Simply-supported panel and it is compared with all various models numeric­
ally. The numerical investigation includes: eigenfrequencies, displacement modes along 
the length and through the depth of panel. as well as stress modes through the depth of 
panel. The results of the various models are compared with the 2D elasticity solution 
and finite element results of ADINA. In general. the lower mode correlates well for all 
models while for the higher modes only the EHSAPTand the HSAPTwith displacement 
formulation compared well. 
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Introduction 

Vibration of modern sandwich flat panels that are used in various industries such as 
aerospace, mechanical and civil engineering for structural applications starts to 
emerge as an important topic especially when dynamic or blast lading is considered. 
A typical panel is usually made of two face sheets, metallic or composite laminated 
that are very stiff and a core that is usually made of a low-strength light or heavy 
(dense) foam, or lightweight, low strength metallic honeycomb, or solid light 
material such as balsa wood or similar. Notice that a foam core is flexible (low 
rigidity) in all directions; however, in the vertical direction it is the only component 
that has some rigidity to resist the vertical normal stresses that may reach large 
values in the vicinity of localized effects. In the in-plane direction the core contri­
bution to the overall bending rigidity of the panel (core and face sheets) is usually 
very small as compared to that of the face sheets. Hence, in many practical appli­
cations the in-plane rigidity of the core is usually neglected. It means that the entire 
overall bending moment in a section is being carried by the couple that is formed in 
the face sheets. The contribution of the face sheets to the bending resistance relative 
to the overall bending is denoted by the term composite action, which is equal to 
one when the core in-plane resistance is neglected. The case of a metallic honey­
comb core represents a core that is very stiff in the vertical direction but very 
flexible in the in-plane direction. And the other option of a core made of a light 
solid material defines a core where its in-plane rigidity may be comparable to that 
of the bending moments due to couple that is formed in the face sheets and in such 
cases the composite action factor is smaller than one. In general, the approaches 
taken to analyze such panels is in tandem with the properties of the core and to 
mention a few: classical with no shear deformation, first-order shear deformation 
theory (FOSDT), high-order shear deformation theory (HOSDT) (ESL models) 
that include shear deformations with various kinematic assumptions and some 
layered models such as the ordinary sandwich panel theory (OSPT), one that are 
appropriate for the analysis of panels with a metallic honeycomb core; the high­
order (layered wise) approaches (high-order sandwich panel theory, HSAPT), have 
been used for 'soft' compliant low strength core type that are flexible in the vertical 
directions and with negligible in-plane rigidity, such as light foam or honeycomb; 
and the case of a core made of a solid materials that requires an appropriate model, 
which includes the effects of the in-plane and the vertical rigidity of the core on the 
response such as the extended high-order sandwich panel theory (EHSAPT). 
Details on the various models and references are described ahead in the two 
papers. One of the typical errors involved in the analysis of sandwich panels is 
the use of models that are appropriate for incompressible core to analyze panels 
with a soft (compressible) core especially in dynamic problems. In general, the 
eigenmodes of a panel consist of overall ones as well as through the thickness as 
a result of displacements in the vertical direction. However, when incompressible 
core models are used no through thickness modes are detected. Hence, in order to 
identify the effects of the various core types on the response some well-known 
computational models are studied and compared. The article has two major 
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goals: the first is the accurate mathematical description of the incompressible and 
compressible computational models and the second is to demonstrate what is the 
accuracy of the compressible core models and to what extent is the use of the 
incompressible core models in describing the response of any type of sandwich 
panels being correct. 

In general, the analysis of sandwich panel follows two main tracks that are in 
tandem with the core type. The first one assumes that the cores are an anti-plane 
type, i.e. very stiff in the vertical directions and with negligible in-plane rigidity in 
the longitudinal direction [J-3], which correlates well with the response of sandwich 
panel made of a metallic honeycomb core and maybe modeled by the incompress­
ible core approaches such as the FOSDT, HOSDT or OSPT models. The second 
track is the high-order models that are appropriate for low strength, flexible foam 
cores and combines the layers of the face sheets and the core into an overall 
structure through equilibrium and compatibility, see, for example, Frostig et al. [4]. 

In addition, there is an approach that is based on elasticity that assumes that the 
sandwich panel consists of 2D elasticity layers, i.e. the face sheets and the core are 
interconnected through equilibrium and compatibility. An approach based on elas­
ticity formulation assuming linear small deformation kinematic relations has been 
taken by: Pagano [5] for composite and sandwich panels; Pagano and Hatfield [6] 
for bidirectional composite panels; Zenkour [7], Kardomateas [8,9] and 
Kardomateas and Phan [10] for a static and buckling analysis; Srinivas and Rao 
[11] for dynamic response of simply-supported composite panels; and recently 
Karczmarzyk [12] for dynamic response of clamped-damped sandwich panel 
using a special type of analytical solution. In general, these solutions are quite 
limited since closed-form solutions exist for only simply-supported panels or 
panels with specially prescribed Bes. Hence, they may serve as a benchmark 
rather than as a general computational tool. Here, this solution is used as a bench­
mark for the free vibration of a simply-supported sandwich panel. 

A different approach when compared with the equivalent single layer (ESL) [3] 
assumes that the sandwich panels are made of layers that are interconnected 
through equilibrium and compatibility, the core is compliant, compressible with 
negligible in-plane rigidity, denoted as the high-order sandwich panel theory 
(HSAPT). This approach has been used for static, dynamic, linear and non­
linear applications and to mention a few: beam analysis [4]; buckling and free 
vibration [13,14]; non-linear behavior [15]; free vibration of curved panels [16]; 
free vibrations of plates [17]; dynamic response of debonded panels [18,19] and 
recently, free vibration with thermal effects [20,21]. 

An improvement of the HSAPT model for panels is required when the cores in­
plane rigidity cannot be neglected, such as solid medium to heavy weight foam or 
wood; or when the response of the panel is of a local type such as wrinkling. In such 
cases, an enhanced high-order sandwich panel theory [EHSAPT] should be used. It 
has been recently implemented [22] for application of in-plane loads through core, 
for wrinkling and global buckling of sandwich panels [23,24] and for dynamic 
applications [25]. 
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The references previously mentioned consist of a mathematical formulation that 
presents the equations of motion, including rotational inertia that are derived 
explicitly through the Hamilton principle and the specific mass and stiffness matri­
ces for a simply-supported case. In general, it follows the steps of the high-order 
theory (HSAPT) used for unidirectional panels and plates [4,13,14,16]. In the for­
mulation it is assumed that the panels are elastic, linear with small displacements 
and they consist of a core and two thin plates - two face sheets, with in-plane and 
flexural rigidity and negligible shear rigidity. In addition, all cores have vertical 
shear resistance with negligible in-plane resistance. But in the case of incompress­
ible core the vertical rigidity is infinite while in the compressible ones it is finite and 
usually small. The EHSAPT is the only model that includes the in-plane rigidity of 
the core. In addition, face-core interfaces fulfill the conditions of full bond with 
shear and vertical normal stress resistances. 

The article consists of two main sections. In the first section the mathematical 
formulation of the elasticity and the high-order models, HSAPT and EHSAPT, are 
presented that includes the equations of motion (PDEs) and the appropriate mass 
and stiffness matrices for the case of a simply-supported panel. In the second sec­
tion a numerical investigation is presented for a specific configuration that has been 
used for blast experiment panel with a single- and a multi-layered core. Finally, a 
summary is presented and conclusions are drawn. 

Mathematical formulation 

The equations of motion for the various models have been derived or re-derived 
through the Hamilton principle that uses the variation of the kinetic and internal 
energy. It reads 

(1) 

where L is the Lagrangian, T is the kinetic energy, U is the internal potential 
energy, t is the time coordinate between the times tl and t2 and 8 denotes the 
variation operator. 

The first variation of the kinetic energy for the sandwich panel reads 

(2) 

where Pi (j = t, b, c) is the mass density of the upper and lower face sheets and the 
core respectively; Uj,/ and w;./Ci = t, b, c) are the velocities in the longitudinal and 
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vertical direction respectively of the various constituents of the sandwich panel; 
II = ~ is the first derivative of the function f with respect to the time coordinate; 
Vh = t, b, c) is the volume of upper and lower face sheets and core, respectively and 
dv is the volume of a differential segment. 

The first variation of the internal potential energy is general and it is formulated 
to be applicable to all computational models through the special a, fJ and A terms. 
It is defined in terms of stresses and strains and reads 

oU = { Oxxt&:XXI + aJ1:x::toYy=t dv + f Oxxb&:xxb + a/cx=boYx=b dvlv, JVb 

+ {. AcOxxcOexxc + act:'(Zcoyx=c + fJcO==cDe==c dvlv, 
where 

(j=t,b,c) (3) 

And ax.,; and exxj (i = x and j t, b) are the longitudinal normal stresses and strains 
in the upper and the lower face sheet, respectively; 'txzj and l,b) are the 
vertical shear stress and angle respectively at the various face sheets; 'tx ::c and Yec 

are the vertical shear stresses and shear strains in the core on the longitudinal and 
transverse faces of the core, respectively; O::::c and £::::c are the vertical normal 
stresses and strains in the vertical direction of the core and uJ and I~J(j = t, b. c) 
are the displacements in the longitudinal and vertical directi9ns respectively of the 
various constituents of the panel. Geometry and sign convention for stresses and 
displacements are shown in Figures 1 to 4. 

The energy terms for the various computational model are controlled through 
the a, fJ and A terms as follows: HSAPT O!/= Ac = 0, a c = fJc 1, EHSAPT ­
af= 0, Ac a c = fJc = 1 and ELAS (Elasticity), af= at' = fJc = Ac = 1. 

The formulation ahead outlines the 2D elasticity solution, proceeds with the 
high-order and extended high-order models. 

2D elasticity model 

The equations of motion in terms of stresses and displacements as a result of the 
Hamilton principle and the kinetic and potential energies (equations (1) to (3», for 
any layer of the sandwich panel, face sheets (t, h) or core (c), read 

-----.................
-~-. 
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(a) 

Figure I. Coordinate system and stresses for the elasticity model: (a) coordinate system and 
(b) stresses within a layer. 

(4) 

where (1kk/k = x, t, c, b) are the normal stresses in the longitudinal and vertical 
direction respectively at the various layers; rxzj is the shear stresses in the j layer; Uj 

and wi are the displacements in the longitudinal and verticat directions, respect~ 
ively; x and Zj are the coordinates in the longitudinal and the vertical (local coord­
inate) directions, respectively; Pi is the mass density of the various layers and bw is 
the width of the panel. Notice that the stresses and the displacements are general 
functions of the space and time coordinates. Sign convention, coordinates, and 
stresses on a differential element are provided in Figure I. 

The stresses following Hook law in terms of the displacements assuming an 
orthotropic material in the j layer read 

EXj(tuAx,z). t) + VZXi"kW;(X,Zj, t)) 
(1xx) = ,

I Vx~jVzxj 

rX;;i=GxZj(a~ju;(x,Z},t) + ; WAX,Zht)) (5) 

where Ekik = x, z) and G xzj are the moduli of elasticity in the longitudinal and 
vertical directions respectively and the shear modulus of the j layer; Vxzj and vzxi 

are the Poisson's ratio in longitudinal and vertical directions, respectively. 
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Upper 
Face 

Lower 
Face 

Figure 2. Coordinate system, stress resultants and displacement pattern for the HSAPTwith 

mixed formulation model: (a) coordinate system; (b) stress resultants and (c) displacement pat­

tern through depth of panel. 

HSAPT: high-order sandwich panel theory. 


A simply-supported panel is considered here since it is only case where the 
elasticity model has an accurate c1osed-fonn solution. The formulation ahead 
takes a similar approach to that of Pagano [5] and Srinivas and Rao [11] with 
modification as a result of the existence of a low strength compliant core. Thus the 
displacements read 

N N 

ulx, Zj, t) = L Umj(Zj) cos(amx)e""ml, wl\:, Z" t) = L Wmj(Zj) sin(amx)eIUlml (6) 
m=l m=l 

where llm,{Z;) and wm,{z) are the displacements in the longitudinal and vertical 
directions through the depth of layer j that correspond to the half wave number 111, 



384 of Sandwich Structures and Materials 

d1 r+V-----!_' 
!.L.. '1['.....[._..~___012 - _ _ . 

- - . ~ 

c/2 -

f~ 
cl2 

(a) 

Upper 
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Figure 3. Coordinate system and displacement pattern for the HSAPT with displacement for­
mulations: (a) coordinate system and (b) displacement pattern through depth of panel. 
HSAPT: high-order sandwich panel theory. 

Upper 
Face 

Lower 
Face 

Figure 4. Stress resultants and displacement pattern for the EHSAPT model. 
EHSAPT: extended high-order sandwich panel theory. 
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respectively; am = mrr/L with L being the length of the panel and N the number of 
half waves; 1=.J-1, W", is the eigenfrequency of the m wave number and t is the 
time coordinate. 

The formulation ahead uses a single term solution for brevity due to the uncou­
pling between the equations of each terms of the series solution. Hence, the equa­
tions of motion are defined through substitution of the single term displacements 
(equations (6)), into the stresses (equations (5)), and then into the equilibrium 
equations (equations (4)). Hence, they read 

In the case of an isotropic layer: Exj = E~j = Ej, Vx~j = V~xj = I-Lj, a closed-form 
solution exists and it reads 

Uj(Zj) = C[ eft,oi + C2 e-ft,=, + C3 e.jj;=, + e-.jj;=iC4 

( -e-.jj;=iC4 + C3 e.jj;Zi)am ( -C2 e-ft,~; + C[ eft,~j).Jl3l 
\1j(Zj) = .Jlf2 + am (8) 

And Ck (k = 1,2,3,4) are the constants of integration to be determined by equi­
librium and compatibility through depth of panel or the stress-free surfaces con­
ditions. In addition, the stresses for this case read 

au {x, Zj, t) = - ( 

am -1 + I-Lj


2) 
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(9) 

In the case of a honeycomb or a low-strength compliant core, which has shear 
and vertical normal stresses rigidity and neglected in-plane rigidity, the mechanical 
properties equal or approximated respectively as follows: 0, Ezj = Ej , 

J1r And in this case the closed-form solution read 

x [(C,,'I"'.;p;; c,:'I'".;p;;) (,/Pi+j=~;.~-oJ. )Pl +a~EJ"J ) 1 
+ f:!5 (C1e- 1/ 2z,,Jlha -el/2Zf~C2)J~: 

where 

»';(Zj) C1 

2 ( .) ( )2 2 2 ( )4 42E,fXmPj /Lj - 2 1+ /Lj W"" f:!2 = Pj 1+ /Lj Wm 

f:!3 = (-2/L) 3 + /LJ)P)W;, -a;,Ej/Lj, 

f:!4::::;:,[if; + (-2/L; 3 + /LJ)PiW~ -a~Ei/Li' 

f:!5 ,[if; + (1 +2J1j+ J1J)w~pj-a;Ej/Lj 
2 (-4J1 6+2J12)rocw;',-2..f1J2

f:!3 a = -2 (i",J1 + .::..-....:-----.:..E-1----'"'---'--'­
j 

f:!4a = -2a~/Lj+-'--------::::-'----­

(10) 

+ 2..f1J2 



Frostig et ol. 387 

And the stresses read 

( C 1e-li2~J~ + el/2~j~C2) 
x + (-/'i./1f4./1f4:,( -./P2 ( I + 21"J +"7)w;.PJ - .~,EJI"J ) ) 

xJETI + 8a~PJw~(1 + J.ti 
(C3e-l/2~j~ + C4el/2:j~} 

(11) 

The full response of the sandwich panel is a combination of two face sheets and 
a core, which has properties that are different by order of magnitude, and are 
interconnected through continuity conditions and free stress surfaces. Hence, in 
order to determine the constants of integration, Ck , for each layer face sheets and 
core the following conditions must be fulfilled 

- O"::(x,z, = -1/2d/, t) = 0, -Tx~,(X,z, = -1/2d" t) = 0 

u,(x, z, = 1/2d" t) - uc(x, Zc = -1/2e, t) = 0 

wr(x, Zr = 1/2d!> t) wc(x, Zc = -1/2e, t) = 0 

- O"zzt(x,z, = 1/2dt.!) +O"==c(x,zc = -1/2e, t) = 0 

Tx:/(X, Z, 1/2d,) + Tx;c(X, Zc = -1/2e) = 0 
(12) 

uc(x, Zt 1/2e, t) - Ub(X, Zc = -1/2db, t) = 0 


wc(x,zc 1/2e, t) - Wb(X,Zb = -1/2db,t) = 0 


O"z;J"", Zc l/2e, t) + O"::b(X, Zb = -1/2db, t) = 0 

ZI.' = 1/2e, t) + 'x:b(X, Zb = -1/2db, t) = ° 
0"==, (x, Zb = 1/2db, t) 0, T.rzb(X, Zb = 1/2db, t) = ° 

Notice that the first two and the last two conditions refer to stress-free surface 
requirement while the other eight refer to the interfaces between the face sheets and 
the core and consist of continuity requirements in displacements and equilibrium in 
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vertical and longitudinal directions. In addition notice that the full set of equations 
consists of equations with extremely large differences in magnitude - there are 
equations in the order of displacements and there are equations in the order of 
stresses. Hence, a scaling procedure must be used in order to get a reliable numer­
ical scheme. 

The same solution can be used for the case of a sandwich panel with a few layers 
or face sheets that consist of a few layers or a sandwich panel with a few face sheets 
and in between cores, denoted as multi-layered sandwich panel. The conditions 
that are required to be fulfilled are stress-free at the outer fibers of the panel and 
continuity in displacement and equilibrium at interfaces between the layers. Notice 
the large difference measured by order of magnitudes between the stress and the 
displacements condition requires a scaling procedure in order to achieve reliable 
and accurate numerical results. 

High-order sandwich panel theory model 

Two variants of the HSAPT models are considered. The first one, denoted as 
HSAPT (mixed) uses the unknowns of the ordinary -HSAPT model that includes 
the displacements of the face sheets, Uoj and Wi (j= I,b) along with the shear 
stresses in the core and the velocities through the depth of the core are assumed 
to be linear [14]. The second model, denoted by HSAPT (displacement), assumes 
that the distribution of the displacements and the velocities in the core are poly­
nomial, cubic for the longitudinal displacements and quadratic for vertical one, 
which corresponds to the static displacement patterns of the HSAPT model [4]. 
Here, the unknowns consist of the displacements of the face sheets and the 
coefficients of these polynomials and not the shear stress in the core. For 
more details in the case of vibration of a 2D sandwich plate see Frostig and 
Thomsen [17]. 

The equations of motion are derived through the Hamilton principle 
(equations (1» and the variations of the kinetic and potential energy (equations 
(2) and (3» along with the following parameters a!j= 0, Ac = a!c = f3c = 1. The first 
model is described in detail. 

Mixed formulation. Only the equations of motion and mass and stiffness matrixes 
that correspond to the particulars of a simply-supported panel are presented for 
completeness and brevity. For more details see Frostig and Baruch [14]. 

The equations of motion derived from the Hamilton principle (equation (1», 
yields only four equations with five unknowns, Uoj and Wj (j = I, b) and T. The fifth 
equation is the compatibility at the lower face-core interface in the longitudinal 
direction [14] and they read 

.~----~ .............. ---------_ ..._--­
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whereAs = fs/k or As /l;rf(x, t) = x or t and/is one of the dependent variables; 
Mj= Pjb"d; and Imj pj b...dJl12 (j=t,b) are the mass and the moment of inertia, 
respectively, of the section of the face sheets and Me = Pcb",c is the mass of the core 
section. Notice that only the first four equations have inertia terms while the fifth one 
is a compatibility equation. 

Also here, in the case of a simply-supported panel a solution based on a trig­
onometric series yield a closed-form solution and it reads 

N [II 

Uoj = L Cuo},m cos(Ctmx)e;W",t, Wj =L CHj,n! sin(Ctmx)eiwmt (j=t,b) 
m=l m=l (14) 

T L
[II 

Cr,m cos(Ctmx)e!lumt 
m=l 

where Cuoi.m and C,,:;,/tl are respectively the constants of the in-plane and vertical 
displacements of the face sheets and C r .m is the constant of the shear stress in the 
core that correspond to the m half wave number. They are to be determined 
through the solution of the eigenvalue problem (equation (7»). Thus, the mass 
and stiffness matrices along with the C vector of unknowns read 

{ (t+tia~d~)M'} 
+a;,Im,+Mt 

(t -iAa~dbdl)M, - ~ l\.f,amdt -tiMcamd, 0 

Mm= (~+ -iAa;,Adt}Me 

~MJxmd, 
-nMcamdt 

H+tia;,,~)Mc +Mb+a;,lmb 

tiM"amdb 

-~M,.amdb 

~Mcamdb 
!'Mc+MtJ 

tM,. 

~Mcamdb 

iMc 

Mb+t M, 

0 

0 

0 

0 0 0 0 0 
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_MEltCt~+¥ c 0 0 !Ctmbw(d1 + c) 

-~ M+EI Ct4 0 0 !Ctmb",(db + c) 

Km 
c c b m 

0 0 EAtCt; 0 -bw 

0 0 0 EAbCt; bl\' 
b'l'C _ ..L bwc a;n!Ctl11bw(dt + c) !Ctl11 b",(db + c) -bl\' bw 

c 12 E, 

3

G

Cm = [CU01,l1h C't'I,m. Cuob,m, CWb,J1h Cr,m]T (15) 

Notice that for each wave number yields only four eigenvalues since the fifth row 
in the mass matrix is null. 

Displacement formulation. In this formulation, the displacement patterns through the 
depth of the core of the unidirectional panel is assumed to consist of a quadratic 
and cubic polynomial form for the vertical and longitudinal displacements, respec­
tively [4] (Figure 3(b». Here, the coefficients of the polynomial are the unknowns 
rather than the shear stress in the core (see previous sub-section where the displa­
cement pattern in the face sheets follows the Euler-Bernoulli assumption with 
negligible shear deformation). Hence, the assumed displacements in the face 
sheets and the core read 

uAx,z;, t) = Uoj(x, t) - ZAltj.x)(x, t) U = I,b) 


uc(x, Ze. t) uoc(x, t) + ¢(x, I)Zc + U2(X, t)z; + U3(X, t)z~ (16) 


Wc(x, zc, f) = wo(x, t) + wI (x, t)ze + W2 (x, t)z; 


where uae' Wa and ¢ are the longitudinal and vertical displacements and the rotation 
at the centroid of the core, respectively. Coordinate system and displacement pat­
terns are shown in Figure 3. The requirement of full bond at the face core interfaces 
between the face sheets and the core requires the following compatibility conditions 

Uc(x,zc = -1/2c, t) = uo/(x, t) - 1/2dt {li't,x)(x, 1), We(x,Zc -1/2c,t) Wt(X,t) 

ue(x,I/2zc 1/2c, t) = Uab(X, t) + 1/2 db (Wb",)(X, t), wJx,zc = 1/2c,t) = Wb(X,t) 

(17) 

Hence, four out of the seven unknowns in the core displacements can be deter­
mined. Hence, after some algebraic manipulation they read 

4 UI Uob 2 Wb'Xdb) 3-:;+4 + --3- Zc 
c- c 

liot Wt ~dt 2 Uob Uoc(X,I») 2+. -~+. + -4 Zc+¢c+Uoc(2 c2 

----_....... _-­
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+ H'b)Zc + 2 .c..Cw_l__2_w-::·()_+_W_·b_)Z-,,-;' (18) 
c2C 

The number of unknowns in this model is only seven, two for each face sheets 
and three in the core. In addition, the stresses in the core consist of shear and 
vertical normal stresses while the in-plane stresses are negligible and following 
Hook law they read: 

And in terms of the unknowns they equal 

+4uo/ - SUoc +4 )-'-----"'------:::---------'--+<1>+ Wo•x G:cc 

(20) 

For details, see similar results for a 20 sandwich plate in Frostig and Thomsen [17]. 
The equations of motion are derived using the displacements in equations CIS) 

along with the strains defined in lower part of equations (3) and the variation of the 
kinetic and potential energies (equations (2», and upper part of equations (3) and 
the Hamilton principle (equation (1». The equations are very long and appear in 
Appendix 1 for brevity. 

In the case of a simply-supported panel a closed-form solution in the form of 
trigonometric series exist that yields an eigenvalue problem and it reads 

N 	 N 

Uot L Cuo/,m cos(O'mx)e1wm/, IVI = L Cn'l,m sin(O'mx)e1wml , 
m=) 	 m=) 

N 	 N 
1wm1Uob = L Cuob,m eos(O'mX)e , Wb L Cll'b,m sin(O'mx)e1wm/, 

m=1 m=l (21)
N 	 N 

1wmt 
<1> 	 L C""m cos(O'mx)e , U oc = L Cuo,mcos(O'mx)eiwmt, 

m=1 m=) 

N 

IVo = L Cwo,,,, sin(O'mx)e1wmt 


m=1 
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where Cj,m (j=uot, wt, uob, wb, uoc, <p and wo) are constants to be determined 
through the eigenvalue solution of the equations of motion given in matrix form as 
follows 

(Mm AmK",)Cm = 0 (22) 

where Am w;;,: C~ = [Cuo/,m. Cwf,m, Cuob,m, Cwb,m, Cuoc,m, Ct/",,,, Cwo,,,,], and 0 is a 
zero vector of length seven and Mm and Km are the mass and the stiffness matrices, 
respectively, and Wm is the radial eigenfrequency of wave number m. 

The mass and stiffness matrices are determined through substitution of the 
solution series into the equations of motion and collecting them with respect to 
the trigonometric and harmonic functions and the constants of the solution. The 
matrices are lengthy and are not presented for brevity. Here, the matrices are 7 x 7 
as compared with the previous case of 4 x 4 after condensation, Hence, this theory 
predicts seven eigenvalues for each half wave number. 

Extended HSAPT model 

The EHSAPT model takes into account the in-plane rigidity of the panel and it 
yields results that almost coincide with some available 2D static elasticity solutions 
[23,24]. The formulations here includes only the basic equations for brevity and for 
details see Phan [25]. The extended model assumes that the displacement patterns 
for the face sheets are those of Euler-Bernoulli while those of the core are poly­
nomial (equations (16». Hence, after use of compatibility conditions at the face­
core interfaces the core displacements change into equations (17) and its stresses 
appear in equations (18). Here, the in-plane rigidity of the core is considered and 
therefore the stress fields in the core include normal stresses,in longitudinal and 
vertical directions as well as shear stresses. For the isotropic case they read 

-4 <Px + -4uot,x +4Uob,x +2db W b,xx +2dtWt,xx) 7 3 
( C2 

~ 
l I1c-c 

+2Uob,x +dbWb,xx -
+~--------------~------------~~ 

Wb-Wt 
+I1c Uoc.x +--­c 

J)-l
11~ 

+ (I1C<Px 



__--'--::-__-'--___ 

~ ,. 

~ 
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rc(x,zc) 

2WI,x -4wo", + 2Ii'b,x -12¢ +_-_1_2_u_o,_+ 
( c2 

-WI v + wb v 4uo/ - 2 (J.:(x, t))dtwt x +. 2dbWb,+ ,., ,., + uX •• 

( c 

+¢+wo,x 
(23) 

In addition, as a result of the in-plane rigidity of the core, there are stress 
resultants such as axial forces, bending moments, and even higher order bending 
moments (Figure 4). 

The equations of motion that appear in Appendix 2 have been derived through 
substitution of the strains in the potential energy with the following factors: etr= 0, 
Ac =etc = f3c = L see equations (3) and the kinetic energy, equation (2) into the 
Hamilton's principle. For the case of a simply-supported panel the solution 
series is the one that appears in equation (21). 

The mass and the stiffness matrices are derived through substitution of the 
trigonometric solution into the equations of motion (see Appendix 2), removing 
the trigonometric functions, collecting the terms with respect to the constants Cj 

that appear in equations (21). The explicit description ofthese matrices appears in 
Phan's thesis [25]. Also here the size of the matrices is 7 x 7 similar to that of the 
HSAPT with the displacement formulation. However, the terms in the matrices are 
totally different due to the contribution of the in-plane rigidity of the core, 

Numerical study 
The numerical study investigates the free vibration of compressible simply-sup­
ported sandwich paneL Single- and multi-layered core based on a specific setup 
used in the cxperimcntal blast investigation of Gardner et aL [26], with some 
modifications, is adopted here. The results include the eigenfrequencies for the 
first and the second half wave numbers. The eigenmodes are presented for the 
case with a low density core. 

Single-layered core 

The first case investigates the free vibration of a sandwich panel where a single 
uniform core is based on setup of Gardner et al. [26]. It uses a sandwich panel that 
consists of face sheets made of E-Glass vinyl-ester laminated composite with a 
quasi-isotropic layup [0/45/90/-45]s, with a density of 1800 kg/m3 and an equiva­
lent modulus of elasticity of 13,600 MPa. The foam core, A300, is Corecell™ 
A-series styrene acrylonitrile (SAN) foams with density of 58.5 kg/m3 

, an elasticity 
modulus of 32 MPa, a Poisson's ratio of 0.25 and a shear modulus of 12.8 MPa. 
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PI=1800 kg/m', 1:,=13600 MPa,~=5440 MPa, 1lt=O.25 
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"..Po - Pc=-58.5 kg/m"£c=32 MPar G:=12.8 MPa, J.lc.;;O.25­

L=152.4 mm 

5 

CQre 38 

5 

102mm 

Section 
Figure 5. Layout of a sandwich panel with a single-layered core and a typical section. 

For geometry see Figure 5. The second case consists of a sandwich panel with a 
core that is made of a number of layers and a polyurea layer (Figure 7), yielding an 
unsymmetrical construction layout. For more details on the setup see Gardner 
et al. [26]. 

The eigenfrequencies are presented in a non-dimensional form with respect to an 
eigenfrequency of a unidirectional panel with an identical flexural rigidity only. 
The results in Table 1 include the eigenfrequencies of: a light core of A300 
(p = 58.5 kg/m3, Ee = 32 MPa, Gc = 12.8 MPa, Me = 0.25), (for the first two 
half-wave numbers) a heavy core of A800 (p = 150kg/m3, Ec = 117 MPa, 
Gc = 46.8 MPa, Me = 0.25) (for the first half-wave only). The eigenmodes of the 
first wave number along the panel and through the depth of the panel appear in 
Figures 6 and 7, respectively. 

The results in Table 1 consist of four modes for the HSAPT model with the 
mixed formulation, and seven modes for the HSAPT model with the displacement 
formulation and the EHSAPT. In addition, there is a column with the results of a 
finite element (FE) model of ADINA for comparison and the number of values in 
each computational model corresponds to the number of unknowns in the formu­
lation. However, due to the non-linear eigenvalue problem in the elasticity model 
the number of modes for each half-wave number is infinite. Here only the first 
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Table I. Non-dimensional eigenfrequencies of modes for first and the second half-waves for 
light (L. A300) and heavy (H. ABOO) core. 

Computational model 

Mode no. Wave no. HSAPT (Mixed) HSAPT (Displ) EHSAPT Elasticity FE-ADINA 

N= I(L) 

N= I(H) 

N=2(L) 

0.163 

0.285 

0.099 

0.164 

0.286 

0.100 

0.164 

0.286 

0.100 

0.164 

0.286 

0.099 

0.163 

2 N= I(L) 

N= I(H) 

N=2(L) 

0.569 

1.136 

0.157 

0.567 

1.138 

0.156 

0.575 

1.127 

0.156 

0.574 

1.134 

0.156 

0.574 

3 N= I(L) 

N= I(H) 

N=2(L) 

2.251 

2.252 

1.126 

1.576 

1.824 

0.411 

1.704 

1.982 

0.529 

1.691 

1.980 

0.332 

1.704 

4 N= I(L) 

N= I(H) 

N=2(L) 

2.365 

2.558 

1.172 

2.331 

2.514 

0.688 

2.335 

2.530 

0.694 

2.332 

2.526 

0.519 

2.391 

5 N=I(L) 

N= I(H) 

N=2(L) 

2.463 

2.949 

0.845 

2,471 

2.986 

0.918 

2,455 

2.942 

0.682 

2.499 

6 N= I(L) 

N= I(H) 

N=2(L) 

2.737 

3.757 

1.189 

2.808 

3.852 

1.190 , 

2.781 

3.799 

0.895 

2.780 

7 N I(L) 

N= I(H) 

N=2(L) 

3.462 

4.590 

1.206 

3.536 

4.686 

1.208 

3.422 

4.521 

1.141 

3.420 

HSAPT: high-order sandwich panel theory; EHSAPT: extended high-order sandwich panel theory. 

seven eigenfrequencies of this model are presented. The two HSAPT models and 
the EHSAPT model yielded accurate eigenfrequencies for the first two wave 
number and the first two modes. The HSAPT with the mixed formulation yields 
quite accurate modes for the first two wave numbers. The discrepancies are larger 
for the second wave number. The results of the HSAPT model with the displace­
ment formulation and the EHSAPT models compared very well with the elasticity 
ones. The results are very accurate for the first two modes while the larger dis­
crepancies occur at the third mode for the HSAPT results. In the higher modes the 
results of the HSAPT are in closer proximity as compared with the EHSAPT. 
In the case of the second half waves the discrepancies of the third mode and 
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Figure 6. Seven eigenmodes of displacements of the first half-wave number along panel for 

various computational models and the elasticity solution. 

HSAPT: high-order sandwich panel theory; EHSAPT: extended high-order sandwich panel theory. 


above is about 5-6% as compared with 1-2% for those of the first half wave 
number. In addition, the comparison between the light and the heavy core results 
reveals similar trends for all computational models, The difference between the 
orthotropic (E,uc = 0) and the isotropic panels with the elasticity model is minor 
especially at the lower modes. The FE results compare well with the elasticity 
eigenfrequencies for the lower modes and the discrepancy becomes larger as the 
mode number increases. 

The eigenmodes along the panel are presented in Figure 6, and through the 
depth of the panel in Figure 7. They have been determined through normalization 
with respect to the largest value in the eigenvector of the results while in the 
elasticity model they have been normalized with respect to the largest displacement 
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Figure 6. Continued. 

through the depth of panel. Notice that the largest value, in the elasticity 
solution does not necessarily occur at the location of the unknowns of the other 
computational models. In addition, the modes of the various models have been also 
normalized with respect to the sign of the corresponding mode of the elasticity 
model. 

The results in Figure 6 describe the in-plane and longitudinal displacements of 
the upper and the lower face sheets only in the case of the HSAPT (mixed) and in 
addition, the in-plane and vertical displacements and the rotation at the centroid of 
the core for the HSAPT (displacement) and EHSAPT models and the elasticity 
solution includes all the above mentioned normalized unknowns. The first mode 
corresponds to a pure bending mode where the two face sheets move in tandem and 
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Figure 7. Seven eigenmodes of stresses of the first half-wave number through depth of panel 

for various computational models and the elasticity solution. 

HSAPT: high-order sandwich panel theory; EHSAPT: extended high-order sandwich panel theory. 
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is identical for all models. The second mode is a pumping type where the two face 
sheet move in opposite directions. Here the HSAPT models and the EHSAPT 
correlate well. The third mode is a longitudinal movement of the face sheets that 
correlates well with all models although the corresponding eigenfrequencies are 
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quite different. The f'Ourth m'Ode c'Onsists 'Of 'OPP'Osite I'Ongitudinal displacements 'Of 
the face sheets with small vertical displacements and it c'Orrelate well with HSAPT 
and EHSAPT m'Odels. The same is true als'O for the fifth mode that describes un­
identical l'Ongitudinal m'Ovements 'Of the face sheets. The last two m'Odes 'Of the 
HSAPT and EHSAPT are quite different than those of the elasticity solution 
although there is a go'Od c'Orrelati'On 'Of the corresP'Onding eigenfrequencies. 

The m'Odes thr'Ough the depth of the panel appear in Figure; 7 for the first seven 
m'Odes that c'OrresP'Ond t'O the first half wave number. Here the n'Ormalizati'On is 
with respect to the extreme value of the I'Ongitudinal 'Or the vertical displacements in 
all m'Odels. In the first m'Ode the distribution 'Of the I'Ongitudinal displacement is in 
the f'Orm of a zig-zag curve and the vertical displacements changes within the depth 
'Of the c'Ore and all model correlate well. The same is true also for the second mode. 
Here, the vertical displacement in the c'Ore is linear and the I'Ongitudinal is para­
bolic. In all the higher m'Odes the HSAPT and EHSAPT results c'Ompare very well 
with the elasticity solution. 

Multi-layered core 

The second case uses the experimental setup that appears in Gardner et al. [26] 
(configurati'On 2 in Figure 3). Geometry and mechanical properties are provided 
in Figure 8. Here, the layout of the sandwich panel is non-symmetric through its 
depth. The response 'Of this case has been determined using the elasticity m'Odel with a 
number oflayers within the core. The results are compared with the case ofa unif'Orm 
core of equivalent properties (Table 2). They reveal that the models that use the 
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Figure 8. Layout of a sandwich panel with a multi-layered core and a typical section. 

Table 2. Eigenfrequencies of a multi-layered core (see Figure I I). with an equivalent and a 
multi-layered core using the elasticity models. 

Section 

Mode no. 2 3 4 5 6 

Equivalent core 0.175 0.6S0 1.092 I.S24 2.063 2.321 2.575 


Multi-layered core 0.137 0.513 0.803 1.30S 1.562 2.209 2.378 


equivalent properties yield higher values than those of the elasticity solution prob­
ably because of the different distribution of the masses through the depth of the core. 

The distribution of the displacements and the stresses through the depth of the 
panel for the modes that correspond to the first half-wave number appear 
in Figure 9. In the first mode the displacements in the face sheets are quite similar 
for both cases but in the core the discrepancies are larger for the in-plane displace­
ment and insignificant for the vertical one. The in-plane normal stresses, O'x.., in the 
face sheet and the core are very similar although with different values. Here, the 
nOTIllal in-plane stresses are practically null although the in-plane rigidity of 

7 



402 Journal of Sandwich Structures and Materials 15(4) 

Top 

0.04 

0.03 

Top 
MLC 

0.04 

0.03 

z[m] 

0.02 

EqC 

0.01 

z[m] z[m] 
0.02 0.02 

MLC 
0.01 0.01 

E C 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 - 0.004 - 0.002 0 0.002 0.004 

cr,/ama:1. " O',/crmax 

r"""1'--------__:::>____::> Mode No.1 

0.04 

0.03 MLC 
z[m] EqC

0.02 

om C '-­
:=::.. ::> 

00 0.01 0.02 0.03 
't,/crmax 

Figure 9. Two eigenmodes of displacements and stresses of the first half-wave number 
through depth of panel for the equivalent and multi-layered configuration: (a) first eigenmodes 
and (b) second eigenmodes. 
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the core is considered. The discrepancy in the vertical nonnal stresses, a;:z, and 
the shear stresses, T..., is in their values while the patterns are very similar. In the 
pumping mode, the second eigenmode, the differences between the two models are 
in the displacement patterns of the core while the displacements in the face sheets 
are almost identical. The in-plane normal stresses in the core are very similar and 
again with very small values. In the vertical normal and shear stresses the differ­
ences are much more pronounced in the core, but with similar patterns in the 
face sheets. 

Summary and conclusions 

The investigations include a brief rigorous systematic analysis of the problem of 
free vibrations of sandwich panels with compressible compliant core using high­
order models and an elasticity model with isotropic and orthotropic mechanical 
properties and a numerical study. The model formulations are based on Hamilton's 
principle with appropriate kinematic relations of small deformations. It includes 
high-order models of the HSAPT with mixed formulation that includes displace­
ments of the face sheets and shear stress in core as 'unknowns, the HSAPT with 
displacements as unknowns and assuming cubic and quadratic distributions of the 
displacements within the core but with negligible in-plane rigidity and the EHSAPT 
that uses the cubic and quadratic distribution for the displacement patterns within 
the core but it includes the in-plane rigidity of the core in the analysis. The bench­
mark solution is the closed-fonn solution of the elasticity model for the case of 
isotropic or orthotropic simply-supported sandwich panel. Notice that the general 
equations of motion for all computational models are valid for any type of layout 
of the sandwich panel and to any boundary conditions. In all models the mass and 
the stiffness matrices have been derived for the particular case of a simply­
supported panel of any construction of the sandwich panel. 

The numerical study uses a particular sandwich panel setup that has been used 
for blast response in the University of Rhode Island [26). Two types of panels have 
been considered with a single- and a multi-layered core. In the first case the study 
looked into the response ofa light and a heavy core, eigenfrequencies and modes of 
first and second half-wave numbers and comparison with elasticity and FE models. 
The results reveal that the first mode can be detected accurately by all models 
while the higher ones can be detected correctly only by the HSAPT (displacement) 
and the EHSAPT models. The introduction of the heavy core with larger moduli of 
elasticity and shear and specific weight follows the same trends. The comparison of 
the FE results with the elasticity ones reveals good correlation. The correlations 
with eigenmodes longitudinally and through the depth of the panel are similar in 
the first mode for all models. They are quite different from the elasticity solution 
for the higher modes except for the EHSAPT and HSAPT models that use the 
displacement formulation. 

In the second case with the multi-layered core the study compares the response of 
a sandwich panel with an equivalent single material core with that with a multi­

------_............_-_..._----­
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layered core using the elasticity solution. Notice that the multi-layered construction 
of the core is un-symmetric and includes a very heavy layer, polyurea, at the bottom 
of the core but with a very small elasticity and shear moduli. Hence, the mass 
distribution through the depth of the panel with the multi-layered core is quite 
different than that of the equivalent one. The results include the eigenfrequencies 
and displacements and stress distribution through depth of panel. The eigenfrequen­
cies of the equivalent panel are larger than those of multi-layered construction while 
the modes of the displacements and stresses in the face sheets are similar and sig­
nificant differences in the core. The differences are attributed to the differences in the 
distribution of the mass through the depth of the core between the two schemes. 

The comparison between the various computational models and the elasticity 
solution reveals that the EHSAPT and the HSAPT with the displacement formula­
tion yield accurate results in terms of eigenfrequencies and eigenmodes. Hence, in 
the case of a sandwich panel with a general construction layout and general bound­
ary conditions the layered HSAPT or EHSAPT formulation should be used with 
accuracy. 
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Appendix I 

HSAPT (displacement formulation) - Equations of motion 

47dt )((~_2db)Wb + (_~ -- W
30 30 c .x 30 30 c I,X 

7 Uob 47 UOI 4 
+ 5 rPT5~+ c 

(24) 

(_~wo(X) 7wI 1Wb ~Wb)b E ((~d ~d ~ 
3 	 c + 3 c + 3 c + 3 c \I' =c + 60 b + 60 t + 30c 

(25) 
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Appendix 2 

EHSAPT - Equations of motion 

1 7db) (19 47 dt) WI _ 7 Uoh+ 47Uot+~A. 
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