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The extended high-order sandwich panel theory was formulated in its one-dimensional version for orthotropic

elastic sandwichbeams.This theory includes the in-plane rigidity of the core, and the compressibility of the soft core in

the transverse direction is also considered. The novelty of this theory is that it allows for three generalized coordinates

in the core (the axial and transverse displacements at the centroid of the core, and the rotation at the centroid of the

core) instead of just one (midpoint transverse displacement) commonly adopted in other available theories. The

theorywas derived so that all core/face displacement continuity conditions are fulfilled. It is proven, by comparison to

the elasticity solution, that this approach results in superior accuracy, especially for the cases of stiffer cores, forwhich

cases of the other available sandwich computational models cannot correctly predict the stress fields involved. In this

paper, a linear finite element is formulated based on the extended high-order sandwich panel theory. The element

equations are outlined, and numerical results for the simply supported case of transverse distributed loading are

produced for several typical sandwich configurations. These results are compared with the corresponding ones from

the elasticity solution. The comparison among these numerical results shows that, with a relatively small number of

elements, the results are very close to the elasticity ones in terms of both the displacements and stress or strains. Thus,

the finite element version of the extendedhigh-order sandwich panel theory constitutes a very powerful analytical tool

for sandwich panels.

Nomenclature

a = length of the sandwich beam, m
Cij = stiffness constants, N∕m2

c = half-thickness of the core (total core thickness is
2c), m

ft;b = thickness of the top face and bottom face, respec-
tively, m

�Kt;b;ce � = element unit width stiffness matrix of the top face,
bottom face, and core, N∕m2

�N�s�� = displacement interpolation matrix
Nk�s� = shape functions (where k is equal to 1, : : : ,6)

fRt;b;ce g = element unit width equivalent nodal load vector of the
top face, bottom face, and core, N∕m

s = local coordinate
fUeg = column nodal displacement matrix of the element, m

f ~U�s�g = column matrix representing the displacement field
within the element, m

u = axial displacement (along x), m
w = transverse displacement (along z), m

Introduction

S ANDWICH panels typically consist of two stiff metallic or com-
posite thin face sheets separated by a soft/stiff honeycomb or

foam thick core of low/high density. This configuration gives the
sandwichmaterial system high stiffness and strength with little resul-
tant weight penalty and high-energy absorption capability related to

the application of sandwich structures in the construction of aero-
space vehicles, naval vehicles, wind turbines, and civil infrastructure.
There are several distinguishing features of sandwich panels with
regard to the analysis of their static and dynamic behavior. One is the
large effect of transverse shear [1]. This is because cores are typically
of very low modulus, and thus transverse shear has a significant
influence on the structural behavior. Another very important feature
is the compressibility of the core, which results in significant core
transverse deformation. The latter has been shown in experiments on
sandwich panels subject to impulsive (blast) loading [2]. Consid-
eration of the core compressibility implies that the displacements of
the upper and lower face sheets may not be identical.
The earliest models of sandwich analysis are the classical or first-

order shear models, which assume that the core is infinitely rigid
(incompressible) in its transverse direction, its in-plane rigidity
is neglected, and it has only shear resistance. In general, they are
based on the Euler–Bernoulli and Timoshenko beam theories with
modulus-weighted stiffnesses. This model has been shown to be
inaccurate in predicting displacements for very soft-core sandwich
configurations under quasi-static loading (Kardomateas and Phan
[3]). In 1992, Frostig et al. [4] developed the high-order sandwich
panel theory (HSAPT), which is a compressible core theory that
accounts for the transverse and shear rigidity of the core but neglects
the axial rigidity of the core. Neglecting the axial rigidity of the core
results in a constant shear stress distribution through the thickness of
the core, which is a good approximation for sandwich constructions
with very soft cores undergoing quasi-static loading [3]. Recently, the
extended high-order sandwich panel theory (EHSAPT) was formu-
lated to account for the axial, transverse, and shear rigidity of the core
(Phan et al. [5]). This new theory includes the axial rigidity of the core
and allows for an accurate prediction of the shear stress distribution
through the thickness of the core in a wide range of core stiffnesses
[5]. The dynamic version of the EHSAPTwas derived and presented
by Phan et al. [6]. It was validated by comparison to the dynamic
elasticity solution derived by Kardomateas et al. [7]. Another cate-
gory of theories includes the so-called “zigzag” theories. These
theories were original developed for laminated composites. In the
zigzag theories, the displacements have a piecewise variation through
the thickness. The shear stress is continuous at the layer interfaces.
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During the years, a number of zigzag models have been developed
[8–9]. Recently, a“refined zigzag theory”was proposed by Barut and
Madenci [8]. The in-plane and transverse displacement components
have a quadratic through-thickness variation, and the transverse
normal strain is obtained through the assumption of a cubic variation
of the transverse normal stress. Also recently, Iurlaro et al. [9]
developed a mixed cubic zigzag model for multilayered composite
and sandwich plates. The in-plane displacements follow a piecewise
cubic distribution, and the transverse displacement has a parabolic
variation through thickness. The assumed transverse shear stress
profile comes from the three-dimensional equilibrium equations.
These recent theories were shown to offer improvements, especially
for thick or highly heterogeneous laminate configurations.
Direct solutions based on the EHSAPT can be obtained for simple

configurations, such as the simply supported sandwich beam under
sinusoidal transverse loading treated in [5]. For general and more
complicated geometric and loading configurations, a direct solution
of the theory is not always available; thus, the more general finite
element formulations are needed. In fact, finite element formulations
for sandwich structures have been pursued in the literature for both
static and dynamic applications, based on different assumptions [10–
16]: for example, [13] is based on the high-order sandwich panel
theory. In [15], a new finite element (FE) model was built according
to the higher-order zigzag theory. More recently, a triangular plate
element based on {2,2}-order refined zigzag plate theory was
developed [16].
Thus, the objective of the present work is to formulate a finite

element based on the EHSAPT. The element formulation is outlined
in detail. Three examples with various boundary conditions and
applied loadings are investigated. To verify the formulations and
solutions, comparisons are made with analytical solutions obtained
by elasticity and theEHSAPT. It is verified that the element is capable
of handling complex end fixity and geometry configurations for a
range of material systems. The EHSAPT element is shown to be a
very efficient way of analyzing sandwich beam configurations with
accuracy.

Theory and Derivation

The finite element formulation follows the new sandwich plate
theory EHSAPT [5]. For completeness, the EHSAPT is briefly pre-
sented. In sandwich materials, the core is usually much thicker than
the face sheets and of very low modulus; thus, the shear deformation
plays an important role. The EHSAPT also includes the transverse
compressibility as well as the axial rigidity of the core. Higher-order
terms are needed to accurately describe the deformation of the core
sheet.
Consider a sandwich beam or wide panel consisting of two face

sheets bonded to a core, as shown in Fig. 1. The thickness of the top
face sheet, bottom face sheet, and core sheet are ft, fb, and 2c,
respectively. The length of the beam/wide panel is a. The origin of a
right-handed Cartesian coordinate is at the left end, the x axis coin-

cides with themiddle line of the core, and the z axis is in the thickness
direction. As a plane strain problem, we only consider loading in the
x-z plane, and this will result in displacements in the x and z
directions. The x and z coordinate components of the displacement
are denoted with u and w, respectively.
In typical sandwich panels, the geometric and material properties

are very different between the skins and the core. The thickness ratio
of the face sheets and core is very small, and the Young’s modulus
of the core is much smaller than that of the skins. For the face sheets,
the axial strain is the major part, whereas the shear strain can be
neglected. For the core, the axial strain, transverse strain, and shear
strain need to all be considered. Hence, the displacement field in the
face sheets is assumed to follow the Euler–Bernoulli assumptions,
whereas a high-order displacement pattern is assumed for the core. In
the EHSAPT, the core transverse displacementw�x; z� is assumed to
be a quadratic function of z and the axial displacement u�x; z� is
described by a cubic function of z. The transverse displacement can
be expressed as

w�x;z�

�

8><
>:

wt0�x� �c< z≤ c�ft� �topface�
wc0�x��wc1�x�z�wc2�x�z2 �−c≤ z≤ c� �core�

wb0�x� �−c−fb ≤ z<−c� �bottom face�

(1)

and the axial displacement as

u�x;z�

�

8>><
>>:

ut0�x�−
�
z−c−ft

2

�
wt0;x�x� �c<z≤c�ft� �top face�

uc0�x��ϕc0�x�z�uc2�x�z2�uc3�x�z3 �−c≤z≤c� �core�
ub0�x�−

�
z�c�fb

2

�
wt0;x�x� �−c−fb≤z<−c� �bottomface�

(2)

where, wt0�x�, wc0�x�, and wb0�x� are the transverse displacements of
the centerline of the top face, core, and bottom face, respectively.
Similarly, ut0�x�, uc0�x�, and ub0�x� are the axial displacements of the
centerline of the top face, core, and bottom face, respectively. Also,
ϕc�x� is the slope at the centroid of the core. These unknown
quantities are functions of the x coordinate. For convenience, they
will be denoted as wk0, u

k
0 �k � t; b; c�, and ϕc.

The displacement continuity condition at the interfaces between
the face sheets and the core allows solving for wc1, w

c
2, u

c
2, and u

c
3;

thus, the displacement field is

z
Top
Face

Bottom
Face

Core
x

ft

fb

c

c

a

x

y

z

Sandwich Beam

Fig. 1 Definition of the geometry and coordinate system for the sandwich beam/wide plate.
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w�x; z� �
� wt0�x� �c < z ≤ c� ft� �top face��

z
2c� z2

2c2

�
wt0 �

�
1 − z2

c2

�
wc0 ��

�
− z

2c� z2

2c2

�
wb0 �−c ≤ z ≤ c� �core�

wb0�x� �−c − fb ≤ z < −c� �bottom face�
(3)

and

u�x; z� �

8>>>>>>>><
>>>>>>>>:

ut0�x� −
�
z − c − ft

2

�
wt0;x�x� �c < z ≤ c� ft� �top face�

z2

2c2

�
1� z

c

�
ut0 �

ftz
2

4c2

�
1� z

c

�
wt0;x �

�
1 − z2

c2

�
uc0�

�z
�
1 − z2

c2

�
ϕc0 � z2

2c2

�
1 − z

c

�
ub0 �

fbz
2

4c2

�
−1� z

c

�
wb0;x �−c ≤ z ≤ c� �core�

ub0�x� −
�
z� c� fb

2

�
wt0;x�x� �−c − fb ≤ z < −c� �bottom face�

(4)

Applying the linear strain-displacement relationship

ϵxx�x; z� �
∂u�x; z�

∂x
; ϵzz�x; z� �

∂w�x; z�
∂z

;

γxz�x; z� �
∂u�x; z�

∂z
� ∂w�x; z�

∂x
(5)

the strain components in the entire sandwich panel can be expressed
in terms of the displacements of the centerline. As a consequence of
the Euler-Bornoulli assumptions in the faces, the transverse normal
strain and shear strain in the top and bottom faces, ϵt;bzz and γ

t;b
xz , vanish.

The axial strain ϵt;bxx is the only nonzero strain in the top and bottom
face sheets:

ϵtxx� ut0;x −
�
z− c−

ft
2

�
wt0;xx �c < z≤ c�ft�; �top face�

(6a)

ϵbxx�ub0;x−
�
z�c�fb

2

�
wb0;xx �−c−fb≤ z<−c�: �bottom face�

(6b)

In the core, all strain components exist, and these are

ϵcxx �
z2

2c2

�
1� z

c

�
ut0;x �

ftz
2

4c2

�
1� z

c

�
wt0;xx �

�
1 −

z2

c2

�
uc0;x�

� z
�
1 −

z2

c2

�
ϕc0;x �

z2

2c2

�
1 −

z

c

�
ub0;x �

fbz
2

4c2

�
−1� z

c

�
wb0;xx

(7a)

ϵczz �
�
z

c2
� 1

2c

�
wt0 −

2z

c2
wc0 �

�
z

c2
−

1

2c

�
wb0 (7b)

γcxz�
�
z

c2
� 3z2

2c3

�
ut0�

��
c�ft
2c2

�
z�

�
2c�3ft

4c3

�
z2
�
wt0;x

−
2z

c2
uc0�

�
1−

3z2

c

�
ϕc0�

�
�
1−

z2

c2

�
wc0;x�

�
z

c2
−
3z2

2c3

�
ub0

�
�
−
�
c�fb
2c2

�
z�

�
2c�3fb

4c3

�
z2
�
wb0;x (7c)

Equations (6) and (7) can be written in matrix form:

fϵtg � �Lt�f �Ug; fϵbg � �Lb�f �Ug; fϵcg � �Lc�f �Ug (8)

where fϵt;b;cg � � ϵt;b;cxx ϵt;b;czz γt;b;cxz �T is the strain vector in the
top face, bottom face, and core, respectively; and f �Ug �
�ut0 wt0 ub0 wb0 uc0 wc0 ϕc0 �T is the displacement vector.
Also, �Lt;b;c� is the differential operator matrix.
The constitutive laws in the three sandwich layers are

fσtg � �Ct�fϵtg; fσbg � �Cb�fϵbg; fσcg � �Cc�fϵcg (9)

where fσt;b;cg � � σt;b;cxx σt;b;czz τt;b;cxz �T is the stress vector of the top
face, bottom face, and core, respectively. The �Ct;b;c� is the elastic
modulus matrix corresponding to the top face, bottom face, and core.
We assume orthotropic material for all three sheets and, in this

case, the elastic modulus matrix Ct;b;c is given as

�Ct;b;c� �

2
664
Ct;b;c11 Ct;b;c13 0

Ct;b;c13 Ct;b;c33 0

0 0 Ct;b;c55

3
775 (10)

where we have denoted 1 ≡ x, 3 ≡ z, and 55 ≡ xz.
Due to zero transverse normal strain and transverse shear strain in

the top and bottom face sheets, σt;bzz and γt;bxz are equal to zero. So, the
Ct;b33 and Ct;b55 will not come into the relationships for the face sheets.
The rest of the stiffness parameters are given directly in terms of the
elastic moduli and Poisson’s ratio byCt;b11 � E

t;b
1 andCt;b13 � νt;b32E

t;b
3 .

In the orthotropic core, the terms of the �Cc� matrix come from the
inverse of the compliance matrix of the orthotropic material.
However, only the Cc11, C

c
33, C

c
55, and C

c
13 are needed in the theory.

This way of determining the stiffness constants of the core is slightly
different than the way these were derived in [5], but the present
approach shows improved accuracy of the EHSAPT by comparison
to the Elasticity solution:

2
6666664

Cc11 Cc12 Cc13 0 0 0

Cc12 Cc22 Cc23 0 0 0

Cc13 Cc23 Cc33 0 0 0

0 0 0 Cc44 0 0

0 0 0 0 Cc55 0

0 0 0 0 0 Cc66

3
7777775

�

2
66666666664

1
Ec
1

− νc
12

Ec
1

− νc
13

Ec
1

0 0 0

− νc
21

Ec
2

1
Ec
2

− νc
23

Ec
2

0 0 0

− νc
31

Ec
3

− νc
32

Ec
3

1
Ec
3

0 0 0

0 0 0 1
Gc

23

0 0

0 0 0 0 1
Gc

31

0

0 0 0 0 0 1
Gc

12

3
77777777775

−1

(11)

3008 YUAN, KARDOMATEAS, AND FROSTIG

D
ow

nl
oa

de
d 

by
 G

E
O

R
G

IA
 I

N
ST

 O
F 

T
E

C
H

N
O

L
O

G
Y

 o
n 

O
ct

ob
er

 2
0,

 2
01

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

05
37

36
 



Thus, all the strain and stress components of the sandwich beam/
wide plate can be expressed in terms of the unknown displacement
vector f �Ug according to the ESHAPT.

Finite Element Formulation

The EHSAPT contains high-order terms to describe the deforma-
tion of the sandwich cross section. As a result, the analytical solution
is not easy to get; sometimes it does not even exist. On the other hand,
the finite element method (FEM) is a commonly used numerical
method in mechanics and can easily handle various combinations of
loading and boundary conditions. Hence, wewill use the EHSAPT to
formulate a finite element and, in this way, develop a new simple,
convenient, and accurate approach, which can have the advantages of
both the EHSAPT and FEM, to simulate and predict the behavior of
sandwich structures. To achieve this goal, an original sandwich
element is formulated with 10 deg of freedom (DOFs) per “node.”
The node is actually a nodal line, since the DOFs are placed at dif-
ferent locations along the thickness direction, as shown in Fig. 2.
Three of them are the transverse displacements of the midline of the
top face, bottom face, and core, denoted as wt;b;c. Another three
DOFs are the first-order derivatives of wt;b;c with respect to the x
coordinate, which are the dwt;b;c∕dx. Another three are the axial
displacements of the midline of the top face, bottom face, and core,
denoted as ut;b;c. The last one is the rotation angle of the core’s
centerlineϕc. The proposed element contains bothϕc and dwc∕dx as
degrees of freedom. Although there is no direct physical meaning
when considering the boundary condition corresponding to the term
dwc∕dx, this term can be set free, meaning we can set its counterpart
force equal to zero, at the boundaries. Numerical results will show
that this formulation yields very accurate results, as compared to
elasticity. It should be noted that the DOF of dwc∕dx plays an
important role to ensure the same shape function can be applied to the
midline transverse displacement of the core and the face sheets.
Otherwise, the core would exhibit a lower order of continuity be-

tween adjacent elements than the face sheets, and the midline deflec-
tion pattern of the core and face sheets would be inconsistent. If
dwc∕dx is not included, the deflection distribution of the coremidline
would be linear in each element and would only have C0 continuity,
whereas that of face sheets would be a cubic curve andwould haveC1

continuity. The accuracy would be decreased dramatically, and this
was observed in numerical experiments.

So, the displacement vector of the ith node is

fUig �
�
uti w

t
i

�
dwt

dx

�
i

ubi w
b
i

�
dwb

dx

�
i

uci w
c
i

�
dwc

dx

�
i

ϕci

�
T

(12)

The element may have several nodes, i.e., a two-node element, a
three-node element, or even an element with more than three nodes
can be formulated. For a p-node element, Lagrange interpolation
polynomials of degree p − 1 are used to interpolate the axial dis-
placement field ~ut;b;c and the rotation angle of the core sheet ~ϕc

within one element. For the transverse displacement field ~wt;b;c,
Hermite interpolating polynomials of degree 2p − 1 are used to
ensure the C1 continuity between adjacent elements. Considering
that a two-node element is the simplest and easiest to use and (as
proved later) of high accuracy, we shall formulate in the following
such a two-node EHSAPT-based element as an example to illustrate
the interpolation of a p-node element. The sandwich beam is divided
intom elements and has a total of n � m� 1 nodes. Considering the
ith element, the shape function of the displacement field for the two-
node element is assumed to be

8>>>>>>>><
>>>>>>>>:

~ut�s�
~wt�s�
~ub�s�
~wb�s�
~uc�s�
~wc�s�
~ϕc�s�

9>>>>>>>>=
>>>>>>>>;
� �N�s��

�
fUig
fUi�1g

	
(13a)

where

N�s� �

2
666666664

N1 0 0 0 0 0 0 0 0 0 N2 0 0 0 0 0 0 0 0 0

0 N3 N4 0 0 0 0 0 0 0 0 N5 N6 0 0 0 0 0 0 0

0 0 0 N1 0 0 0 0 0 0 0 0 0 N2 0 0 0 0 0 0

0 0 0 0 N3 N4 0 0 0 0 0 0 0 0 N5 N6 0 0 0 0

0 0 0 0 0 0 N1 0 0 0 0 0 0 0 0 0 N2 0 0 0

0 0 0 0 0 0 0 N3 N4 0 0 0 0 0 0 0 0 N5 N6 0

0 0 0 0 0 0 0 0 0 N1 0 0 0 0 0 0 0 0 0 N2

3
777777775

(13b)

In the precedingmatrix, the shape functionsNk�k � 1 : : : 6��s� are
in terms of the local coordinate, s � x − xi, where xi is the x
coordinate of the ith node (Fig. 2); also, in the following equations for
the shape functions, hi � xi�1 − xi is the length of the ith element:

N1 � 1 −
s

hi
; N2 �

s

hi
(13c)

Node 1

Node 2

Node 3

Node n-1

Node n

Element 1 Element i

hi

DOFs of
(i+1) th Node:

DOFs of
i th Node:

i th Element 

xi xi+1

Element m

s

)tsaL()tsriF(

Fig. 2 Finite element model for a two-node element, n � m� 1.
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N3 � 1–3
s2

h2i
� 2

s3

h3i
; N4 � s − 2

s2

hi
� s

3

h2i
(13d)

N5 � 3
s2

h2i
− 2

s3

h3i
; N6 � −

s2

hi
� s

3

h2i
(13e)

For convenience, Eq. (13a) is expressed in matrix form:

f ~U�s�g � �N�s��fUeg (14)

where fUeg is a 20 × 1 column matrix representing the unknown
displacement vector of the ith element (nodal displacements), and
�N�s�� is the 7 × 20 displacement interpolationmatrix [see Eq. (13b)].
Also, f ~U�s�g is the 7 × 1 column matrix representing the EHSAPT
displacement field in the element at any point s.
Considering Eqs. (8) and (14), a strain interpolation matrix can be

defined for the faces and the core as

�Bk� � �Lk��N�s�� k � t; b; c (15a)

Thus, one has

fϵkg � �Bk�fUeg k � t; b; c (15b)

Applying the constitutive law [Eq. (9)], the stress in the top face
fσtg, bottom face fσbg, and the core fσcg can be expressed in terms of
the nodal displacement vector fUeg:

fσkg � �Ck�fϵkg � �Ck��Bk�fUeg; k � t; b; c (15c)

The total potential energy per unit width of ith element is

Πe �
Z
hi

0

�Z
c�ft

c
fϵtgTfσtg dz�

Z
c

−c
fϵcgTfσcg dz

�
Z

−c

−c−fb
fϵbgTfσbg dz

�
ds −We (16)

where We is the work done by the external force. The element unit
width stiffnessmatrix �Ke� can be derived by applying the principle of
minimum potential energy, i.e., by taking the first variation of
Eq. (16) with respect to fUeg. The top face, the bottom face, and the
core all contribute to the stiffness of the sandwich panel:

�Ke� � �Kte� � �Kce� � �Kbe � (17)

where �Kte�, �Kce�, and �Kbe � are the element stiffness matrices per unit
width resulting from the top face, the core, and the bottom face,
respectively. These can be computed explicitly as

�Kte� �
Z
hi

0

Z
c�ft

c
�Bt�T �Ct��Bt� dz ds (18a)

�Kce� �
Z
hi

0

Z
c

−c
�Bc�T �Cc��Bc� dz ds (18b)

�Kbe � �
Z
hi

0

Z
−c

−c−fb
�Bb�T �Cb��Bb� dz ds (18c)

Various loads, such as concentrated forces, distributed forces, and
moments, can be applied to the sandwich panel. All of these loads can
be and need to be turned into generalized nodal forces (same as in the
general finite element method). The element load vector can be
obtained by taking the variation of the work done by the external
forces We in Eq. (16). Let us consider the most general distributed

loading case, and let us denote by pt;c;b the distributed axial force per
unit width applied to the midsurface of the top face, core, and bottom
face, as well as by qt;c;b, which is the distributed transverse force per
unit width applied to the midsurface of the top face, core, and bottom
face. Also, bymt;c;b, the distributedmoment per unit width applied to
the midsurface of the top face, core, and bottom face, respectively.
For consistency and convenience, let us introduce three differential

operator matrices:

�At� �

2
664
1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 ∂
∂s 0 0 0 0 0

3
775; �Ac� �

2
664
0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

3
775;

�Ab� �

2
664
0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 ∂
∂s 0 0 0

3
775 (19)

The corresponding equivalent nodal loads at the top face, bottom
face, and core can be explicitly computed as

fRt
eg�

Z
hi

0

�N�T �At�T

8>><
>>:
pt

qt

mt

9>>=
>>;
ds; fRc

eg�
Z
hi

0

�N�T �Ac�T

8>><
>>:
pc

qc

mc

9>>=
>>;
ds;

fRb
eg�

Z
hi

0

�N�T �Ab�T

8>><
>>:
pb

qb

mb

9>>=
>>;
ds (20)

where fRt
eg, fRc

eg, and fRb
eg are the equivalent nodal concentrated

loads per unit width resulting from the distributed loads of the top
face, the core, and the bottom face sheet. Moreover, when concen-
trated forces or moments are applied at the center surface of the top
face, core, and bottom faces (such as the axial forces denoted asPt;c;b

per unit width, shear forces denoted asVt;c;b per unitwidth, or bending
moments denoted as Mt;c;b per unit width), these concentrated loads
can be added directly to the load vector corresponding to the nodal
displacement.
The element equivalent nodal concentrated load is the summation

of the loads from the top face, bottom face, and core; thus, one has

fReg � fRt
eg � fRc

eg � fRb
eg (21)

Finally, the element equilibrium equation is given by

�Ke�fUeg � fReg (22)

Once the element stiffness matrix and element nodal loads are
derived, the stiffness matrix and load vector of the entire sandwich
beam/wide plate can be easily obtained by assembling all the
elements.

Numerical Examples and Discussion of the Results

Computer programs are written, and static analyses of the sand-
wich beams subjected to various loadings and boundary conditions
are presented. To verify the derivation of formulas and the solution
procedures, some results are compared to results available in the
literature and other theoretical results.
Example 1:Consider a simply supported sandwich beam subjected

to a sinusoidal distributed load. For this particular case, the
theoretical elasticity results are also available [3] for the geometrical
parameters of ft � fb � 2 mm, 2c � 16 mm, and a � 400 mm.
The sandwichmaterial configuration consists of graphite epoxy faces
and glass phenolic honeycomb core, and the material properties are
listed in Table 1. A distributed load qt � q0 sin�πx∕a� is applied to
the top face sheet. This configuration is analyzed with the two-node
element described in the previous section. For further insight into this
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element and method, besides the elasticity, the results are also
compared with results from a direct application and closed-form
solution of the EHSAPTwith improved stiffness constants as given
by Eq. (11), as well as the earlier HSAPT theory [4].
The boundary conditions for this simply supported beam are

~wt � ~wb � ~wc � 0 at x � 0 and x � a. Considering that both the
geometry and loading are symmetric, the axial displacement should
equal to zero at the middle. For convenience, we assume an even
number of elements m, which would yield an odd number of nodes,
n � m� 1; in this case, the boundary conditions are applied as

wt1 � wb1 � wc1 � 0 �first node� (23a)

wtn � wbn � wcn � 0 �last node� (23b)

ut�n�1�∕2 � ub�n�1�∕2 � uc�n�1�∕2 � 0 �middle node� (23c)

Normalized results are given in the following, where the stresses are
normalized with q0 and the displacements are normalized with

wnorm �
3q0a

4

2π4Et1f
3
t

(24)

Figure 3 gives the normalized transverse displacement of the
middle point at the top sheet when different number of elements are
used. That point is also the maximum transverse displacement point
over the sandwich beam. The number of elements ranges from 2 to
100. Figure 3 shows that the results converge very fast. Parts of the
results are listed in Table 2. In addition, the elasticity value and the
one from a closed-form analytical solution of the EHSAPT are also
listed in Table 2. The relative error is defined with respect to the
elasticity value by

Relative Error�%� �
wtmax − welasticity

welasticity

× 100% (25)

When only six elements are used, the relative error is less than
0.5%. A two-dimensional (2-D) model is also built and analyzed
with the commercial Finite Element Analysis software Abaqus.

Using six elements along the axial direction and eight elements
through the thickness (two for the top face, two for the bottom face,
and four for the core), there are a total of 48 2-D rectangular elements.
The normalized transverse displacement at themiddle point of the top
face iswt∕wnorm � 0.074692, and the relative error is about −2.0%.

Two-Node Element

Fig. 3 Transverse displacement of the middle point vs number of
elementsm.

Table 2 Effect of number of elements on the
accuracy

Number of elements wtmax∕wnorm Relative error, %

2 0.073212512 −3.9889
4 0.075520416 −0.9623
6 0.075946935 −0.4029
8 0.076099586 −0.2028
10 0.076171146 −0.1089
16 0.076249450 −0.0062
30 0.076285671 0.0413
50 0.076294919 0.0534
100 0.076298825 0.0585
EHSAPT 0.076300127 0.0602
Elasticity 0.076254200 — —

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

x/a

w
t /w

no
rm

FEM
EHSAPT
Elasticity
HSAPT
First Order
Classical

First-Order Shear

Classical

Elasticity

EHSAPT

HSAPT

FEM

Fig. 4 Transverse displacement at the midpoint of the top face.

Table 1 Material properties

E1 E2 E3 G23 G31 G12 ν32 ν31 ν12
Graphite-epoxy face 181.0 10.3 10.3 5.96 7.17 7.17 0.40 0.016 0.277
Glass-phenolic honeycomb core 0.032 0.032 0.300 0.048 0.048 0.013 0.25 0.25 0.25

−1 −0.5 0 0.5 1
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

z/c

σc xx
/q

0

FEM
EHSAPT
Elasticity
HSAPT
First Order
Classical

EHSAPT

Elasticity

First-Order Shear
HSAPT

Classical

FEM

Fig. 5 Through-thickness distribution of the axial stress in the core σcxx.
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The error is much larger than using the EHSAPT-based element,
although the same number of elements is used in the axial direction.
Also, it ismuch easier to build a one-dimensional (1-D) finite element
model instead of a 2-D model. Thus, we can conclude that the
element is very accurate and efficient.
Figure 4 shows the normalized transverse displacement over the

length of the sandwich beam. Results using different methods are
plotted in the same figure. “FEM” marks the results obtained by 50
uniform-length two-node 20-DOF EHSAPT-based elements devel-
oped in this paper. So, m � 50 and n � 51. From Fig. 4, it can be
seen that the EHSAPT-based finite element solution agrees perfectly
with both the elasticity solution and the EHSAPT theory; in this case,
the HSAPT is also in agreement. The classical sandwich beam theory
assumes that both faces and core obey the Euler–Bernoulli assump-

tion, which implies that the shear modulus is considered to be infinite
in both faces and core. This results in overstiffening; the structure
and the curve in Fig. 4 are much lower than the elasticity and in
significant error. Meanwhile, the first-order shear theory [17], which
considers the shear effect of the core, is also inadequate and results in
oversoftening of the beam; hence, the displacement predicted is also
in considerable error and much higher than the elasticity theory (the
latter is regarded as the exact value).
The distribution of the normalized axial stress σcxx and normalized

transverse stress σczz of the middle point (x � a∕2) in the core sheet
are plotted in Figs. 5 and 6 (50 EHSAPT-based elements are used).
Again, the EHSAPT-based element obtained the same results as the
EHSAPT theory. These two are exactly the same as the elasticity
solution in both the axial and the transverse stresses. It should be
noted that the small differences in the axial stress results between
EHSAPTand elasticity, which were observed in [5], are not observed
now because the core stiffness constants are determined from the
more accurate Eq. (11). The HSAPT neglects the in-plane rigid,
resulting in a zero axial stress (Fig. 5). Both classical and first-order
theories yield a symmetrically distributed axial stress; thus, they
cannot capture the offset predicted by elasticity (Fig. 5). From Fig. 6,
we can see that the results using the EHSAPT-based element, the
EHSAPT theory, the elasticity, and the HSAPT coincide with each
other. Since classical theory and first order assume the core to be
incompressible, a zero transverse stress is observed with these
theories (Fig. 6).
Figure 7 shows the shear stress distribution along the thickness of

the core at x � a∕10. Only the results obtained by the EHSAPT-
based element, the closed-form EHSAPT, the elasticity, and the
HSAPTare given. Fifty and 100 uniform two-node 20-DOF elements
are used in the finite element analysis. The results are marked by
“FEM 50 Elem” and “FEM 100 Elem,“ respectively. In Fig. 7, the
error between the 50 uniform two-node 20-DOF elements and the
EHSAPTor “elasticity”might seem to be larger than the differences
in Figs. 4–6. When considering the scale of the y axis, the maximum
relative error between the elasticity solution and the 50 uniform two-
node 20-DOF elements is less than −0.02%. When 100 elements are
used, the finite element analysis results practically coincide with the
elasticity. The HSAPT gives a constant shear stress within the core
(Fig. 7). Thus, only with the EHSAPT, or this newly formulated
element, can one predict the same parabolic distribution shear stress
distribution along the thickness as the elasticity.
Next, one example considering concentrated-load and con-

strained-only face sheets will be analyzed. The novel sandwich beam
element will be shown to be very efficient and capable of solving
various combinations of loadings and boundaries.
Example 2: Consider a cantilever sandwich beam with a tip

concentrated load, as shown in Fig. 8. The geometric parameters are
a � 254 mm, ft � fb � 5 mm, and c � 19 mm. TheE-glass vinyl
ester composite is used in the face sheets, which has Young’s
modulus Et;b1 � 13; 600 MPa. The core is isotropic and is made out
of Corecell foamwithYoung’smodulusEc � 32 MPa and Poisson’s
ratio νc � 0.3. The tip load isP � 10 N per unit width and is applied
at the right edge of the top face sheet. In practice, constraints on
rotation are only applied to the face sheets for the cantilever sandwich
beam. So, the boundary conditions at the first node are expressed as

wt1 � wb1 � 0 (26a)

−1 −0.5 0 0.5 1
−0.1

0

0.1

0.2
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z/c

σc zz
/q

0
FEM
EHSAPT
Elasticity
HSAPT
First Order
Classical

EHSAPT

Elasticity

HSAPT

Classical First-Order Shear

FEM

Fig. 6 Through-thickness distribution of the transverse normal stress in
the core σczz.
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Fig. 7 Through-thickness distribution of the transverse shear stress in

the core τcxz.

2c=38 mm

a=254 mm
P

ft=5 mm

fb=5 mm

Fig. 8 Sketch of the sandwich cantilever beam (Example 2).
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�
dwt

dx

�
1

�
�
dwb

dx

�
1

� 0 (26b)

ut1 � ub1 � 0 (26c)

In the FEM analysis, 50 uniform-length two-node 20-DOF ele-
ments will be used. So, m � 50 and n � 51. When using the
EHSAPT, the analytical solution is not available for such loading and
boundary conditions. To get the results, the seven equilibrium
equations need to be further developed to be 18 first-order equations
with 18 unknowns. In particular, 9 of the 18 unknowns are the
displacements or their first-order derivatives, which are ut;b;c0 , wt;b;c0 ,
wt;b0;x, and ϕc0. Another nine terms are the corresponding equivalent
resultant axial forces, shear forces, and bending moments of the top,
core, and bottom sheets. With the variation form of the total potential
energy, the equivalent resultant forces and moments are defined by
collecting the corresponding coefficients. Also, nine equations that
essentially are the first-order derivatives of the equivalent resultant
forces in terms of the 18 unknowns can be obtained. Another nine
equations are the derivatives of the nine displacement unknowns.
With this further derivation, one can establish a first-order ordinary
differential equation (ODE) system with boundary conditions either
about the displacements or the equivalent resultant forces. Then, a
numerical boundary value problem solver in MATLAB is used to
solve this first-order ODE system. The solver is a finite difference
code and uses a collocation formula, and the collocation polynomial
provides a C1-continuous solution that is fourth-order accurate
uniformly in the interval of interest (known as the Lobatto formula).
Mesh selection and error control are based on the residual of the
continuous solution.
The transverse and axial displacements of the two faces and the

core are plotted in Figs. 9 and 10. The results obtained by the FE
approach, marked as FEM, and the analytical EHSAPT, marked as
EHSAPT, are both given. The novel element yields the same results
as the EHSAPT. From Fig. 9, it can be seen that the top face is
elongated and the bottom is compressed. It is interesting to notice that
the core only shrinks near the loading edge. At the constrained edge,
the middle line of the core shows almost no motion in the axial
direction. Figure 10 shows that the transverse displacements of the
faces and the core are almost the same when they are far away from
the loading edge. Near the right edge, the transverse displacement of
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Fig. 9 Axial displacement along the length (cantilever sandwich beam
case).
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Fig. 10 Transverse displacement along the length (cantilever sandwich
beam case).
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Fig. 11 Deformed configuration of the sandwich cantilever beam.
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the top face is larger than the bottom face, which reflects the com-
pression in the thickness direction caused by the concentrated load
applied at the load, and which is accommodated by the compres-
sible core.
Using Eqs. (1), (2), and (13), the deformed configuration of the

whole sandwich beam can be reconstructed with the node displace-
ments obtained from the FEM analysis. Figure 11 shows the de-
formed shape of the sandwich cantilever beam from the FEM results.
To make it clear, only the left edge and the right edge are plotted.
The dashed line is the initial configuration, and the solid line is the
deformed configuration. Figure 11a (left end) shows that the cross
section of the core through the thickness is twisted (it was a straight
line before the deformation). The upper part and the lower part
move forward and backward, respectively, in Fig. 11b (right end).
The displacement assumptions used in the EHSAPT (i.e., Euler–
Bernoulli assumptions in the face sheets and higher displacement
functions assumed in the core) can be clearly seen in Fig. 11b.
The shear stress distribution at several cross sections is shown in

Fig. 12. Both FEM results and EHSAPT results are given. The curves
represent the results obtained from the FEM, and the symbols are the
results obtained from the EHSAPT. Again, these two results also
perfectly agree with each other. The parabolic distributions are well
captured by both the EHSPATand the novel finite element approach.
The shear stress shows a more significant variation along the thick-
ness at the region close to the edge.

Conclusions

A novel sandwich beam/wide plate finite element is formulated
based on the extended high-order sandwich panel theory, which was
recently introduced. The theory makes different assumptions for the
displacement profiles of the face sheets and the core. The cross
section deformation is described by 10 deg of freedom at each node.
The deformed configuration and stress distribution of the whole
structures can be reconstructed from the nodal displacements, which
involve displacements and rotations of the central surface of the two
face sheets and the core. The cross section of the core can deform
freely and is not required to remain plane after deformation. The
theory employs higher-order terms, and the nonlinear (nearly
parabolic) shear stress distribution in the core is well captured. It
should be noted that a more accurate way of determining the core
stiffness constants is suggested in this paper, and this eliminated the
small differences in the axial stress results between the extended
high-order sandwich panel theory (EHSAPT) and elasticity, which
were observed in [5].
Two static examples involving various combinations of boundary

conditions and loading are analyzed to verify the convergence,
accuracy, efficiency, and capability of the novel sandwich beam ele-
ment. The results are compared with analytical solutions from the
EHSAPT; elasticity; classical sandwich beam theory; first-order

shear theory; and the earlier sandwich panel theory, high-order
sandwich panel theory. It shows that the presented finite element can
yield great accuracy at very low computational cost. The results
always agree with the EHSAPT, for which the results are the closest
ones to the elasticity. Unlike the EHSAPT, the novel finite element
approach can easily deal with all kinds of loading and boundary
conditions.
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various cross sections (cantilever sandwich beam case).
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