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The three-dimensional linear dynamic elasticity problem formulation and solution for a generally asymmetric

sandwich plate consisting of core and face sheets that are orthotropic, and subjected to blast loading, is presented.

Laplace transforms are used to obtain ordinary differential equations in the complexLaplace space (with the variable

being the through-thickness coordinate), which are subsequently solved in closed form for a simply supported plate,

with the solution involving a cubic characteristic equationwith complex coefficients. Subsequently, the time response

is obtained by a numerical inverse Laplace transformby use of the Eulermethod. A realisticmaterial and blast case is

used to demonstrate the transient behavior for the displacements and face sheet/core interfacial transverse normal

and shear stresses. The elasticity results are compared with the predictions of the first-order shear deformation plate

theory as well as a high-order sandwich panel theory. This dynamic elasticity solution can serve as a benchmark in

assessing the accuracy of sandwich-plate theories.

Nomenclature

a = length of the sandwich plate
b = width of the sandwich plate
c = half-thickness of the core (total core thickness is 2c)
cij = stiffness constants
E = axial extensional (Young’s) modulus
~F�s� = Laplace transform of F�t�
f1 = thickness of the top face
f2 = thickness of the bottom face
G = shear modulus
t = time
u = in-plane displacement (along x)
v = in-plane displacement (along y)
w = transverse displacement (along z)
γ = shear strain
ϵ = normal strain
ρ = mass density
σ = normal stress
τ = shear stress

Introduction

T HE accurate prediction of stress and strain fields in the transient
phase of response to dynamic loading is important in assuring

structural integrity. In particular, when it comes to blast loading, it is
generally believed that if the structure survives the first few
milliseconds, then it has survived the blast. This research aims at
investigating this transient phase via a dynamic elasticity approach.
The configuration is a sandwich plate, consisting of two face sheets
and a core, all assumed to be orthotropic in their constitutive. The
general asymmetric construction is treated (i.e., face sheets may not
be of the same thickness and/or material).

When a plate is subjected to an impulsive load, reflections ofwaves
from the top and bottom surfaces as well as higher modes and short
wavelength disturbances are not easily accounted for by the plate
theories. Thus, these theories may not perform well even if they may
be adequate for static problems or natural vibrations. Thus, an
elasticity solution, being most accurate, would serve in determining
the limitations of various plate theories in addressing sudden loading
problems. This is also true for the various numerical methods such as
the finite-element method.
For a three-dimensional sandwich plate consisting of orthotropic

material, static elasticity solutions have been developed byVlasov [1]
for isotropic plates and by Pagano [2] for a restricted case of material
sandwich combination. And these solutions have been extended
to cover all possible orthotropic face sheet and core combinations
by Kardomateas [3]. A static elasticity solution for the sandwich
shell configuration has also been developed by Kardomateas [4].
Regarding the dynamic case, an elasticity solution for the free
vibration of homogeneous and laminated plates was presented by
Srinivas et al. [5]. Regarding the blast loading case, a sandwich beam/
wide-plate elastodynamic solution has recently been developed by
Kardomateas et al. [6].
Thework in this paper aims at extending the sandwich beam/wide-

plate elasticity formulation and solution by Kardomateas et al. [6] to
the three-dimensional elasticity sandwich plate case. The sandwich
plate consists of orthotropic face sheets and core and is subjected to
blast loading; also, the simply supported case is considered. The
formulation begins with the three-dimensional dynamic equilibrium
partial differential equations. The time space is then transformed to
the Laplace complex space, and the solution is obtained in closed
form in the Laplace space following the solution of a cubic
characteristic equation with complex coefficients. Numerical
inversion to the time domain follows. The Euler numerical Laplace
inversion has been selected because its accuracy has been proven for
this type of problem in Kardomateas et al. [6]. Results are derived for
realistic material and for blast conditions as presented in Gardner
et al. [7]. The elasticity results are also compared to the first-order
shear deformation plate theory.

Three-Dimensional Dynamic Elasticity Formulation

We consider a sandwich plate consisting of orthotropic face sheets
of thickness f1 and f2 for the top and bottom, respectively, and an
orthotropic core of thickness 2c (Fig. 1). The plate is simply
supported and of lengtha andwidthb. ACartesian coordinate system

Received 12 June 2013; accepted for publication 17 September 2013;
published online 2 January 2015. Copyright © 2013 by theAmerican Institute
of Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper
may be made for personal or internal use, on condition that the copier pay the
$10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood
Drive, Danvers, MA 01923; include the code 1533-385X/15 and $10.00 in
correspondence with the CCC.

*Professor, School of Aerospace Engineering.
†Graduate Research Assistant, School of Aerospace Engineering.
‡Professor, Faculty of Civil and Environmental Engineering.

1424

AIAA JOURNAL
Vol. 53, No. 6, June 2015

D
ow

nl
oa

de
d 

by
 G

E
O

R
G

IA
 I

N
ST

 O
F 

T
E

C
H

N
O

L
O

G
Y

 o
n 

O
ct

ob
er

 2
0,

 2
01

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

05
28

65
 

http://dx.doi.org/10.2514/1.J052865


is defined as shown in Fig. 1, with the origin being at the middle of
the core.
Let us denote each phase by i, where i � f1 for the upper face

sheet, i � f2 for the lower face sheet, and i � c for the core. The
displacements along x, y, and z are denoted by u, v, and w,
respectively:

u; v; w � fn�x; y; z; t� (1a)

Using the strain-displacement relations results in

ϵxx � u;x; ϵyy � v;y; ϵzz � w;z (1b)

and

γyz � v;z �w;y; γxz � u;z �w;x; γxy � u;y � v;x (1c)

The governing dynamic equilibrium equation are

σxx;x � τxy;y � τxz;z � ρu;tt (2a)

τxy;x � σyy;y � τyz;z � ρv;tt (2b)

τxz;x � τyz;y � σzz;z � ρw;tt (2c)

For each phase i (i.e., face sheets and core), the constitutive laws for
orthotropic material are

2
6666666666664

σ�i�xx

σ�i�yy

σ�i�zz

τ�i�yz

τ�i�xz

τ�i�xy

3
7777777777775

�

2
6666666666664

ci11 ci12 ci13 0 0 0

ci12 ci22 ci23 0 0 0

ci13 ci23 ci33 0 0 0

0 0 0 ci44 0 0

0 0 0 0 ci55 0

0 0 0 0 0 ci66

3
7777777777775

2
6666666666664

ϵ�i�xx

ϵ�i�yy

ϵ�i�zz

γ�i�yz

γ�i�xz

γ�i�xy

3
7777777777775

;

�i � f1; c; f2� (3)

where ciij are the stiffness constants (where subscript ij refers to
elements in the stiffness matrix).
Substituting Eqs. (1b) and (1c) into Eq. (3) results in stress-

displacement relations, which when substituted into the dynamic
equilibrium equations [Eq. (2)] give the following partial-differential
equations for the displacements:

ci11u;xx � ci66u;yy � ci55u;zz � �ci12 � ci66�v;xy � �ci13 � ci55�w;xz
� ρiu;tt (4a)

�ci12 � ci66�u;xy � ci66v;xx � ci22v;yy � ci44v;zz
� �ci23 � ci44�w;yz � ρiv;tt (4b)

�ci13 � ci55�u;xz � �ci23 � ci44�v;yz � ci55w;xx
� ci44w;yy � ci33w;zz � ρiw;tt (4c)

In the following derivation, the superscript i shall be dropped for
convenience with understanding that the derived relations hold
within each phase. Appropriate displacement solutions for a simply
supported plate are

u � U�z; t� cos px sin qy (5a)

v � V�z; t� sin px cos qy (5b)

w � W�z; t� sin px sin qy (5c)

where

p � nπ
a
; q � mπ

b
; �m; n � 1; 2; 3; : : : �

These assumed solutions satisfy the simply supported boundary
conditions.
Then, when the assumed solutions are substituted into Eq. (4), the

dynamic elasticity equilibrium equations become

c55U;zz − �c11p2 � c66q2�U − �c12 � c66�pqV
� �c13 � c55�pW;z � ρU;tt (6a)

c44V;zz − �c12 � c66�pqU − �c22q2 � c66p2�V
� �c23 � c44�qW;z � ρV;tt (6b)

c33W;zz − �c13 � c55�pU;z − �c23 � c44�qV;z
− �c55p2 � c44q2�W � ρW;tt (6c)

Let us denote the Laplace transform of a function F�t� by ~F�s�, i.e.,

~F�s� �
Z∞

0

F�t�e−st dt (7)

Taking the Laplace transform of Eq. (6), and assuming zero initial
displacements and velocities, results in three homogeneous ordinary
differential equations for the Laplace transforms of the displace-
ments, ~U�z�, ~V�z�, and ~W�z�:

c55 ~U;zz − �c11p2 � c66q2 � ρs2� ~U − �c12 � c66�pq ~V

� �c13 � c55�p ~W;z � 0 (8a)

c44 ~V;zz − �c12 � c66�pq ~U − �c66p2 � c22q2 � ρs2� ~V
� �c23 � c44�q ~W;z � 0 (8b)

c33 ~W;zz − �c13 � c55�p ~U;z − �c23 � c44�q ~V;z

− �c55p2 � c44q2 � ρs2� ~W � 0 (8c)

Next, let us set

Fig. 1 Definition of the geometry for the sandwich plate.
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2
4 ~U�z�

~V�z�
~W�z�

3
5 �

2
4 ~U0

~V0
~W0

3
5eλz (9)

where ~U0 and ~W0 are unknown constants, and substituting Eq. (9)
into Eq. (8) results in the following system of algebraic equations:

�−c55λ2 � c11p2 � c66q2 � ρs2� ~U0 � �c12 � c66�pq ~V0

− �c13 � c55�pλ ~W0 � 0 (10a)

�c12 � c66�pq ~U0 � �−c44λ2 � c66p2 � c22q2 � ρs2� ~V0

− �c23 � c44�qλ ~W0 � 0 (10b)

�c13 � c55�pλ ~U0 � �c23 � c44�qλ ~V0

� �−c33λ2 � c55p2 � c44q2 � ρs2� ~W0 � 0 (10c)

For nontrivial solution of the system of equations, the determinant of
the coefficients is zero. This results in a sixth-order polynomial
equation:

A0λ
6 � A1λ

4 � A2λ
2 � A3 � 0 (11a)

where

A0 � c33c44c55 (11b)

A1 � �c33c55c66 − c44�c213 − c11c33 � 2c13c55��p2

� �c33c44c66 − c55�c223 − c22c33 � 2c23c44��q2�
� �c33�c44 � c55� � c44c55�ρs2 (11c)

A2 � �2c12c23c55 − c212c33 � 2c12c44c55 − 2c12c33c66

� 2c23c55c66 � 4c44c55c66 − c213c22�
� 2c13�c23 � c44��c12 � c66� − 2c13c55c22 − c11c223
� c11c22c33 − 2c11c44c23�p2q2�

� �c22c44c55 − c223c66 � c22c33c66 − 2c23c44c66�q4

� �c11c33c66 � c11c44c55 − c213c66 − 2c13c55c66�p4�
� �c33 � c44 � c55�ρ2s4 � �c44c55 � c33c66 � c55c66
− c213 − 2c13c55 � c11c33 � c11c44�p2ρs2�
� �c22c33 − c223 − 2c23c44 � c22c55 � c44c55 � c33c66
� c44c66�q2ρs2 (11d)

and

A3 � −c11c55c66p6 − c22c44c66q6 � �c212c55 − c11c22c55
− c11c44c66 � 2c12c55c66�p4q2�

� �c212c44 − c11c22c44 � 2c12c44c66 − c22c55c66�p2q4

− �c11c55 � c11c66 � c55c66�p4ρs2�
� �c212 − c11c22 − c11c44 − c22c55 � 2c12c66

− c44c66 − c55c66�p2q2ρs2−

− �c22c44 � c22c66 � c44c66�q4ρs2 − �c11 � c55 � c66�p2ρ2s4

− �c22 � c44 � c66�q2ρ2s4 − ρ3s6 (11e)

Let us set

μ � λ2 (12a)

then Eq. (11a) is represented as a cubic polynomial equation:

A0μ
3 � A1μ

2 � A2μ� A3 � 0 (12b)

Equation (12b) is a cubic equation with complex coefficients. The
case of a cubic equation with real coefficients is straightforward, and
the corresponding explicit form for the three roots iswell known. This
is not the case, however, when the coefficients are complex. Instead,
the roots of Eq. (12b) can be determined in closed form through a
series of change of variables as follows.
The substitution

μ � ρ −
A1

3A0

(13a)

eliminates the μ2 term and results in

ρ3 � eρ� f � 0 (13b)

where

e � −
A2
1

3A2
0

� A2

A0

; f � 2A3
1

27A3
0

−
A1A2

3A2
0

� A3

A0

(13c)

Further, we proceed with the substitution (known as Vieta
substitution):

ρ � ζ −
e

3ζ
(13d)

This results in the equation

ζ6 � fζ3 − e
3

27
� 0 (13e)

Finally, setting

ζ3 � η (13f)

results in the quadratic equation with complex coefficients:

η2 � fη − e
3

27
� 0 (13g)

In terms of the discriminant Δ of (13g), which is complex:

Δ � f2 � 4
e3

27
(13h)

the two complex solutions of the quadratic equation are

η1;2 �
−f�

����
Δ
p

2
(13i)

and can be set in the polar form:

η1;2 � r1;2�cos θ1;2 � i sin θ1;2� (13j)

Then, from Eq. (13f) to the first root (η1) there correspond three
solutions for ζ:

ζ1;2;3 � r1∕31

�
cos

θ1 � 2kπ

3
� i sin θ1 � 2kπ

3

�
; k � 0; 1; 2

(13k)

Another set of three roots correspond to the second root (η2).
Plugging back gives two sets of solutions for ρ and μ (each
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corresponding to each of the two ηj), but these two sets are the same,
and so finally, the three complex solutions of the cubic equation
[Eq. (12b)] are

μ1;2;3 � ζ1;2;3 −
e

3ζ1;2;3
−
A1

3A0

(13l)

with ζ1;2;3 given in Eq. (13k) for k � 0; 1; 2.
Therefore, from Eq. (12a), the six roots of Eq. (11a) are

λ1;2 � �
�����
μ1
p

; λ3;4 � �
�����
μ2
p

; λ5;6 � �
�����
μ3
p

(13m)

Corresponding to these six roots, the general solutions (transformed
displacement functions) are

~W�z��
X6
i�1
aie

λiz; ~V�z��
X6
i�1
bie

λiz; ~U�z��
X6
i�1
die

λiz (14)

where ai, bi, and di are complex constants.
Of the 18 constants in Eq. (14), only six are independent. The

remaining 12 constants can be determined in terms of the six
independent constants by substituting the transformed displacements
[Eq. (14)] into Eqs. (8a) and (8b).We could also select other pairs, for
instance either Eqs. (8a) and (8c) or Eqs. (8b) and (8c); they both
would yield the same result.
For convenience, let us set

f1i � �c13 � c55�pλi; f2i � �c23 � c44�qλi (15a)

f3i � −c11p2 − c66q2 − ρs2 � c55λ2i ;
f4i � −c66p2 − c22q2 − ρs2 � c44λ2i (15b)

Then, in terms of the coefficients in the expression for ~W�z�, ai we
obtain

bi �
f1i�c12 � c66�pq� f2if3i
�c12 � c66�2p2q2 � f3if4i

ai (16a)

di �
f2i�c12 � c66�pq� f1if4i
�c12 � c66�2p2q2 − f3if4i

ai (16b)

where i � 1; 2; 3; 4; 5; 6.
Thus, for each phase, there are six complex constant unknowns,

which are di, i � 1; : : : 6. The transformed displacement functions
take the following form:

~u�x;y;z��cospx sinqy
X6
i�1

f2i�c12�c66�pq�f1if4i
�c12�c66�2p2q2−f3if4i

aie
λiz (17a)

~v�x;y;z��sinpxcosqy
X6
i�1

f1i�c12�c66�pq�f2if3i
�c12�c66�2p2q2�f3if4i

aie
λiz (17b)

~w�x;y;z��sinpx sinqy
X6
i�1
aie

λiz (17c)

The corresponding transformed stresses are derived by substituting
the previous displacement expressions into Eqs. (1) and (2). We
present the explicit expressions for the stresses in the following.

By setting

gui �
f2i�c12 � c66�pq� f1if4i
�c12 � c66�2p2q2 − f3if4i

;

gvi �
f1i�c12 � c66�pq� f2if3i
�c12 � c66�2p2q2 � f3if4i

(18)

the transformed transverse normal stress ~σzz�x; y; z� is in the form

~σzz �
X6
i�1

aibzzie
λiz sin px sin qy (19a)

where

bzzi � −c13guip − c23gviq� c33λi (19b)

The transformed transverse shear stresses ~τyz�x; y; z� and ~τxz�x; y; z�
are in the form:

~τyz�
X6
i�1
aibyzie

λiz sinpxcosqy; ~τxz�
X6
i�1
aibxzie

λiz sinpxcosqy

(20a)

where

byzi � c44�gviλi � q�; bxzi � c55�guiλi � p� (20b)

The transformed axial stresses ~σxx and ~σyy are in the form:

~σxx�
X6
i�1
aibxxie

λiz sinpx sinqy; ~σyy�
X6
i�1
aibyyie

λiz sinpx sinqy

(21a)

where

bxxi � −c11guip − c12gviq� c13λi;
byyi � −c12guip − c22gviq� c23λi (21b)

Finally there is an in-plane shear stress ~τxy�x; y; z� in the form:

~τxy �
X6
i�1

aibxyie
λiz cos px cos qy (22a)

where

bxyi � c66�qgui � pgvi� (22b)

From this analysis, we can see that, within each phase (i), where
i � f1; c; f2, there are six constants: a�i�j , j � 1; : : : 6. Therefore, for
the three phases, this gives a total of 18 constants to be determined.
These 18 constants are determined from the conditions on the

bounding surfaces and the face sheet/core interfaces as follows.
There are three traction conditions at the lower face-sheet/core

interface, z � −c.
Condition 1: ~σ�c�zz � ~σ�f2�zz at z � −c, which gives

X6
j�1

b�c�zzje
−cλ�c�j a�c�j �

X6
j�1

b�f2�zzj e
−cλ�f2�j a�f2�j (23a)

Condition 2: ~τ�c�xz � ~τ�f2�xz at z � −c, which gives

X6
j�1

b�c�xzje
−cλ�c�j a�c�j �

X6
j�1

b�f2�xzj e
−cλ�f2�j a�f2�j (23b)
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Condition 3: ~τ�c�yz � ~τ�f2�yz at z � −c, which gives

X6
j�1

b�c�yzje
−cλ�c�j a�c�j �

X6
j�1

b�f2�yzj e
−cλ�f2�j a�f2�j (23c)

There are also three displacement continuity conditions at the lower
core/face-sheet interfaces.
Condition 4: ~U�c� � ~U�f2� at z � −c, which results in

X6
j�1

g�c�uj e
−cλ�c�j a�c�j �

X6
j�1

g�f2�uj e
−cλ�f2�j a�f2�j (23d)

Condition 5: ~V�c� � ~V�f2� at z � −c, which results in

X6
j�1

g�c�vj e
−cλ�c�j a�c�j �

X6
j�1

g�f2�vj e
−cλ�f2�j a�f2�j (23e)

Condition 6: ~W�c� � ~W�f2� at z � −c, which gives

X6
j�1

e−cλ
�c�
j a�c�j �

X6
j�1

e−cλ
�f2�
j a�f2�j (23f)

Next, there are three traction conditions at the upper face-sheet/core
interface, z � �c.
Condition 7: ~σ�f1�zz � ~σ�c�zz at z � �c, which gives

X6
j�1

b�c�zzje
cλ�c�j a�c�j �

X6
j�1

b�f1�zzj e
cλ�f1�j a�f1�j (24a)

Condition 8: ~τ�f1�xz � ~τ�c�xz at z � �c, which gives

X6
j�1

b�c�xzje
cλ�c�j a�c�j �

X6
j�1

b�f1�xzj e
cλ�f1�j a�f1�j (24b)

Condition 9: ~τ�c�yz � ~τ�f1�yz at z � �c, which gives

X6
j�1

b�c�yzje
cλ�c�j a�c�j �

X6
j�1

b�f1�yzj e
cλ�f1�j a�f1�j (24c)

The corresponding displacement continuity conditions at the upper
face-sheet/core interface, z � �c are as follows.
Condition 10: ~U�f1� � ~U�c� at z � �c, which gives

X6
j�1

g�c�uj e
cλ�c�j a�c�j �

X6
j�1

g�f1�uj e
cλ�f1�j a�f1�j (24d)

Condition 11: ~V�c� � ~V�f1� at z � �c, which results in

X6
j�1

g�c�vj e
cλ�c�j a�c�j �

X6
j�1

g�f1�vj e
cλ�f1�j a�f1�j (24e)

Condition 12: ~W�f1� � ~W�c� at z � �c, which gives

X6
j�1

ecλ
�c�
j a�c�j �

X6
j�1

ecλ
�f1�
j a�f1�j (24f)

Finally, two traction conditions exist on each of the two bounding
surfaces. The traction free conditions at the lower bounding surface,
z � −�c� f2�, can be written as follows.
Condition 13: ~σzz � 0 at z � −�c� f2�, which gives

X6
j�1

b�f2�zzj e
−�c�f2�λ�f2�j a�f2�j � 0 (25a)

Condition 14: ~τxz � 0 at z � −�c� f2�, which gives

X6
j�1

b�f2�xzj e
−�c�f2�λ�f2�j a�f2�j � 0 (25b)

Condition 15: ~τyz � 0 at z � −�c� f2�, which gives

X6
j�1

b�f2�yzj e
−�c�f2�λ�f2�j a�f2�j � 0 (25c)

We assume that a transverse distributed loading q0�x; y; t� per unit
width is applied at the top face sheet. If the formof the distributed load
is

q0�x; y; t� � Q0�t� sin
nπx

a
sin
mπy

b
� Q0�t� sin px sin qy (26)

and the Laplace transform of Q0�t� is ~Q0�s�, then at the upper
bounding surface, where the transverse load q0�x; y; t� is applied, we
have the condition:
Condition 16: ~σzzjz��c�f1� � ~Q0�s� sin px sin qy, which gives

X6
j�1

b�f1�zzj e
�c�f1�λ�f1�j a�f1�j � ~Q0�s� (27a)

For example, for an exponential decay loading Q0�t� � A0e
−t∕c,

we would have ~Q0�s� � A0c∕�1� sc�. For a pulse loading of
amplitude A0 and of infinite duration, Q0�t� � A0H�t�, where H is
the Heaviside unit function, we would have ~Q0�s� � A0∕s, and for a
pulse loading of amplitude A0 and of finite duration t0, we would
have ~Q0�s� � A0�1 − e−t0s�∕s.
Moreover, we have the second traction condition at the bounding

surface of the top face sheet.
Condition 17: ~τxzjz��c�f1� � 0, which gives

X6
i�1

b�f1�xzj e
�c�f1�λ�f1�j a�f1�j � 0 (27b)

and the third traction condition at the bounding surface of the top
face sheet
Condition 18: ~τyzjz��c�f1� � 0, which gives

X6
i�1

b�f1�yzj e
�c�f1�λ�f1�j a�f1�j � 0 (27c)

Therefore, we have a system of 18 linear algebraic equations in the 18
(in general complex) unknowns, a�f2�j , a�c�j , and a�f1�j , j � 1, 6.
Solving for these determines in closed form the Laplace transforms of
the displacement and stress fields.
The next step is the inversion back to the time space, which is

done numerically. This a critical part of this research because there
exist many approaches to numerical inversion of Laplace transforms
[8], and each method is suitable for certain physical problems;
for example, different methods would be needed for heat transfer
problems as opposed to structural vibration problems. The Euler
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method, as described in Abate and Whitt [9], was found to provide
excellent accuracy by comparing its application to the closed-form
classical beam-theory vibration equations of a simple homogeneous
beam of the same overall stiffness as our sandwich beam. As dis-
cussed also in [3], the numerical inversion based on the Euler method
produced results in the time space that were exactly the theoretical
results up to a time of about 10 ms.
The Eulermethod, so named because it employs Euler summation,

is based on the Bromwich contour inversion integral, which can be
expressed as the integral of a real-valued function of a real variable by
choosing a specific contour [6]. The integral is calculated by use of
the Fourier-series method (the Poisson summation formula) and the
Euler summation to accelerate convergence. In addition to confirm-
ing the numerical inversion by comparing to the closed-form simple
vibration equation, the accuracy was further confirmed in the time
scale of interest by comparing with the results from the Post–Widder
method, again described in [9]. It should be noticed that both the
Euler and the Post–Widder methods are variants of the Fourier-series
method but are dramatically different so that they can be expected to
serve as useful checks on each other.

First-Order Shear Sandwich-Plate Theory

Let us denote byψ1�x; y; t� andψ2�x; y; t� the rotations of the cross
sections originally perpendicular to the x and y axes, respectively, and
w�x; y; t� the transverse deflection (i.e., along the z axis and taken as
one for the entire section). The plate is loaded with a transverse load
q0�x; y; t�. Based on the assumptions of the theory, the displacements
are assumed in the form:

u�x; y; z; t� � u0�x; y; t� � zψ1�x; y; t� (28a)

v�x; y; z; t� � v0�x; y; t� � zψ2�x; y; t� (28b)

w�x; y; z; t� � w0�x; y; t� (28c)

The static first-order shear deformation (FOSD) theory equations for
a sandwich plate can be found in Carlsson and Kardomateas [10] and
can be directly extended to the dynamic case following the general
dynamic plate equations in Birman [11].
For the transverse displacement and shear functions, these are

D11ψ1;xx � �D12 �D66�ψ2;xy �D66ψ1;yy − κD55�ψ1 �w0;x�

� �ρI�eq
∂2ψ1

∂t2
(29a)

D22ψ2;yy � �D12 �D66�ψ1;xy �D66ψ2;xx − κD44�ψ2 �w0;y�

� �ρI�eq
∂2ψ2

∂t2
(29b)

κD55�ψ1;x �w0;xx� � κD44�ψ2;y �w0;yy� � q�x; y; t�

� �ρh�eq
∂2w0

∂t2
(29c)

We shall present results in the next section for a symmetric sandwich;
thus, we assume a symmetric construction that would simplify the
relations, and in this case Et1;2 � Eb1;2 � E

f
1;2 and f1 � f2 � f and

the densities ρt � ρb � ρf.
Therefore, the bending rigidities about the y and x axes per unit

width, D11, D22, respectively, are

Djj � 2

�
Efj
f3

12
� Efj f

�
f

2
� c

�
2
�
� Ecj

�2c�3
12

; j � 1; 2

(30a)

The rigidity associated with the in-plane shear (twisting rigidity) is

D66 � 2

�
Gf12

f3

12
�Gf12f

�
f

2
� c

�
2
�
�Gc12

�2c�3
12

; j � 1; 2

(30b)

In the most-followed version of this theory, the contribution of the
core is neglected in Eqs. (30a) and (30b) [10], butwe include it here to
bring it closer to the elasticity theory assumptions.
In addition, because the core is assumed to be the only contributor

to the transverse shear, the rigidity constants associated with the
transverse shear are

D55 � Gc13�2c�; D44 � Gc23�2c� (30c)

Although the shear correction factor in homogeneous sections is
taken typically as κ � 5∕6, in a sandwich section the shear stress
distribution in the core is largely uniform, and therefore we set κ � 1
as the shear correction factor.
Furthermore, �ρh�eq is defined from the densities and thicknesses

of the faces and the core as

�ρh�eq � 2ρff� ρc�2c� (30d)

and �ρI�eq is defined from the densities and the moments of inertia of
the faces and the corewith respect to the neutral axis for the sandwich
section as

�ρI�eq � 2ρf

�
f3

12
� f

�
f

2
� c

�
2
�
� ρc

�
�2c�3
12
� �2c�e2

�
(30e)

Setting

w0�x; y; t� � W0�t� sin px sin qx (31a)

ψ1�x; y; t� � Ψ1�t� cos px sin qy (31b)

ψ2�x; y; t� � Ψ2�t� sin px cos qy (31c)

withp � nπ∕a and q � mπ∕b andwith the load in the samemanner
as Eq. (26), and substituting in Eqs. (29a–29c) leads to

−D11p
2Ψ1�t� − �D12 �D66�pqΨ2�t� −D66q

2Ψ1�t�

− κD55�Ψ1�t� � pW0�t�� � �ρI�eq
d2Ψ1�t�
dt2

(32a)

−D22q
2Ψ2�t� − �D12 �D66�pqΨ1�t� −D66p

2Ψ2�t�

− κD44�Ψ2�t� � qW0�t�� � �ρI�eq
d2Ψ2�t�
dt2

(32b)

−κD55�pΨ1�t� � p2W0�t�� − κD44�qΨ2�t� � q2W0�t��

�Q0�t� � �ρh�eq
d2W0�t�

dt2
(32c)

Taking the Laplace transforms of the foregoing equations gives

��ρI�eqs2 �D11p
2 �D66q

2 � κD55� ~Ψ1

� �D12 �D66�pq ~Ψ2 � κD55p ~W0 � 0 (33a)

�D12 �D66�pq ~Ψ1 � ��ρI�eqs2 �D22q
2 �D66p

2 � κD44� ~Ψ2

� κD44q ~W0 � 0 (33b)
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κD55p ~Ψ1 � κD44q ~Ψ2 � ��ρh�eqs2 � κD55p
2 � κD44q

2� ~W0 � ~Q0

(33c)

Thus, we have three algebraic equations in three unknowns, ~Ψ1, ~Ψ2,
and ~W0, and these can be solved in closed form in the Laplace space.

In particular, in terms of the determinant:

D �

2
4 �ρI�eqs

2 �D11p
2 �D66q

2 � κD55 �D12 �D66�pq κD55p
�D12 �D66�pq �ρI�eqs2 �D22q

2 �D66p
2 � κD44 κD44q

κD55p κD44q �ρh�eqs2 � κD55p
2 � κD44q

2

3
5 (34a)

the solution is

~Ψ1 � pκ ~Q0

D44�D12 �D66�q2 −D55��ρI�eqs2 � q2D22 � p2D66 � κD44�
D

(34b)

~Ψ2 � qκ ~Q0

D55�D12 �D66�p2 −D44��ρI�eqs2 � p2D11 � q2D66 � κD55�
D

(34c)

and

~W0 � ~Q0

��ρI�eqs2 � p2D11 � q2D66 � κD55���ρI�eqs2 � q2D22 � p2D66 � κD44� − p2q2�D12 �D66�2
D

(34d)

Notice that this theory would predict no normal strains (ϵzz � 0) and
shear stresses in the core that have no z variation and are of the form:

τxz � Gc13�ψ1 �w0;x�; τyz � Gc23�ψ2 �w0;y� (34e)

The inversion of the previous equation is implemented in the
same way as for the elasticity (i.e., the Euler method, as described
in [9]).

Results and Discussion

Thematerial used in the calculations is based on the experiments of
Gardner et al. [7]. Both top and bottom face sheets are made from
glass vinyl ester with Ef1 � E

f
2 � E

f
3 � 13.6 GPa; Gf23 � G

f
13 �

Gf12 � 5.2 GPa; νf12 � νf13 � 0.25 and νf32 � 0.35 and density
ρf � 1800 kg∕m3. The core is made from Corecell foam with Ec1 �
Ec2 � Ec3 � 0.032 GPa; Gc23 � Gc13 � Gc12 � 0.020 GPa; νc12 �
νc13 � 0.25 and νc32 � 0.35 and density ρc � 58.5 kg∕m3. The
sandwich plate is symmetric with face thickness f � 5mm, core
thickness 2c � 38 mm, length a � 152.4 mm, and width b �
102 mm.
For the sake of simplicity, we assume single half-wave sinusoidal

loadings in x and y, i.e., in Eq. (26), n � 1 and m � 1. Note that a
general loading can be expanded in a series of terms of the type of
Eq. (26) anyway.
The time dependence of the loading is constructed from the shock-

wave history reported inGardner et al. [7] and is expressed in the form
of an exponentially decaying blast:

Q0�t� � −0.51e−1.25t GN∕m2 (35a)

where t is given in seconds.
Thus, the Laplace transform of the load is

~Q0�s� � −0.51∕�s� 1.25� (35b)

For each phase (top and bottom face sheet and core), the stiffness
constants cij that enter into the elasticity solution are found from

c11 � E1

�1 − ν23ν32�
C0

; c12 � E2

�ν12 � ν13ν32�
C0

;

c13 � E3

�ν13 � ν12ν23�
C0

(36a)

c22 � E2

�1 − ν13ν31�
C0

; c23 � E3

�ν23 � ν21ν13�
C0

;

c33 � E3

�1 − ν12ν21�
C0

(36b)

c44 � G23; c55 � G31; c66 � G12 (36c)

where

C0 � 1 − �ν12ν21 � ν23ν32 � ν13ν31� − �ν12ν23ν31 � ν21ν13ν32�
(36d)

Plotted in Fig. 2a is the transverse displacementw of themidtop face,
midcore, andmidbottom face, at plate center, x � a∕2, y � b∕2, as a
function of time during the first millisecond. It can be seen that the
bottom face is lagging the top face, whereas the core is also following
a different path. At about 0.20 ms, it can be seen that the top face is
displacing by about 4mmmore than the bottom face; thus, the core is
substantially compressed. Beyond about 0.35 ms, the bottom face
starts displacing more than the top face, which means that the core is
expanding, but this expansion is of smaller scale than the core com-
pression, with themaximumbeing about 1mm.At about 0.48ms, the
core compression resumes. Notice also that the displacements are of
the same scale as the measured ones in Wang and Shukla [12].
The commonly used first-order shear deformation (FOSD) theory

predictions are shown in Fig. 2b. It can be seem that the FOSD theory
cannot capture the divergences and lag behavior between faces and
core because it is in terms of only one transverse displacement for the
entire structure and that the FOSD theory significantly overestimates
the dynamic displacements; in fact, the peaks and troughs of the
FOSD are about 50% over the corresponding ones from elasticity.
Although the FOSD is not adequate, high-order theories are expected
to be more accurate. In fact, the extended high-order sandwich-panel
theory (EHSAPT) recently developed by Phan et al. [13] was proven
to be very accurate in its static-beam version [13] and in its dynamic-
beam version [14]. This theory was extended to its dynamic plate
version [15] and is compared to the elasticity results in Fig. 2b. It can
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be observed that the EHSAPT is very accurate and on top of the
elasticity and can capture verywell the differing behaviors of the face
sheets and the core.
Figure 3a shows the axial displacement u of the midtop face,

midbottom face, and midcore at x � a∕4 and y � b∕4 as a function
of time during the first 2 ms. The core experiences higher axial
displacement and cyclic behavior in comparison with the top and
bottom sheets. It can also be observed that the two face sheets
displace in an opposing manner.
Figure 3b compares the two axial displacements u and v at the

middle of the core, and it can be seen that they show only small
differences in magnitude and follow the same cyclic behavior.
Figure 4 shows the transverse normal stress at the top face/core

interface and the bottom face/core interface at the plate center,
x � a∕2 and y � b∕2, as a function of time during the first 2 ms.
Both the top and bottom interfaces encounter compression and
tension alternatively. The maximum compressive stress of 0.58 MPa
is at the top interface and occurs at 0.22 ms, and the maximum tensile
stress of 0.34 MPa is at the bottom interface and occurs at 1.65 ms.
Furthermore, it can be observed that the top interface is mostly in
compression, whereas the bottom interface undergoes fairly evenly
tension and compression. It can also be seen that the interfacial
normal stress σzz follows the cyclic behavior of the core axial
displacements.

Figure 5 shows the shear stress τxz at the top and bottom face sheet-
core interfaces at quarter-distance, x � a∕4, y � b∕4. We observe
that the shear stress follows the same cyclic behavior as the transverse

Fig. 2 Transverse displacement w of a) face sheets and midcore during the first millisecond, and b) from FOSD and EHSAPT vs elasticity.

Fig. 3 Representations (during the first 2 ms) of a) axial displacement u at the middle of the faces and the core, and b) axial displacements u and v at the
middle of the core.

Fig. 4 Transverse normal stress σzz at the face/core interfaces during
the initial phase of blast.
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displacement (Fig. 2a). The shear stress is, in general, higher for the
bottom face/core interface and peaks at about 0.45 ms. It switches
sign at about 0.70 ms. The peak transverse shear stress is comparable
in magnitude to the peak tensile transverse normal (Fig. 4). Similar
trends and values hold for the other transverse shear τyz. The
magnitude of the shear stress at the interfaces is considerable, and
given the fact that inside the core there would be shear stresses of
similar magnitude, it can explain the core cracking initiating at about
0.5 ms, which was observed in experiments [7].

Conclusions

A dynamic three-dimensional elasticity solution for the transient
response of a sandwich plate consisting of orthotropic core and face
sheets and subjected to blast loading at the top face sheet was
presented. The problem was formulated with the three-dimensional
dynamic equilibrium equations in time domain, which are then
transformed to the Laplace domain. Subsequently, the Laplace
domain solutions are obtained in closed form, with the solution
involving a cubic characteristic equation with complex coefficients.
The Laplace domain solutions are numerically inverted back to the
time domain by use of the Euler method, which is based on the
Bromwich contour inversion integral. The results for a certain
realistic case were produced and showed that the sandwich structure
exhibits a cyclic displacement response with appreciable lags and
leads between top and bottom face sheet and core. Moreover, the
structure exhibits both transverse normal compression and tension at
the face/core interfaces, with the normal compression stress
dominating the top interface and the bottom interface showing fair
amounts of both. Finally, the interfacial shear stresses also showed a
remarkable magnitude and the same cyclic behavior as the transverse
displacement. This elasticity solution can be used as a benchmark in
assessing the accuracy of the various sandwich-plate theories.
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