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Abstract

The free vibration response of a unidirectional sandwich panel with a compressible and
incompressible core using the various computational models is presented and com-
pared with closed-form elasticity solutions and finite element results. The mathematical
formulations for various models along with the numerical investigation are presented in
two parts, In the first part compressible core are considered using the elasticity closed-
form solution and various high-order computational models such as the high-order
sandwich panel theory (HSAPT) and the extended HSAPT model (EHSAPT). The
second part is dedicated to incompressible cores and includes classical models, first-
order and high-order shear deformable models, and zig-zag displacement pattern
model, ordinary sandwich panel theory. The elasticity-based model serving as the
benchmark solution (in first part) assumes isotropic, orthotropic, as well as layered
core types. The mathematical formulation utilizes Hamilton’s principle to derive the
general equations of motion. A closed-form solution of the elasticity model is available
only for a simply-supported panel and it is compared with all various models numeric-
ally. The numerical investigation includes: eigenfrequencies, displacement modes along
the length and through the depth of panel, as well as stress modes through the depth of
panel. The results of the various models are compared with the 2D elasticity solution
and finite element results of ADINA, In general, the lower mode correlates well for ail
models while for the higher modes only the EHSAPT and the HSAPT with displacement
formulation compared well.
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Introduction

Vibration of modern sandwich flat panels that are used in various industries such as
aerospace, mechanical and civil engineering for structural applications starts to
emerge as an important topic especially when dynamic or blast lading is considered.
A typical panel is usually made of two face sheets, metallic or composite laminated
that are very stiff and a core that is usually made of a low-strength light or heavy
(dense) foam, or lightweight, low strength metallic honeycomb, or solid light
material such as balsa wood or similar. Notice that a foam core is flexible (low
rigidity) in all directions; however, in the vertical direction it is the only component
that has some rigidity to resist the vertical normal stresses that may reach large
values in the vicinity of localized effects. In the in-plane direction the core contri-
bution to the overall bending rigidity of the panel (core and face sheets) is usually
very small as compared to that of the face sheets. Hence, in many practical appli-
cations the in-plane rigidity of the core is usually neglected. It means that the entire
overall bending moment in a section is being carried by the couple that is formed in
the face sheets. The contribution of the face sheets to the bending resistance relative
to the overall bending is denoted by the term composite action, which is equal to
one when the core in-plane resistance is neglected. The case of a metallic honey-
comb core represents a core that is very stiff in the vertical direction but very
flexible in the in-plane direction. And the other option of a core made of a light
solid material defines a core where its in-plane rigidity may be comparable to that
of the bending moments due to couple that is formed in the face sheets and in such
cases the composite action factor is smaller than one. In general, the approaches
taken to analyze such panels is in tandem with the properties of the core and to
mention a few: classical with no shear deformation, first-order shear deformation
theory (FOSDT), high-order shear deformation theory (HOSDT) (ESL models)
that include shear deformations with various kinematic assamptions and some
layered models such as the ordinary sandwich panel theory (OSPT), one that are
appropriate for the analysis of panels with a metallic honeycomb core; the high-
order (layered wise) approaches (high-order sandwich panel theory, HSAPT), have
been used for ‘soft” compliant low strength core type that are flexible in the vertical
directions and with negligible in-plane rigidity, such as light foam or honeycomb;
and the case of a core made of a solid materials that requires an appropriate model,
which includes the effects of the in-plane and the vertical rigidity of the core on the
response such as the extended high-order sandwich panel theory (EHSAPT).
Details on the various models and references are described ahead in the two
papers. One of the typical errors involved in the analysis of sandwich panels is
the use of models that are appropriate for incompressible core to analyze panels
with a soft (compressible) core especially in dynamic problems. In general, the
eigenmodes of a panel consist of overall ones as well as through the thickness as
a result of displacements in the vertical direction. However, when incompressible
core models are used no through thickness modes are detected. Hence, in order to
identify the effects of the various core types on the response some well-known
computational models are studied and compared. The article has two major
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goals: the first is the accurate mathematical description of the incompressible and
compressible computational models and the second is to demonstrate what is the
accuracy of the compressible core models and to what extent is the use of the
incompressible core models in describing the response of any type of sandwich
panels being correct.

In general, the analysis of sandwich panel follows two main tracks that are in
tandem with the core type. The first one assumes that the cores are an anti-plane
type, i.e. very stiff in the vertical directions and with negligible in-plane rigidity in
the longitudinal direction {1-3], which correlates well with the response of sandwich
panel made of a metallic honeycomb core and maybe modeled by the incompress-
ible core approaches such as the FOSDT, HOSDT or OSPT models. The second
track is the high-order models that are appropriate for low strength, flexible foam
cores and combines the layers of the face sheets and the core into an overall
structure through equilibrium and compatibility, see, for example, Frostig et al. [4].

In addition, there is an approach that is based on elasticity that assumes that the
sandwich panel consists of 2D elasticity layers, i.e. the face sheets and the core are
interconnected through equilibrium and compatibility. An approach based on elas-
ticity formulation assuming linear small deformation kinematic relations has been
taken by: Pagano [5] for composite and sandwich panels; Pagano and Hatfield [6]
for bidirectional composite panels; Zenkour {7], Kardomateas [8,9] and
Kardomateas and Phan [10] for 4 static and buckling analysis; Srinivas and Rao
[11] for dynamic response of simply-supported composite panels; and recently
Karczmarzyk [12] for dynamic response of clamped-clamped sandwich panel
using a special type of analytical solution. In general, these solutions are quite
limited since closed-form solutions exist for only simply-supported panels or
panels with specially prescribed BCs. Hence, they may serve as a benchmark
rather than as a general computational tool. Here, this solution is used as a bench-
mark for the free vibration of a simply-supported sandwich panel.

A different approach when compared with the equivalent single layer (ESL) [3]
assumes that the sandwich panels are made of layers that are interconnected
through equilibrium and compatibility, the core is compliant, compressible with
negligible mn-plane rigidity, denoted as the high-order sandwich panel theory
(HSAPT). This approach has been used for static, dynamic, kinear and non-
linear applications and to mention a few: beam analysis [4]; buckling and free
vibration [13,14]; non-linear behavior [15}; free vibration of curved panels [16];
free vibrations of plates {17}, dynamic response of debonded panels [18,19] and
recently, free vibration with thermal effects [20,21].

An improvement of the HSAPT model for panels is required when the cores in-
plane rigidity cannot be neglected, such as solid medium to heavy weight foam or
wood; or when the response of the panel is of a local type such as wrinkling. In such
cases, an enhanced high-order sandwich panel theory [EHSAPT] should be used. It
has been recently implemented [22] for application of in-plane loads through core,
for wrinkling and global buckling of sandwich panels [23,24] and for dynamic
applications [25].
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The references previously mentioned consist of a mathematical formulation that
presents the equations of motion, including rotational inertia that are derived
explicitly through the Hamilton principle and the specific mass and stiffness matri-
ces for a simply-supported case. In general, it follows the steps of the high-order
theory (HSAPT) used for unidirectional panels and plates [4,13,14,16]. In the for-
mulation it is assumed that the panels are elastic, linear with small displacements
and they consist of a core and two thin plates — two face sheets, with in-plane and
flexural rigidity and negligible shear rigidity. In addition, all cores have vertical
shear resistance with negligible in-plane resistance. But in the case of incompress-
ible core the vertical rigidity is infinite while in the compressible ones it is finite and
usually small. The EHSAPT is the only model that includes the in-plane rigidity of
the core. In addition, face—core interfaces fulfill the conditions of full bond with
shear and vertical normal stress resistances.

The article consists of two main sections. In the first section the mathematical
formulation of the elasticity and the high-order models, HSAPT and EHSAPT, are
presented that includes the equations of motion (PDEs) and the appropriate mass
and stiffness matrices for the case of a simply-supported panel. In the second sec-
tion a numerical investigation is presented for a specific configuration that has been
used for blast experiment panel with a single- and a multi-layered core. Finally, a
summary is presented and conclusions are drawn.

Mathematical formulation

The equations of motion for the various models have been derived or re-derived
through the Hamilton principle that uses the variation of the kinetic and internal
energy. It reads

6L=/‘12(6T—8U)dt:0 ()

where L is the Lagrangian, T is the kinetic energy, U is the internal potential
energy, ¢ is the time coordinate between the times ¢, and ¢, and § denotes the
variation operator.

The first variation of the kinetic energy for the sandwich panel reads

2
8T = f (f qur,ﬂsut,t + pw, dwy, dv+ f pbub,taub,l + ppwp,Swp, dv
1 v,

g )
+],

¢

Pelle SUe 1 + PWe bW,y dv)dt

where p; (j=1,b,c) is the mass density of the upper and lower face sheets and the
core respectively; u;, and w; ,(j=t,b,c) are the velocities in the longitudinal and
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vertical direction respectively of the various constituents of the sandwich panel;
fi= g{ is the first derivative of the function f with respect to the time coordinate;
V{j=1,b,c)is the volume of upper and lower face sheets and core, respectively and
dv is the volume of a differential segment.

The first variation of the internal potential energy is general and it is formulated
to be applicable to all computational models through the special @, f and A terms.
It is defined in terms of stresses and strains and reads

U = f OxxrB€xxs + QfTyi8Yuz dv + / OrxbBExxh + X Tazpd¥iep dv
v, ;

)

+ f AclxxeBEvve + @eTuze8Vize + BeOzz088.2 dy
v,
where

a ]
SXXJ'(X, Zj, l) = gguj(x, zj, f), ij(x,Zj, I) = 5‘__—:: wj(x, zj, f)
) (=1tbe) (3)

g a
Yei(X, 2, 1) = 37]%'(-‘% 2, 1) + Py wi(x, 2, 1)

And o,,;and &,,; (i=x and j =1, b) are the longitudinal normal stresses and strains
in the upper and the lower face sheet, respectively; 7..; and vy,.(j=1,5b) are the
vertical shear stress and angle respectively at the various face sheets; t... and ¥...
are the vertical shear stresses and shear strains in the core on the longitudinal and
transverse faces of the core, respectively; o... and ... are the vertical normal
stresses and strains in the vertical direction of the core and u; and w{j=1b,¢)
are the displacements in the longitudinal and vertical directigns respectively of the
various constituents of the panel. Geometry and sign convention for stresses and
displacements are shown in Figures 1 to 4.

The energy terms for the various computational model are controlled through
the o, £ and A terms as follows: HSAPT — oy=2,=0, a,=§,=1, EHSAPT -
oy=0, A, =a,=p,=1 and ELAS (Elasticity), ¢y=a, =B =r.= 1.

The formulation ahead outlines the 2D elasticity solution, proceeds with the
high-order and extended high-order models.

2D elasticity model

The equations of motion in terms of stresses and displacements as a result of the
Hamilton principle and the kinetic and potential energies (equations (1) to {(3)), for
any layer of the sandwich panel, face sheets (2, b) or core (¢), read

3 3 &
(5;0}39'(.1’, Zjs I) + 52; Tx:j(x» Zfs t) - pja?uj(xs z, ’)) ‘bn‘ =0
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Figure 1, Coordinate system and stresses for the elasticity model (a) coordinate system and
(b) stresses within a layer.
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(»(3; Toy(X, 2 1) + 8_2;652()(’ z, 1) — pjﬁwj(x, z, t))b,,, =0 @

where o {k =X, z, j=1, ¢, b) are the normal stresses in the longitudinal and vertical
direction respectively at the various layers; 7., is the shear stresses in the j layer; u;
and w; are the displacements in the longitudinal and vertical directions, respect-
ively; x and z; are the coordinates in the longitudinal and the vertical (local coord-
inate) directions, respectively; p; is the mass density of the various layers and b, is
the width of the panel. Notice that the stresses and the displacements are general
functions of the space and time coordinates. Sign convention, coordinates, and
stresses on a differential element are provided in Figure 1.

The stresses following Hook law in terms of the displacements assuming an
orthotropic material in the j layer read

Ex(4(6 2101+ vini ey (,21,1)) Eg(wi(x.20) + vesren(.751) )
Tvy = P —veivoyg 0 T = ] — ViV
1.;=G ~-(iu'(x z; t)-i—-(?-w-(x z t)) S
zf xzf 8::]-’ »&fs ax s&)s ’

where £k =x,z) and G,.; are the moduli of elasticity in the longitudinal and
vertical directions respectively and the shear modulus of the j layer; v,.; and v,
are the Poisson’s ratio in longitudinal and vertical directions, respectively.
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Figure 2. Coordinate system, stress resultants and displacement pattern for the HSAPT with
mixed formulation model: (a} coordinate system; (b} stress resultants and (¢} displacement pat-
tern through depth of panel.

HSAPT: high-order sandwich panel theory.

A simply-supported panel is considered here since it is only case where the
elasticity model has an accurate closed-form solution. The formulation ahead
takes a similar approach to that of Pagano [5] and Srinivas and Rao [I1] with
modification as a result of the existence of a low strength compliant core. Thus the
displacements read

N N

ui{x,z;, 1) = Z Ui (2;) cos(amx)e™,  wi(x,z;, 1) = Z wami(z;) sin(a, x)e’™" (6)

ne=l m=1

where u,{(z;) and w,,(z;) are the displacements in the longitudinal and vertical
directions through the depth of layer j that correspond to the half wave number m,
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Figure 3, Coordinate system and displacement pattern for the H5APT with displacement for-
mulations: (a) coordinate system and (b) displacement pattern through depth of panel.
HSAPT: high-order sandwich panel theory.

M Mxxtxd
Nxx‘t —"{HB’ Nxxt+ Nxxt xdx Upper
‘eg(zztbwf szi sztxd Face
0—zz! w
)
TPy
T
M. Vied 00 \
f ] :‘_:::‘:f_ waxc+N>\?(c,xdx
N e
xxe COI‘E szc+ xzc,xdx
|

bbw
T
i Mxxb+Mxxb dx Lower
"Xb v N . +N_. dx Face
+,«/ s 4icon xxb ™ Nexp x9X
szb ] szb szb,xdx

Figure 4. Stress resultants and displacement pattern for the EHSAPT model.
EHSAPT: extended high-order sandwich panel theory.
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respectively; a,, = mn/L with L being the length of the panel and N the number of
half waves; I=./—1, w,, is the eigenfrequency of the m wave number and ¢ is the
time coordinate.

The formulation ahead uses a single term solution for brevity due to the uncou-
pling between the equations of each terms of the series solution. Hence, the equa-
tions of motion are defined through substitution of the single term displacements
(equations (6)), into the stresses (equations (5)), and then into the equilibrium
equations (equations (4)). Hence, they read

d d2 Ef"arzn
((d_Z, Winj (Zj)) oy + d_ij Upmj (Zj)) Gx:j + (Pj(!),zn + m) Umj (Zj)

v:ijxj (dl:j Wnj (zj))am

-1 + VyzjVaoyj
®m (di:, umj(zj)) (Gx:j(l - Vx:jv:xj) + Ezj‘)x:j)

-1+ VizjVoy

- afn Winj (zj ) G.\‘Zj +p mjwlzn Wenj (zj )

E; f— Wi (2))
-t =0 (7

-1+ ViezjVoyj

In the case of an isotropic layer: E,; = E;; = Ej, vx5; = vy = pj, a closed-form
solution exists and it reads

uj(zj) =C e\/ﬂ_]:f + Czei\/ﬂ_':’ + Cs e\/ﬂ_l-'i + e—\/ﬂ_z:,-c‘1
(—C_\/ﬂ_’»:ic4 + G e\/ﬂ_z:’,-)am (_CZ C_\/ﬁ_':; + C; e\/ﬁ_llf)m
") = VB " U ®

2 2
(_1 +“f)pf“’"’ _ o o P+ e,
E;j s 2 = 4, E.

where ) = a2 +

And C, (k=1,2,3,4) are the constants of integration to be determined by equi-
librium and compatibility through depth of panel or the stress-free surfaces con-
ditions. In addition, the stresses for this case read

(Cz e VAT + € e*/‘s_':’) (~o, + wib1)
+(°"/ﬁ_”’ Ci+ G e*/‘s_lz")“ﬁl(—l + )

[ (—1 + ;sz)

E;sin(a,x)e’!

owl(x,2,1) = —
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(e‘«/ﬂ_z:f@ +C; leg—sz)afn(—l + ;)

E; sin(a, x)e’!
' + (Cz e VP4 ¢ e“/Ezf)(—ﬁl + o)
7l l) = am(—l + ;uf)
(~1726VFoCy 4 172050 (@2, + o)
e cos(anx)G vz

+(-Qe‘¢*§7zj +Cy e*/a"f)\/%v’BT
VB2

te{x,z,1) =2

&)

In the case of a honeycomb or a low-strength compliant core, which has shear
and vertical normal stresses rigidity and neglected in-plane rigidity, the mechanical
properties equal or approximated respectively as follows: E,; =0, E; = E
Vyzj = Vg = 4. And in this case the closed-form solution read

—1/4BaJE V2

ompye (1 + )"

) i — 2wl

P m m

(7)) =

X

.

where
2 4
fr=2Ec0(t = 2)(1 + ) f2=0}(1+w)'er, ~ pr+ e B
Br=—B + (-2 wi—3+ uf)pjwf,, — o, Ejjj,

Ba= B2+ (—2ﬂj -3+ uf)p,-mi — g By,

Bs =B+ (1 +2u+ Mf)wfnﬂ’j — o Ejly
/330 = —20&,//« -+ (_4'“ — 6 * 2M2)"0cwl2ﬂ — 2‘/5
Ej
, (—4uj—6+2u})pjwi, +2J/B2
Bao=—2a;+ 3
£

(10)
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And the stresses read

(X, 2, 1) = 0,
«./E(Cle“/kfm _ Cgel/zzf /ixu)
+m(c3e-uz.~ﬂ/5; e ﬁM)

o5(x, zj, 1) = — 172" sin(a,x) y

reloz ) = 1/8 G ye™n! cos(amx)
A a"’pjwlz)l(l + “1)2
—
(VBB V25 BB+ 8t (1 + 1)) )
(C1 e 125/Pu 4 61/2:1«/795:(:2)

<, V2B Bra =B (1 + 20+ 13 ) @y = @ By )

X }_ij;l + 8&,2”,01@;(1 + ,u;)z
(Cs R EN Qel;z:;\/mg)'

an

The full response of the sandwich panel is a combination of two face sheets and
a core, which has properties that are different by order of magnitude, and are
interconnected through continuity conditions and free stress surfaces. Hence, in
order to determine the constants of integration, Cy, for each layer face sheets and
core the following conditions must be fulfilled

0,2 = —1/2di ) =0,  —Tu(,2, = —1/2d),8) = 0
u(x,z, = 1/2d,, 1) —u(x,z, = =1/2¢,) =0
wix, 2y = 1/2d,, 1) — welx, 2. = —1/2¢,8) =0
—O.(X, 2, = 1/2d,, 1) + 022X, 2, = —1/2¢,8) =0
= Tye(X, 2, = 1/2d)) + teelx, 2. = =1/2¢) =0
lx,zp = 1/2¢, ) —up(x, 2z = =1/2dp, ) =0
we(x,z. = 1/2¢,8) — wp(x,zp = —1/2dp, 1) = 0
— O dX, 20 = 120, ) + 0up(X, 25 = —1 /2, 1) =0
. = TerefX, 2, = 120,80 + Teap(X, 26 = —1/2dp, ) =0
. Oe(X,2p = 1/2dp, 1) = 0, Tewp(X,2p = 1/2dp, 1) = 0

(12)

Notice that the first two and the last two conditions refer to stress-free surface
requirement while the other eight refer to the interfaces between the face sheets and
the core and consist of continuity requirements in displacements and equilibrium in
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vertical and longitudinal directions. In addition notice that the full set of equations
consists of equations with extremely large differences in magnitude — there are
equations in the order of displacements and there are equations in the order of
stresses. Hence, a scaling procedure must be used in order to get a reliable numer-
ical scheme.

The same solution can be used for the case of a sandwich panel with a few layers
or face sheets that consist of a few layers or a sandwich panel with a few face sheets
and in between cores, denoted as multi-layered sandwich panel. The conditions
that are required to be fulfilled are stress-free at the outer fibers of the panel and
continuity in displacement and equilibrium at interfaces between the layers. Notice
the farge difference measured by order of magnitudes between the stress and the
displacements condition requires a scaling procedure in order to achieve reliable
and accurate numerical results.

High-order sandwich panel theory model

Two variants of the HSAPT models are considered. The first one, denoted as
HSAPT (mixed) uses the unknowns of the ordinary HSAPT model that includes
the displacements of the face sheets, u,; and w; (j=1b) along with the shear
stresses in the core and the velocities through the depth of the core are assumed
to be linear [14]. The second model, denoted by HSAPT (displacement), assumes
that the distribution of the displacements and the velocities in the core are poly-
nomial, cubic for the longitudinal displacements and quadratic for vertical one,
which corresponds to the static displacement patterns of the HSAPT model [4].
Here, the unknowns consist of the displacements of the face sheets and the
coefficients of these polynomials and not the shear stress in the core. For
more details in the case of vibration of a 2D sandwich plate see Frostig and
Thomsen [17].

The equations of motion are derived through the Hamilton principle
(equations (1)} and the variations of the kinetic and potential energy (equations
(2) and (3)) along with the following parameters ay=0, A, =a.= f.= 1. The first
model is described in detail.

Mixed formulation. Only the equations of motion and mass and stiffness matrixes
that correspond to the particulars of a simply-supported panel are presented for
completeness and brevity. For more details see Frostig and Baruch [14].

The equations of motion derived from the Hamilton principle (equation (1)),
yields only four equations with five unknowns, u,; and w; (j=1,5) and 7. The fifth
equation is the compatibility at the lower face-core interface in the longitudinal
direction [14] and they read

1 1 1 1
(5 Uprs + E Wh iy — é Wrxudy + guob.lt)MC + UM, — EAutorxy — Thyc =0
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1 1 —wy, + w)E,
((— 5 [ -2- d;) Ty + (—bC—I)—C) by — Wt,xxlilmf + MrWs,n + EI, Wy xxxx

1 l

l 1 1
+ (§ Wi +— “b 1t W, xrrdpdy + = oy, culdy —

5] l
7 < B W cends + 140 bwrdr) =0

3 12

(S

L
2
i 1 1
+ =W + W: werrdidy — ua bxudy — ‘1“2 “v‘b;xudf, - l—

| | | 1
(‘ Upp ¢ T~ Upr,r = = Wy, \‘Hdl +— "‘b wrdb)M + 1h, — EAb“ohx.v + Mb“eb,rz =0

6
i wp — w)E,
‘2'd )I’ + g'icl—l){‘) bw - wb..\:xNImb + EIbwb.xxxx + Mbwb,n

I 1
6 3 “oz,x::db + "3‘ Wb,rr)luc =0
et 1 11 1 A1y
—G—(+(_2 db)”f)v*'um'*'(_ic“id")w{‘x_'l_z—E:'""‘uobzg (13)
where fi. s = 55 2 fr of frs = f(x f) = x or tand /13 one of the dependent variables;

M= pb,d; and I,,;= pjb\,d /12 (j=1,b) are the mass and the moment of inertia,
respectwely, of the section of the face sheets and M, = p.b,.c is the mass of the core
section. Notice that only the first four equations have inertia terms while the fifth one
is a compatibility equation.

Also here, in the case of a simply-supported panel a solution based on a trig-
onometric series yield a closed-form solution and it reads

N N
tj = 3 Cuojon COS(etmx)e™"", wj = 3 Coj Sin(tmx)e ™" (j = 1,)

s m=1
N # ( 14}

T= § Cr,m COS(Q’mvx')e&omxr

=1

where C,,;,, and C,;,, are respectively the constants of the in-plane and vertical
displacements of the face sheets and C,, is the constant of the shear stress in the
core that correspond to the m half wave number. They are to be determined
through the solution of the eigenvalue problem (equation (7). Thus, the mass
and stiffness matrices along with the C vector of unknowns read

[ (b bod )M, o | |
{ +ai,1,:: L, (5 = 2s0rndod) M. —sMcond; =35 Mmd; O
My, = (l6+ﬁa!2ndbd')Mf (%+—]7 nd.)M +Mb+a Imb %Mcamdb %Mcamdb 0
- %M‘u’"df 12Mcamdb %M(- + M, éMC 0
- s Mo = Mt M, MM, 0
L 0 0 0 0 0
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Eltaj? -+ Q%" - Q%Ei 0 0 'éambw(d; + C)

- é"c—fg ﬁ% -+ Efba'i? 0 0 %ambw(db + C)
K, = 0 0 EAqoi 0 —by
0 0 0 EAyd?, by

%ambw(dt + C) %ambw(db + C) ‘_bw bw - %f - T]Eb;c;_#n

T

Cm = [Cuot,ma Cu-f,m» Cuab.nn Cw!:wu Cr,m] (1 5)

Notice that for each wave number yields only four eigenvalues since the fifth row
in the mass matrix is null.

Displacement formulation, 1n this formulation, the displacement patterns through the
depth of the core of the unidirectional panel is assumed to consist of a quadratic
and cubic polynomial form for the vertical and longitudinal displacements, respec-
tively [4] (Figure 3(b)). Here, the coefficients of the polynomial are the unknowns
rather than the shear stress in the core (see previous sub-section where the displa-
cement pattern in the face sheets follows the Euler-Bernoulli assumption with
negligible shear deformation). Hence, the assumed displacements in the face
sheets and the core read

u(x,2j, 1) = ugi(x, ) = zi(wix)(x, 1) (G=1,b)
Ue(X, 2o, 1) == Upe(x, 8) + @(x, Dz + ua(x, t}zf + us3(x, t)zg (16)

Wol(X, Zg, 1) = wo(x, 1) + wi(x, )z, + wa(x, t)zg

where u,., w, and ¢ are the longitudinal and vertical displacements and the rotation
at the centroid of the core, respectively. Coordinate system and displacement pat-
terns are shown in Figure 3. The requirement of full bond at the face core interfaces
between the face sheets and the core requires the following compatibility conditions

ulx,ze = =1/2¢,0 = to(x, ) = 1/2d (W J(x, 1), welx,ze = —1/2¢, 1) = w((x,1)
u(x,1/2ze = 1/2¢,1) = ugp(x, 1) + 1/2d (wy  )(x, 1), welx, 2 = 1/2¢, 1) = wy(x, 1)
a7

Hence, four out of the seven unknowns in the core displacements can be deter-
mined. Hence, after some algebraic manipulation they read

U W, d u u Wi )
uc(x,ze,t)z-.(-—llc—";-%-z :; '—4—6%—{-4?0324—2 b{; b)zf

Ut Wity Uop | Wiy Upe(X, 1) 2
+(2.C_2— 62 +2;2_+ 62 _4 CC2’ ZC+‘3§C+HDC
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Wy — 2w, + wp)z?
(w, Cc; ) (18)

— 4p )z,
+( :t‘b)z +2

M}L‘(x’ ZC) {) = VVO

The number of unknowns in this model is only seven, two for each face sheets
and three in the core. In addition, the stresses in the core consist of shear and
vertical normal stresses while the in-plane stresses are negligible and following
Hook law they read:

Oz:eX, 2o 1) = Ezebzze(X, 20, 1), X, 26, 1) = Gae (X, Zc50) (19
And in terms of the unknowns they equal

22(Bdp+ W +{c+3d)wix — Ol — 2Wp ¢ — 6C+ 6Usp)
pE

T.(X,20,0) = (2

(Qdy + s x +(—2d; — Wi x + 4ty — Bttoe + 4oz

+ 2

- + ¢ + “;O,X) GX.’.'C

W —2”'; +VV Z Wy — W
g::c(:‘:, Zes {) E= (4( ! C; b) ¢ + b - f

)Ezm Oxxe{ Xy 2oy 1) = 0 (20)

For details, see similar results for a 2D sandwich plate in Frostig and Thomsen [17].

The equations of motion are derived using the displacements in equations (18)
along with the strains defined in lower part of equations (3) and the variation of the
kinetic and potential energies (equations (2)), and upper part of equations (3) and
the Hamilton principle (equation (1)). The equations are very long and appear in
Appendix | for brevity.

In the case of a simply-supported panel a closed-form solution in the form of
trigonometric series exist that yields an eigenvalue problem and it reads

N N
: E i o
Ugy = Z Cuot.m cgs(amx)elwm!’ W, = Cw:.m sin{e,,x)e’™ 1
m=1 —
Al N
Uop — Z Cuob,m COS((ImJC)ela)n,i, Wy = E Cwb,m Siﬂ(amx)efw"’l’
nr=] —_
u N Q1)
- Tent _ Tt
¢ = Z Cqéym cos(a,x)e’™, g = E Cupm COS(AmX)E Wl
m=1 ooy

N
Wy = E Cwo,m 5-5'in(Ofm-’c)elwm‘r
nr=1
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where C;,, (j=uot, wt, uob, wh, uoc, ¢ and wo) are constants to be determined
through the eigenvalue solution of the equations of motion given in matrix form as
follows

(Mm - }\-me)Cm =0 (22)
where )-m = C‘),zni C;‘; = {CZIDI,IN'! th,mx Cuob,ma Cwb,m, Cuoc,m: C:zb.ma Cwa,m]a and 0 is a
zero vector of length seven and M,,, and K,,, are the mass and the stiffness matrices,
respectively, and w,, is the radial eigenfrequency of wave number #.

The mass and stiffness matrices are determined through substitution of the
solution series into the equations of motion and collecting them with respect to
the trigonometric and harmonic functions and the constants of the solution. The
matrices are lengthy and are not presented for brevity. Here, the matrices are 7 x 7

as compared with the previous case of 4 x 4 after condensation. Hence, this theory
predicts seven eigenvalues for each half wave number.

Extended HSAPT model

The EHSAPT model takes into account the in-plane rigidity of the panel and it
vields results that almost coincide with some available 2D static elasticity solutions
[23,24]. The formulations here includes only the basic equations for brevity and for
details see Phan [25]. The extended model assumes that the displacement patterns
for the face sheets are those of Euler—Bernoulli while those of the core are poly-
nomial (equations (16)). Hence, after use of compatibility conditions at the face—
core interfaces the core displacements change into equations (17) and its stresses
appear in equations (18). Here, the in-plane rigidity of the core is considered and
therefore the stress fields in the core include normal stresses-in longitudinal and
vertical directions as well as shear stresses. For the isotropic case they read

¢3 ¢
2 Uorx+ 2 “ob,x(xa 0+ Wpodp —4 Upex — Wr,xxdl)zg
2
C
—8w, +dwy 4w, Wp—W
+ (( 7] 2b !)LLC +¢x)zc +( Vo - t)ﬂc + Uoex

(_4 (p_; + ~A x4 thop x + 2Wh cxp + 2AIW yy 23

Oxxel(X, Zc): + ( E-"'C(1 _ﬁz)_l

( ( @x + -4 Uorx + 4 Uob,x T 2dp Wpax -+ 24d, Wi xx 3
CZ

ez
a ¢

—4
Uzzc(x, Zc) - + (2 tos x +2 Uob x -+ deé‘xx - 4u0c,x - d: W;,xx)ﬂczg Ezc(l _ #3)_1

o2
—8w, +4wp+4w,
P

Wp — W;

\ + (U-‘c(bx + )Z(‘ + Uelpex +
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TdX, zc)
2w =AW+ 2wp —12¢ =121y + 6dpwp y + 0w + 1204\
( 2 + P )4 b
= + (_ Wiy + Wp x + 4up —2 (B—ax (x, t))dl Wix ”i‘ 2dywp x — o + 4Uab)ZC Gz
4 ¢
+¢+wox

(23)

In addition, as a result of the in-plane rigidity of the core, there are stress
resultants such as axial forces, bending moments, and even higher order bending
moments {Figure 4).

The equations of motion that appear in Appendix 2 have been derived through
substitution of the strains in the potential energy with the following factors: e,=0,
A-=a,.=f.=1, see equations (3) and the kinetic energy. equation (2) into the
Hamilton’s principle. For the case of a simply-supported panel the solution
series is the one that appears in equation (21).

The mass and the stiffness matrices are derived through substitution of the
trigonometric solution into the equations of motion (see Appendix 2), removing
the trigonometric functions, collecting the terms with respect to the constants C;
that appear in equations {21). The explicit description of these matrices appears in
Phan’s thesis [25]. Also here the size of the matrices is 7 x 7 similar to that of the
HSAPT with the displacement formulation. However, the terms in the matrices are
totally different due to the contribution of the in-plane rigidity of the core.

Numerical study ‘

The numerical study investigates the free vibration of compressible simply-sup-
ported sandwich panel. Single- and multi-layered core based on a specific setup
used in the experimental blast investigation of Gardner et al. {26}, with some
modifications, is adopted here. The results include the eigenfrequencies for the
first and the second half wave numbers. The eigenmodes are presented for the
case with a low density core.

Single-layered core

The first case investigates the free vibration of a sandwich panel where a single
uniform core is based on setup of Gardner et al. [26]. It uses a sandwich panel that
consists of face sheets made of E-Glass vinyl-ester laminated composite with a
quasi-isotropic layup [0/45/90/~45],, with a density of 1800kg/m> and an equiva-
lent modulus of elasticity of 13,600 MPa. The foam core, A300, is Corecell™
A-series styrene acrylonitrile (SAN) foams with density of 58.5kg/m’, an elasticity
modulus of 32 MPa, a Poisson’s ratio of 0.25 and a shear modulus of 12.8 MPa.
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Figure 5. Layout of a sandwich panel with a single-layered core and a typical section.

For geometry see Figure 5. The second case consists of a sandwich panel with a
core that is made of a number of layers and a polyurea layer (Figure 7), yielding an
unsymmetrical construction layout. For more details on the setup see Gardner
et al. [26].

The eigenfrequencies are presented in a non-dimensional form with respect to an
eigenfrequency of a unidirectional panel with an identical flexural rigidity only.
The results in Table 1 include the eigenfrequencies of: a light core of A300
(p=58.5kg/m?, E, =32MPa, G, =12.8MPa, u, =0.25), (for the first two
half-wave numbers) a heavy core of A800 (p=150kg/m?, E, =117 MPa,
G, = 46.8 MPa, u. = 0.25) (for the first half-wave only). The eigenmodes of the
first wave number along the panel and through the depth of the panel appear in
Figures 6 and 7, respectively.

The results in Table 1 consist of four modes for the HSAPT model with the
mixed formulation, and seven modes for the HSAPT model with the displacement
formulation and the EHSAPT. In addition, there is a column with the results of a
finite element (FE) model of ADINA for comparison and the number of values in
each computational model corresponds to the number of unknowns in the formu-
lation. However, due to the non-linear eigenvalue problem in the elasticity model
the number of modes for each half-wave number is infinite. Here only the first
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Table 1. Non-dimensional eigenfrequencies of modes for first and the second half-waves for

light (L, A300) and heavy (H, AB0O) core.

Computational model

Mode no. Wave no. HSAPT (Mixed) HSAPT (Displ) EHSAPT Elasticity FE-ADINA
| N=I{L} 0163 0.164 0.164 0.164 0.163
N=IH} 0285 0.286 0.286 0.286
N=2(1} 0099 0.100 0.100 0.099
2 N=1I{L} 0569 0.567 0.575 0.574 0.574
N=1i(H)} 1136 1.138 1127 1.134
N=2(L) 0157 0.156 0.156 0.156
3 N=1(L) 2251 1.576 1.704 1.691 1.704
N=I(H) 2252 1.824 1.982 1.980
N=2(L) 1126 0.411 0.529 0332
4 N=I(L) 2365 2331 - 2335 2332 2.391
N=1I{H) 2.558 2514 2.530 2.526
N=2(L) 1i72 0.688 0.694 0519
5 N=1I{L) 2.463 2471 2.455 2.499
N=1{H) 2.949 2.586 2.942
N=2(L) 0.845 0918 0.682
6 N=1{) 2.737 2.808 2.781 2.780
N=I(H) 3.757 3.852 3.799
N=2l) i.189 1190 0.895
7 N=1({L) 3462 3.536 3.422 3.420
N=I{H) 4.590 4.686 4.521
N=2(L) 1.206 1.208 .14}

HSAPT: high-order sandwich panel theory; EHSAPT: extended high-order sandwich panel theory.

seven eigenfrequencies of this model are presented. The two HSAPT models and
the EHSAPT model yielded accurate eigenfrequencies for the first two wave
number and the first two modes. The HSAPT with the mixed formulation yields
quite accurate modes for the first two wave numbers. The discrepancies are larger
for the second wave number. The results of the HSAPT model with the displace-
ment formulation and the EHSAPT models compared very well with the elasticity
ones. The results are very accurate for the first two modes while the larger dis-
crepancies occur at the third mode for the HSAPT resuits. In the higher modes the
results of the HSAPT are in closer proximity as compared with the EHSAPT.
In the case of the second half waves the discrepancies of the third mode and
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Figure 6. Seven eigenmodes of displacements of the first half-wave number along panel for
various computational models and the elasticity solution.
HSAPT: high-order sandwich panel theory; EHSAPT: extended high-order sandwich panel theory.

above is about 5-6% as compared with 1-2% for those of the first half wave
number. In addition, the comparison between the light and the heavy core results
reveals similar trends for all computational models. The difference between the
orthotropic (E,,.=0) and the isotropic panels with the elasticity model is minor
especially at the lower modes. The FE results compare well with the elasticity
eigenfrequencies for the lower modes and the discrepancy becomes larger as the
mode number increases.

The eigenmodes along the panel are presented in Figure 6, and through the
depth of the panel in Figure 7. They have been determined through normalization
with respect to the largest value in the eigenvector of the results while in the
elasticity model they have been normalized with respect to the largest displacement
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Figure 6. Continued.

through the depth of panel. Notice that the largest value, in the elasticity
solution does not necessarily occur at the location of the unknowns of the other
computational models, In addition, the modes of the various models have been also
normalized with respect to the sign of the corresponding mode of the elasticity
model.

The results in Figure 6 describe the in-plane and longitudinal displacements of
the upper and the lower face sheets only in the case of the HSAPT (mixed) and in
addition, the in-plane and vertical displacements and the rotation at the centroid of
the core for the HSAPT (displacement) and EHSAPT models and the clasticity
solution includes all the above mentioned normalized unknowns. The first mode
corresponds to a pure bending mode where the two face sheets move in tandem and
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Figure 7. Seven eigenmodes of stresses of the first half-wave number through depth of panel

for various computational models and the elasticity solution.
HSAPT: high-order sandwich panel theory; EHSAPT: extended high-order sandwich panel theory.
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Figure 7. Continued.

is identical for all models. The second mode is a pumping type where the two face
sheet move in opposite directions. Here the HSAPT models and the EHSAPT
correlate well. The third mode is a longitudinal movement of the face sheets that
correlates well with all models although the corresponding eigenfrequencies are
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quite different. The fourth mode consists of opposite longitudinal displacements of
the face sheets with small vertical displacements and it correlate well with HSAPT
and EHSAPT models. The same is true also for the fifth mode that describes un-
identical longitudinal movements of the face sheets. The last two modes of the
HSAPT and EHSAPT are quite different than those of the elasticity solution
although there is a good correlation of the corresponding eigenfrequencies.

The modes through the depth of the panel appear in Figure 7 for the first seven
modes that correspond to the first half wave number. Here the normalization is
with respect to the extreme value of the longitudinal or the vertical displacements in
all models. In the first mode the distribution of the longitudinal displacement is in
the form of a zig-zag curve and the vertical displacements changes within the depth
of the core and all model correlate well. The same is true also for the second mode.
Here, the vertical displacement in the core is linear and the longitudinal is para-
bolic. In all the higher modes the HSAPT and EHSAPT results compare very well
with the elasticity solution,

Multi-layered core

The second case uses the experimental setup that appears in Gardner et al. [26]
(configuration 2 in Figure 3). Geometry and mechanical properties are provided
in Figure 8. Here, the layout of the sandwich panel is non-symmetric through its
depth. The response of this case has been determined using the elasticity model with a
number of layers within the core. The results are compared with the case of a uniform
core of equivalent properties (Table 2). They reveal that the models that use the
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Figure 8. Layout of a sandwich panel with a multi-layered core and a typical section.

Table 2. Eigenfrequencies of a muiti-layered core (see Figurell), with an equivalent and a
multi-layered core using the elasticity models.

Mode no. i 2 3 4 5 6 7
Equivalent core 0.175 0.680 1.092 1.824 2.063 2.321 2.575
Multi-layered core 0.137 0513 0.803 1.308 1.562 2.209 2.378

equivalent properties yield higher values than those of the elasticity solution prob-
ably because of the different distribution of the masses through the depth of the core.

The distribution of the displacements and the stresses through the depth of the
panel for the modes that correspond to the first half-wave number appear
in Figure 9. In the first mode the displacements in the face sheets are quite similar
for both cases but in the core the discrepancies are larger for the in-plane displace-
ment and insignificant for the vertical one. The in-plane normal stresses, o, in the
face sheet and the core are very similar although with different values. Here, the
normal in-plane stresses are practically null although the in-plane rigidity of
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Figure 9. Two eigenmodes of displacements and stresses of the first half-wave number
through depth of panel for the equivalent and multi-layered configuration: (a) first eigenmodes
and (b) second eigenmodes.
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the core is considered. The discrepancy in the vertical normal stresses, o, and
the shear stresses, 7., is in their values while the patterns are very similar. In the
pumping mode, the second eigenmode, the differences between the two models are
in the displacement patterns of the core while the displacements in the face sheets
are almost identical. The in-plane normal stresses in the core are very similar and
again with very small values. In the vertical normal and shear stresses the differ-
ences are much more pronounced in the core, but with similar patterns in the

face sheets.

Summary and conclusions

The investigations include a brief rigorous systematic analysis of the problem of
free vibrations of sandwich panels with compressible compliant core using high-
order models and an elasticity model with isotropic and orthotropic mechanical
properties and a numerical study. The model formulations are based on Hamilton’s
principle with appropriate kinematic relations of small deformations. It includes
high-order models of the HSAPT with mixed formulation that includes displace-
ments of the face sheets and shear stress in core as unknowns, the HSAPT with
displacements as unknowns and assuming cubic and quadratic distributions of the
displacements within the core but with negligible in-plane rigidity and the EHSAPT
that uses the cubic and quadratic distribution for the displacement patterns within
the core but it includes the in-plane rigidity of the core in the analysis. The bench-
mark solution is the closed-form solution of the elasticity model for the case of
isotropic or orthotropic simply-supported sandwich panel. Notice that the general
equations of motion for all computational models are valid for any type of layout
of the sandwich panel and to any boundary conditions. In all models the mass and
the stiffness matrices have been derived for the particular case of a simply-
supported panel of any construction of the sandwich panel.

The numerical study uses a particular sandwich panel setup that has been used
for blast response in the University of Rhode Island [26). Two types of panels have
been considered with a single- and a multi-layered core. In the first case the study
looked into the response of a light and a heavy core, eigenfrequencies and modes of
first and second half-wave numbers and comparison with elasticity and FE models.
The results reveal that the first mode can be detected accurately by all models
while the higher ones can be detected correctly only by the HSAPT (displacement)
and the EHSAPT models. The introduction of the heavy core with larger moduli of
elasticity and shear and specific weight follows the same trends. The comparison of
the FE results with the elasticity ones reveals good correlation. The correlations
with eigenmodes longitudinally and through the depth of the panel are similar in
the first mode for all models. They are quite different from the elasticity solution
for the higher modes except for the EHSAPT and HSAPT models that use the
displacement formulation.

In the second case with the multi-layered core the study compares the response of
a sandwich panel with an equivalent single material core with that with a multi-
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layered core using the elasticity solution. Notice that the multi-layered construction
of the core is un-symmetric and includes a very heavy layer, polyurea, at the bottom
of the core but with a very small elasticity and shear moduli. Hence, the mass
distribution through the depth of the panel with the multi-layered core is quite
different than that of the equivalent one. The results include the eigenfrequencies
and displacements and stress distribution through depth of panel. The eigenfrequen-
cies of the equivalent panel are larger than those of multi-layered construction while
the modes of the displacements and stresses in the face sheets are similar and sig-
nificant differences in the core. The differences are attributed to the differences in the
distribution of the mass through the depth of the core between the two schemes.

The comparison between the various computational models and the elasticity
solution reveals that the EHSAPT and the HSAPT with the displacement formula-
tion yield accurate results in terms of eigenfrequencies and eigenmodes. Hence, in
the case of a sandwich panel with a general construction layout and general bound-
ary conditions the layered HSAPT or EHSAPT formulation should be used with
accuracy.
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HSAPT (displacement formulation) — Equations of motion
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Appendix 2
EHSAPT — Equations of motion
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