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The transient blast response of a sandwich panel that consists of a compressible corewith in-plane rigidity using the

extended high-order sandwich panel theory is presented and compared with elasticity closed-form solutions. The

mathematical formulation of the extended high-order sandwich panel theory for the transient dynamic response of

sandwich plates is described along with a numerical investigation. The extended high-order sandwich panel theory

formulation takes into account the shear resistance of the core and its compressibility, which is envisaged through

nonidentical displacements of the upper and the lower facesheets and its in-plane rigidity. The equations of motion

and the appropriate boundary conditions are derived using the Hamilton’s principle. A numerical investigation is

conducted on a simply supported sandwich panel, and its results are compared with a benchmark elasticity closed-

form solution. The results include deformed shapes at the first millisecond at various time steps; displacements of the

various constituents, as well as various stress resultants in the facesheets; and stress distributions within the core and

at its interfaces with the facesheets. The extended high-order sandwich panel theory and the elasticity benchmark

results correlate very well. Finally, a summary is presented and conclusions are drawn.

Nomenclature

Aj, Dj = in-plane and flexural rigidities of facesheets,
where j is equal to t, b

a, b = length and width of the plate respectively
bpxij, bpxij = length and width of loaded area centered at xi, yi
c = thickness of core
dt = time difference
dV = volume of a differential segment
dx, dy = differential segment length in x and y directions
dj = thickness of facesheets, where j is equal to t, b
Ec, Gxyc = modulus of elasticity and in-plane shearmodulus

of core
Ej = modulus of elasticity of the facesheets, where j is

equal to t, b
f;klnm = ∂f∕∂k∂l∂m∂n (where k, l, n,m is equal to x, y, z,

t); function derivative with respect to various
variables

Gkz = vertical shear moduli of core, where k is equal to
x, y

H = Heaviside (ramp) function
Imj = rotary inertia of facesheets (where j is equal to t,b)
j = t, b, c; facesheets and core subscript indices
L = Lagrangian
Mj = mass of facesheets and core (where j is equal to t,

b, c)
Mklmc = high-order moments in core due to in-plane

normal stresses (where k, l is equal to x, y; andm
is equal to 2,3)

MQmkc = high-order moments in core due to vertical shear
stresses in the core (where k is equal to x, y; andm
is equal to 1,2)

Nc = number of concentrated loads
Nklej,
Pkej, Mklej

= external loads: in-plane, vertical, and bending
moments applied at the edges (where k and l
equal to x, y)

Nklj,Mklj = in-plane force and moment resultants due to
normal and shear stress of facesheets (where k, l
is equal to x, y; and j is equal to t, b)

nxj, nyj, qj = external distributed loads: in-plane (x, y) and
vertical loads (where j is equal to t, b)

Pij = vertical localized load resultant
Qkc = vertical shear stress resultant of core
Rzzc,Mzzc = Force and moment resultants in core due to the

vertical normal stresses
t = time coordinate
T, U, V = kinetic, strain, and potential energies of external

loads
t, b, c = upper and lower facesheets, and core subscript

indices, respectively
uj;t,
vj;t, wj;t

= velocities in the longitudinal, transverse, and
vertical directions of the facesheets and core
(where j is equal to t, b, c)

uk, vk = unknown functions of in-plane displacements in
x and y directions of core (where (k is equal to
0,1,2,3)

uoj, voj, wj = longitudinal and transverse in-plane displace-
ments at midheight of facesheets and vertical
displacements of the facesheets (where j is equal
to t, b)

Vj = volume of the upper and lower facesheets and
core (where j is equal to t, b, c)

wj;k = slope of the vertical displacements (where j is
equal to t, b; and k is equal to x, y)

wl = vertical displacement unknown’s core (where l is
equal to 0,1,2)

x, y, z = coordinate system
xe, ye = x and y coordinates of the edges
zj = vertical coordinates of each facesheet and core

(where j is equal to t, b, c)
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αkbc = boundary conditions edge coefficient (where k is
equal to x, y)

δ = variational operator
λkj = Lagrangemultiplier in each direction at the upper

and lower face–core interfaces (where k is equal
to x, y, z; and j is equal to t, b)

μckl = Poisson ratio of core various directions (where k
and l equal to x, y)

μkl = Poisson ratio of facesheets in various directions
(where k and l equal to x, y; and j is equal to t, b)

ρj = density of the upper and lower facesheets and the
core (where j is equal to t, b, c)

σiij, εiij = longitudinal and transverse normal stresses and
strains in facesheets and core (where i is equal to
x, y; and j is equal to t, b, c)

σzzc, εzzc = vertical normal stresses and strains in the vertical
direction of the core

τizc, γizc = vertical shear stresses and shear angle in the core
(where i is equal to x, y)

τxyj, γxyj = in-plane shear stress and shear angle, respec-
tively, at the facesheets and core (where j is equal
to t, b, c)

ϕx, ϕy = slope of x and y sections at core’s midheight

Introduction

B LAST loading is always associatedwith pick displacements and
stresses and is described by a transient dynamic response.

However, in an ordinary solid plate, that response yields transient
vertical displacements in time that are uniform through the depth of
the plate. But, in a sandwich panel, these temporal phenomena are
associated with different displacement patterns of the facesheet
plates. In general, a typical core of a sandwich plate provides shear
resistance to the sandwich plate, through the bond of the facesheets
with the core. In addition, when loads are applied to the facesheets,
the core also serves as a kind of complex elastic foundation, which
rests on a deformable foundation, i.e., one of the face sheers.Hence, it
has vertical and in-plane rigidities (x and y directions) due to normal
stresses involved in addition to the shear resistance.
A typical sandwich panel in aeronautical, naval, or transportation

applications consists of two metallic or laminated composite face-
sheets and a lightweight core that is made of a metallic or Nomex®
honeycomb, low-strength foam, or solid lightweight materials, such as
balsa wood. In the case of a metallic honeycomb core, its rigidities are
assumed to be infinite in the vertical direction with finite shear resis-
tance, whereas its in-plane rigidity is very small. On the other hand,
when foam cores or lightweight solid materials are considered, their
shear resistance, vertical, and in-plane (x and y directions) rigidities
due to normal stresses may be associated with indentations and local-
ized bending in one of the facesheets when localized loads are applied.
Please notice that the in-plane rigidities of the core are, ingeneral, small
as compared with the couple action of the facesheets. In the casewhen
local bending in the facesheets is involved, such as wrinkling or
transient loading schemes, the in-plane rigidity of the core may affect
the response.
The classical approaches for the analysis research of sandwich

panels may be described by two main categories. The first category
assumes that the cores are an antiplane type, i.e., very stiff in the
vertical directions and with negligible in-plane rigidity in the
longitudinal direction; see Allen [1], Plantema [2], Zenkert [3], and
Vinson [4], which are appropriate for the response of a sandwich
panel made of a metallic honeycomb core. In general, the response of
such a panel is modeled by a panel that assumes that the core is
incompressible, such as first-order or high-order shear deformable
plate models. They replace the actual layered panel by an equivalent
single layer. The second category, denoted as the layered approach,
describes the overall response through the interconnection of the
three layers (with general displacement patterns) by fulfillment of
equilibrium and compatibility conditions at their interfaces (see, for
example, the high-order model by Frostig et al. [5] or the works of

Carrerra and Brischetto [6]) using presumed displacement distribu-
tion through the depth of the panel.
The elasticity solutions or similar have been adopted too for the

analysis of sandwich panels throughout the years for specific
boundary conditions and to mention a few: Pagano [7] solved
the response of composite and sandwich panels; Pagano and Hatfield
[8] used it for bidirectional composite panels; Zenkour [9] and
Kardomateas [10,11], Kardomateas and Phan [12], and Srinivas and
Rao [13] used these solutions for the static buckling analysis of panels
and plates; and Librescu et al. [14] used a stress function for a dynamic
response. In general, these solutions are quite limited and they may
exist only for specially prescribed boundary conditions. Hence, they
serve as a benchmark only, rather than a general formulation/solution
approach.
The layered approach has been implemented for sandwich panels

by the first author and others through the high-order sandwich panel
(HSAPT) approach, which assumes that the core is compliant and
compressible with negligible in-plane rigidity. It has been extended
recently by the authors to include stiff cores with in-plane rigidity,
denoted as the extended HSAPT (EHSAPT). The HSAPT approach
has been used extensively for static, dynamic, linear, and nonlinear
applications for one-dimensional and two-dimensional problems: for
example, free vibration (see work by Frostig and Baruch [15]);
nonlinear behavior (see work by Sokolinsky and Frostig [16]); and
free vibrations of plates (see work by Frostig and Thomsen [17]).
In addition, the high-order model has been compared very well
with finite element results and the elasticity solution; see work by
Swanson and Kim [18] and, more recently, work by Santiuste et al.
[19] for circular sandwich plates.
The enhanced approach (EHSAPT) should be used when the in-

plane rigidity of the core cannot be neglected, such as solid medium
to heavy weight foam or wood; or when local bending of the
facesheets exists in cases such as wrinkling. It has recently been
implemented for introduction of external in-plane loads through the
core (see Frostig [20]) for wrinkling and global buckling of the
sandwich pane (see Phan et al. [21]) and, recently, for free vibrations
of sandwich panels (see Frostig et al. [22] and Phan et al. [23]).
The blast response has been also studied experimentally and

theoretically: for example, Gardner et al. [24] experimentally investi-
gated the blast response on sandwich narrow panels; and Dvorak
et al. [25] investigated the response experimentally with comparisons
with finite elements codes such as ABAQOUS or LS-Dyna. The
underwater blast response of a circular sandwich panel at failure has
also been investigated recently; see, for example, work by Latourte
et al. [26]. Also, theoretical approaches have been considered for the
blast response: for example, Hoo Fat and Palla [27] used a wave
propagation approach in the in-plane and vertical directions to
determine the response at failure of a clamped panel; Li et al. [28]
used a fourth-order distribution through the thickness of the core
along with a variational approach; and Mayercsik [29] used a finite
element approach to determine the dynamic response.
Themain goal of the paper is to present a computationalmodel that

is general, robust, andmathematically accurate yet simple that is able
to determine the transient dynamic linear response of a sandwich
panel when subjected to a blast type of loading where its shape is
defined in time and space. The proposed model assumes that the
behavior is elastic and linearwith small displacements; the facesheets
plates are assumed to possess in-plane and flexural rigid-
ities with negligible shear rigidity and be loaded by the external
loading schemes. In addition, the core is assumed to have shear stress
and in-plane resistance, and its interfaces with the facesheets are fully
bonded and can resist shear and vertical normal stresses. For valida-
tion, the dynamic EHSAPTmodel is compared with the closed-form
elasticity solutions of a simply supported plate with a sinusoidal
blast load.
The paper consists of a mathematical formulation that yields the

equations of motion and the appropriate boundary conditions of the
EHSAPT model. It is followed by a numerical study that compares
themodel resultswith those of elasticity, and it studies the response of
a localized blast that is centered at midspan. Finally, a summary is
presented and conclusions are drawn.
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Mathematical Formulation

The mathematical formulation includes the derivation of the
equations of motion along with the appropriate boundary conditions
for the facesheets and core usingHamilton’s principle that extremizes
the Lagrangian, which consists of the kinetic energy and internal and
external potential energies as follows:

δL � −δT �
Z
t2

t1

�δU� δV� dt � 0 (1)

where T is the kinetic energy; U and V are the strain energy and the
potential of the external loads, respectively; t is the time coordinate
between the times t1 and t2; and δ denotes the variational operator.
The first variation of the kinetic energy for the sandwich panel

reads

δT �
X
j�t;b;c

�Z
t2

t1

Z
Vj

ρjuoj;tδuoj;t � ρjvoj;tδvoj;t

� ρjwj;tδwoj;t dV dt

�
(2)

where ρj (j � t; b; c) is the density of the upper and lower facesheets
and the core, respectively; uj;t, vj;t, and wj;t (j � t; b; c) are the
velocities in the longitudinal, transverse, and vertical directions or x,
y, and z directions, respectively, of the various constituents of the
panel; f;t � ∂f∕∂t is the first derivative of the function fwith respect
to the time coordinate; Vj (j � t; b; c) is the volume of the upper and
lower facesheets and core, respectively; and dV is the volume of a
differential segment.
The first variation of the strain energy in terms of stresses and

strains reads

δU �
X
j�t;b

�Z
Vj

δεxxjσxxj � δεyyjσyyj � δγxyjτxyj dV

�

�
Z
Vc

σxxcδεxxc � σyycδεyyc � σzzcδεzzc � τxycδγxyc

� τxzcδγxzc � τyzcδγyzc dV (3)

where σiij and εiij (i � x or y and j � t; b; c) are the longitudinal and
transverse (x and y) normal stresses and strains in the facesheets and
core, respectively; τxyj and γxyj (j � t; b; c) are the in-plane shear
stress and shear angle, respectively, at the facesheets and core; τizc
and γizc (i � x or y) are the vertical shear stresses and shear angle
strain in the core on the longitudinal and transverse (x and y) faces of
the core; x, y, and z denote the coordinates in the longitudinal,
transverse, and vertical directions, respectively; and σzzc and εzzc are
the (vertical) normal stresses and strains in thevertical direction of the
core; see Fig. 1 for details.
The variation of the external work equals:

Within the panel:

δV � −
X
j�t;b

�Z
b

0

Z
a

0

nxjδuoj � nyjδvoj � qjδwj dx dy
�

−
X
j�t;b

�XNc
i�1

�Z
b

0

Z
a

0

PijWinx;iWiny;iδwj
bpxijbpyij

dx dy

��

where

Winx;i � H�x − xi � 1∕2bpxij� −H�x − xi − 1∕2bpxij�
Winy;i � H�y − yi � 1∕2bpyij� −H�y − yi − 1∕2bpyij� (4)

At the boundaries:

δVBC � −
X
xe�0;a

αxbc
X
j�t;b

0
BB@
R
b
0 Nxxej�xe; y; t�δuoj�xe; y; t� � Nxyej�xe; y; t�δvoj�xe; y; t��
Pxej�xe; y; t�δwj�xe; y; t� �Mxxej�xe; y; t�δwj;x�xe; y; t��
Mxyej�xe; y; t�δwj;y�xe; y; t� dy

1
CCA

−
X
ye�0;b

αybc
X
j�t;b

0
BB@
R
a
0 Nxyej�x; ye; t�δuoj�x; ye; t� � Nyyej�x; ye; t�δvoj�x; ye; t��
Pyej�x; ye; t�δwj�x; ye; t� �Mxyej�x; ye; t�δwj;x�x; ye; t��
Myyej�x; ye; t�δwj;y�x; ye; t� dx

1
CCA (5)

where j � t; b refers to the upper and lower facesheets, respectively;
uoj and voj, are the in-plane-displacements in the longitudinal and
transverse (x and y) directions at midheight of the facesheets; wj are
the vertical (z direction) displacements of the facesheets; nxj, nyj, and
qj (j � t; b) are the external distributed loads in the coordinates
directions, in-plane (x and y), and vertical loads, respectively, applied
at the facesheets; Pij are the vertical localized load resultants,
centered at (xi, yi) and applied at the facesheets, and they are
distributed on a bpxij and bpxij area (see Fig. 1); Nc is the number of
concentrated loads,H is aHeaviside (ramp) function;Nklej,Pkej, and
Mklej (k � l � x; y) are external loads: in-plane, vertical, and
bendingmoments applied at the edges of the panel;wj;k (k � x and y)
is the slope of the vertical displacements; a and b are the length and
width of the plate; xe � 0; a is the x coordinate of the edges, and
similarly is ye � 0; b; and αkbc (k � x; y) equals 1 when xe � a or
ye � b and −1 when xe � 0 or ye � 0. See Fig. 1 for the geometry,
sign convention for stresses, displacements, and loads.
The displacements of the facesheets follow the Navier assumption

that the plane of section remains plane and perpendicular to the
centroid plane after deformation, whereas the core displacements

Fig. 1 Loading, coordinates system, and displacements of a typical
sandwich plate.
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take a general cubic and quadratic form as follows:

uj�x; y; zj; t� � uoj − wj;xzj; vj�x; y; zj; t� � voj − wj;yzj;
wj�x; y; zj; t� � wj �j � t; b�

uc�x; y; zc; t� � uo � ϕxzc � u2z2c � u3z3c;
vc�x; y; zc; t� � vo � ϕyzc � v2z2c � v3z3c;

wc�x; y; zc; t� � wo �w1zc �w2z
2
c (6)

where zj is the vertical coordinate of each facesheet measured
downward from the centroid plane; uk and vk (k � 0; 1; 2; 3) are the
unknown functions of the in-plane displacements of the core; ϕx and
ϕy are its sections’ slopes at its midheight; wl (l � 0; 1; 2) are the
vertical displacement unknowns, respectively; and zc refers to the
vertical coordinate of the core measured from its centroid downward.
Please notice that all the unknown functions depend on x, y, and t
only. Hence, the velocities of the facesheets and the core [see Eq. (2)]
take the same shape.
The kinematic relations for the facesheets and the core assume

small deformations and they read

εxxj � −wj;xxzj � uoj;x; εyyj � −wj;yyzj � voj;y;
γxyj � uoj;y � voj;x − 2wj;xy �j � t; b�

γxzc � uc;zc �wc;x; γyzc � vc;zc �wc;y; εzzc � wc;zc (7)

The compatibility conditions at the upper and the lower face–core
interfaces (j � t; b) in the longitudinal, transverse, and vertical (x, y,
and z) directions are introduced into the mathematical formulation
using six Lagrange multipliers through additional terms in the
variation of the internal potential energy [see Eq. (3)] as follows:

δUcomp � δ

2
6664
Z
a

0

Z
b

0

�λxt�ut�zt � dt∕2� − uc�zc � −c∕2���
λyt�vt�zt � dt∕2� − vc�zc � −c∕2�� � λzt�wt − wc�zc � −c∕2��
λxb�uc�zc � c∕2� − ub�zb � −db∕2��
�λyb�vc�zc � c∕2� − vb�zb � −db∕2�� � λzb�wc�zc � c∕2� − wb�� dx dy

3
7775 (8)

where λkj (k � x; y; z and j � t; b) are the Lagrange multiplier in
each direction at the upper and lower face–core interfaces,
respectively, that multiply the compatibility conditions at these
interfaces that read

−uot � uo − 1∕2u1c� 1∕4u2c2 − 1∕8u3c3 � 0

− vot � vo − 1∕2v1c� 1∕4v2c2 − 1∕8v3c3 � 0

− wt �wo − 1∕2w1c� 1∕4w2c
2 � 0

uob − uo − 1∕2u1c − 1∕4u2c2 − 1∕8u3c3 � 0

vob − vo − 1∕2v1c − 1∕4v2c2 − 1∕8v3c3 � 0

wb − wo − 1∕2w1c − 1∕4w2c
2 � 0 (9)

Please notice that each equation in Eq. (9) corresponds to the compat-
ibility condition that multiplies each Lagrange multiplier in Eq. (8).
The equations of motion and the boundary conditions are derived

using Eqs. (1) to (5) and the compatibility virtual work and compat-
ibility conditions [Eqs. (8) and (9)] with the kinematic relations
[Eq. (7)] and the distribution of the velocity of the facesheets and the
core that correspond to the displacement distributions; see Eq. (6) and
high-order stress resultants. Hence, after integration by parts and some
algebraic manipulation, the equations of motion equations read:

Facesheets (j � t; b):

Mjuoj;tt−Nxxj;x−Nxyj;y��−1�kλxj−nxj� 0

Mjvoj;tt−Nxyj;x−Nyyj;y��−1�kλyj−nyj� 0

−Myyj;yy�Mjwj;tt−Mxxj;xx��−1�kλzj −1∕2djλxj;x−1∕2djλyj;y
−qj−2Mxyj;xy− Imjwj;yytt− Imjwj;xxtt� 0 (10)

where k � 1 for j � t and −1 for j � b, Mj (j � t; b; c), are the
mass of facesheets and core, Imj (j � t; b) are the rotary inertia of
facesheets; and Nklj andMklj (k; l � x; y and j � t; b; c) are the in-
plane and moment stress resultants of the normal and shear stress of
the facesheets and core, respectively; see Fig. 2 for details.
Core:

−Nxxc;x − λxb �Mcuo;tt � λxt − Nxyc;y �
1

12
Mcc

2u2;tt � 0

1

12
Mcc

2u1;tt −Mxxc;x �
1

80
Mcc

4u3;tt −
1

2
cλxb −

1

2
cλxt

−Mxyc;y �Qxc � 0

2MQ1xc �
1

4
c2λxt −

1

4
c2λxb −Mxy2c;y �

1

80
Mcc

4u2;tt

� 1

12
c2Mcuo;tt −Mxx2c;x � 0

−
1

8
c3λxt −

1

8
c3λxb �

1

448
Mcc

6u3;tt �
1

80
Mcc

4u1;tt

−Mxy3c;y −Mxx3c;x � 3MQ2xc � 0

λyt �
1

12
Mcc

2v2;tt − Nxyc;x − Nyyc;y �Mcvo;tt − λyb � 0

−
1

2
cλyt −

1

2
cλyb −Mxyc;x −Myyc;y �

1

80
Mcc

4v3;tt

� 1

12
Mcc

2v1;tt �Qyc � 0

−Mxy2c;x � 2MQ1yc −Myy2c;y �
1

80
Mcc

4v2;tt −
1

4
c2λyb

� 1

12
Mcc

2vo;tt �
1

4
c2λyt � 0

−
1

8
c3λyt −Myy3c;y −Mxy3c;x �

1

80
Mcc

4v1;tt −
1

8
c3λyb

� 1

448
Mcc

6v3;tt � 3MQ2yc � 0

λzt −Qxc;x �
1

12
Mcc

2w2;tt − λzb −Qyc;y �Mcwo;tt � 0

−MQ1yc;y −
1

2
cλzt −

1

2
λzbc�

1

12
Mcc

2w1;tt −MQ1xc;x � Rzzc

� 0

1

12
Mcc

2wo;tt �
1

80
Mcc

4w2;tt −
1

4
λzbc

2 −MQ2yc;y

� 2Mzzc �
1

4
c2λzt −MQ2xc;x � 0

(11)

1214 FROSTIG, RODCHEUY, AND KARDOMATEAS

D
ow

nl
oa

de
d 

by
 G

E
O

R
G

IA
 I

N
ST

 O
F 

T
E

C
H

N
O

L
O

G
Y

 o
n 

O
ct

ob
er

 3
, 2

01
6 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.J
05

33
09

 



and the stress resultants in the facesheets and the core read

fNklj;Mkljg �
Z�1∕2�dj

−�1∕2�dj

�1; zc�σxxj dzj �j � t; b�

fNklc;Mklc;Mkl2c;Mkl3cg �
Z�1∕2�c

−�1∕2�c

�1; zc; z2c; z3c�σxxc dzc

fQkc;MQ1kc;MQ2kcg �
Z�1∕2�c

−�1∕2�c

�1; zc; z2c�τkzc dzc;

fRzzc;Mzzcg �
Z�1∕2�c

−�1∕2�c

�1; zc�σzzc dzc (12)

where k; l � x; y;Mkl2c andMkl3c are the high-order moments in the
core due to in-plane normal stresses; Qkc is the vertical shear stress
resultant; MQlkc and MQ2kc (k � x; y) are the high-order moments
due to vertical shear stresses in the core; and Rzzc and Mzzc are the
stress resultant and the moments due to the vertical normal stresses.
Notice that there are 23 equations of motion, where the first 17 are
differential equations [see Eqs. (10) and (11)] and the last six, which
are the compatibility conditions [see Eq. (9)] are algebraic. Please
notice that a free traction edge, in the core, can be described only in
the global sense, i.e., through null stress resultants rather than
stresses. Or, in otherwords, the edgemay not be free of stresses but its
stress resultants at the edge are null.
The boundary conditions, at each edge of the panel, consist of 11

conditions and the corner conditions as follows:
At facesheets (j � t; b):

At xe � 0�αBC � −1�;
a�αBC � 1�∶
− Nxxej � αBCNxxj � 0 or uoj − uoej � 0

− Nxyej � αBCNxyj � 0 or voj − voej � 0

−Mxxej − αBCMxxj � 0 or wj;x − wje;x � 0

− Pxej � αBC�2Mxyj;y �Mxxj;x � 1∕2djλxj � Imjwj;xtt� � 0

or wj − wje � 0

At ye � 0�αBC � −1�;
b�αBC � 1�∶
− Nxyej � αBCNxyj � 0 or uoj − uoej � 0

− Nyyej � αBCNyyj � 0 or voj − voej � 0

−Myyej − αBCMyyj � 0 wj;y − wje;y � 0

− Pyej � αBC�2Mxyj;x �Myyj;y � 1∕2djλyj � Imjwj;ytt� � 0

or wj − wje � 0

At xe � 0; a; and ye � 0; b∶

−2Mxyj � 0 or wj � 0 (13)

At core:

At xe � 0; a∶

Nxxc � 0 or uo − uoe � 0; Mxxc � 0 or ϕx −ϕxe � 0;

Mxx2c � 0 or u2 − u2e � 0; Mxx3c � 0 or u3 − u3e � 0;

Nxyc � 0 or vo − voe � 0; Mxyc � 0 or ϕy −ϕye � 0;

Mxy2c � 0 or v2 − v2e � 0; Mxy3c � 0 or v3 − v3e � 0;

Qxc � 0 or wo −woe � 0; MQ1xc � 0 or w1 −w1e � 0;

MQ2xc � 0 or w2 −w2e � 0

At ye � 0; b∶

Nxyc � 0 or uo − uoe � 0; Mxyc � 0 or ϕx −ϕxe � 0

Mxy2c � 0 or u2 − u2e � 0; Mxy3c � 0 or u3 − u3e � 0;

Nyyc � 0 or vo − voe � 0; Myyc � 0 or ϕy −ϕye � 0;

Myy2c � 0 or v2 − v2e � 0; Myy3c � 0 or v3 − v3e � 0

Qyc � 0 or wo −woe � 0; MQ1yc � 0 or w1 −w1e � 0

MQ2yc � 0 or w2 −w2e � 0 (14)

Please notice that the force boundary conditions in the core do not
require corner conditions.
To define the governing equations of motion, the constitutive

relations for the various constituents must be defined first. The
relations for the isotropic facesheet are those of an ordinary plate
following Eq. (12), and they read (j � t; b)

Nxxj � Aj�μjvoj;y � uoj;x�; Nyyj � Aj�μjuoj;x � voj;y�;
Nxxj � 1∕2Aj�1 − μj��uoj;y � voj;x�

Mxxj � −Dj�μjwj;yy �wj;xx�; Myyj � −Dj�μjwj;xx �wj;yy�;
Mxxj � −Dj�1 − μj�wj;xy (15)

where

Aj �
Ejdj

−μ2j � 1
; Dj � 1∕12

Ejdj
−μ2j � 1

�j � t; b�

are the in-plane and flexural rigidities of the various facesheets,
respectively; Ej is the modulus of elasticity of the facesheets; and μj
is the Poisson ratio.
The relations for the core are those of a three-dimensional isotropic

elastic medium, and they read

σxxc�
Ec��εxxc− εyyc− εzzc�μc − εxxc�

2μ2c� μc − 1
;

σyyc�−
Ec��εxxc− εyyc� εzzc�μc� εyyc�

2μ2c� μc − 1
;

σzzc�−
Ec��εxxc� εyyc− εzzc�μc� εzzc�

2μ2c�μc − 1
;

τxyc�Gxycγxyc; τxzc�Gxzcγxzc; τyzc�Gyzcγyzc (16)

where Ec is the modulus of elasticity of the core,Gxyc is the in-plane
shear modulus,Gkz (k � x or y) is the vertical shearmodulus, and the
strains are defined in Eq. (7). Hence, the stress resultants displace-
ments following Eq. (12) read
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Nxxc �
Ec���u2;x − v2;y�c2 − 12w1 � 12uo;x − 12vo;y�μc − c2u2;x − 12uo;x�c

12�2μ2c � μc − 1�

Mxxc � −3
��

−
20

3
μc �

20

3

�
ϕx;x − c2�μc − 1�u3;x � μc

�
c2v3;y �

20

3
ϕy;y �

40

3
w2

��

Ecc
3�240�2μ2c � μc − 1��−1

Mxx2c � −3
�
−c2�μc − 1�u2;x �

�
−
20

3
μc �

20

3

�
uo;x �

�
c2v2;y �

20

3
vo;y �

20

3
w1

�
μc

�

Ecc
3�240�2μ2c � μc − 1��−1

Mxx3c � −5
��

−
28

5
μc �

28

5

�
ϕx;x − c2�μc − 1�u3;x � μc

�
c2v3;y �

28

5
ϕy;y �

56

5
w2

��

Ecc
5�2240�2μ2c � μc − 1��−1

Nyyc �
�c2�μc − 1�v2;y � �12μc − 12�vo;y − μc�c2u2;x � 12uo;x � 12w1��Ecc

12�2μ2c � μc − 1�

Myyc � 3

��
20

3
μc −

20

3

�
ϕy;y � c2�μc − 1�v3;y − μc

�
u3;xc

2 � 40

3
w2 �

20

3
ϕx;x

��

Ecc
3�240�2μ2c � μc − 1��−1

Myy2c � 3

�
c2�μc − 1�v2;y �

�
20

3
μc −

20

3

�
vo;y −

�
c2u2;x �

20

3
w1 �

20

3
uo;x

�
μc

�

Ecc
3�240�2μ2c � μc − 1��−1

Myy3c � 5

��
28

5
μc −

28

5

�
ϕy;y � c2�μc − 1�v3;y −

�
u3;xc

2 � 56

5
w2 �

28

5
ϕx;x

�
μc

�

Ecc
5�2240�2μ2c � μc − 1��−1

Nxyc �
1

12
Gxyc�u2;y � v2;x�c3 �Gxyc�uo;y � vo;x�c;

Mxyc �
1

240
Gxycc

3�3c2u3;y � 3c2v3;x � 20ϕx;y � 20v1;x�

Mxy2c �
1

240
Gxycc

3�3c2u2;y � 3c2v2;x � 20uo;y � 20vo;x�;

Mxy3c �
1

2240
Gxycc

5�5c2u3;y � 5c2v3;x � 28ϕx;y � 28ϕy;x�

Qxzc �
1

4

�
c2u3 �

1

3
c2w2;x � 4ϕx � 4wo;x

�
Gxzcc; MQ1xc �

1

12
Gxzc�2u2 �w1;x�c3

MQ2xc �
1

240
Gxzcc

3�9c2u3 � 3c2w2;x � 20ϕx � 20wo;x�

Qyc �
1

4

�
c2v3 �

1

3
c2w2;y � 4ϕy � 4wo;y

�
Gyzcc; MQ1yc �

1

12
Gyzc�2v2 �w1;y�c3

MQ2yc �
1

240
Gyzcc

3�9c2v3 � 3c2w2;y � 20ϕy � 20wo;y�

Rzzc � −
��−12μc � 12�w1 � μc�c2u2;x � c2v2;y � 12uo;x � 12vo;y��Ecc

12�2μ2c � μc − 1�

Mzzc � −3
��

−
40

3
μc �

40

3

�
w2 � μc

�
c2v3;y � u3;xc2 �

20

3
ϕy;y �

20

3
ϕx;x

��

Ecc
3�240�2μ2c � μc − 1��−1 (17)

A similar approach, which is not presented for brevity, may be used
for the case of an orthotropic core.
The equations of motion consist of the following 23 unknowns: the

in-plane displacements of the midplane, in x and y directions; the
vertical displacements of the upper and the lower facesheets; the six
Lagrange multipliers; and the 11 polynomial coefficients of the core
[see Eq. (6)]. The first six governing equations are determined by
substitution of the constitutive relations [see Eq. (15)] in Eq. (10), and
the next 11 equations are derived by substitution of the stress resultants
of the core [seeEq. (17)] intoEq. (11). The additional six compatibility

conditions remain unchanged. For brevity, the governing equations are
not presented. This set of equations consists of initial value, ordinary
differential and algebraic equations, denoted as differential-algebraic
equations (DAEs). Twomethods of solution have been considered: the
first one isolates the unknown functions from the algebraic equations
and inserts the results into the remainingordinary differential equations
(ODEs), thus yielding a lower number of equations that are all ODEs
but more complicated. The second method numerically solves the set
of the DAEs using a special Maple solver (see Char et al. [30]) for
DAEs, and it proved here to be more efficient than the first one.
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Upper Facesheet

Lower Facesheet
Fig. 2 In-plane stress resultants, bending moments, and shear resultants of differential elements of the various constituents of the plates.

Upper Facesheet

Lower Facesheet

Pressure Versus Time

Fig. 3 Geometry and mechanical properties of a specific sandwich panel and the loading scheme of a fully distributed sinus blast pressure and its time
function.
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Numerical Study

The numerical study presents the blast response of a simply
supported, square sandwich plate when subjected to a fully and
localized distributed blast load. The boundary conditions of the plate
assume that the upper and the lower facesheets are simply supported
and that the vertical displacements of the edges of the core are
prevented. These conditions are fulfilled through the use of a special
edge beam; see Fig. 3 for details. The panel considered is based on a
specific setup used in an experimental blast investigation of Gardner
et al. [24], with somemodifications. In both cases, the results include
deformed shapes between 0.05 and 1ms every 0.1ms, displacements,
stresses at interfaces and within the depth of the core, and stress
resultants of the facesheets and core. In the first case, a comparison
with the elasticity solution (see work by Kardomateas et al. [31]) is
presented.
The square panel, a � b � 152.4 mm, consists of two facesheets

and a core. The facesheets are made of E-glass vinyl-ester laminated
composite with a quasi-isotropic layup, �0∕45∕90∕ − 45�s. It has a
density of 1800 kg∕m3, an equivalent modulus of elasticity of
13,600 MPa, and a foam core. The core (A300) is a Corecell™ A-

series styrene acrylonitrile foam with a density of 58.5 kg∕m3, an
elasticity modulus of 32 MPa, a Poisson ratio of 0.25, and a shear
modulus of 12.8 MPa. In the case of the full blast case, the core
properties are different; see next.

Blast Pressure: Fully Distributed

The first case consists of a fully distributed sinusoidal pressure load
applied at the upper facesheets only and equals qt � 5.1e−1.25t

sin�πx∕a� sin�πy∕b� MPa, where a and b are the length and width of
the plates, respectively; and t is measured in milliseconds. For the
geometry, mechanical properties, and pressure distribution in space
and time, see Fig. 3. Please notice that the blast load almost diminishes
after 3 ms. This case is used for comparisonwith the benchmark of the
elasticity solution byKardomateas et al. [31]. It includes the deformed
shapes at the firstmillisecond in Fig. 4; the values of the displacements
versus time at the facesheets and the core in Fig. 5; and the interfacial
stresses at the face–core interfaces versus time in Fig. 6. Here, the data
of the elasticity solution consisted of the data of the facesheets
described in the previous paragraph and the following data for the core:
Ec � 32.0 MPa, Gc � 20.0 MPa, and the Poisson ratio of μxy �

t=0.5000000000e-1 t=0.1500000000

t=0.2500000000

t=0.4500000000

t=0.6500000000
t=0.7500000000

t=0.8500000000 t=0.9500000000

t=0.5500000000

t=0.3500000000

Fig. 4 Deformed shapes, in the first millisecond, at sectionA-A (Fig. 3) of a panel loadedwith a fully sinusoidal distributed blast load applied at its upper
facesheet.
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0.25 and μxz � μyz � 0.35 for the facesheets and the core. The data
used here in the EHSAPT model include the same data as that of the
elasticity but with μxy � μxz � μyz � 0.25 for the facesheets and
μcxy � 0.25 and μcxz � μcyz � 0.35 for the core.
The deformed shape of the sectionA-A (Fig. 3) that passes through

center of panel, at y � b∕2, appears in Fig. 4. It demonstrates
qualitatively, but based on accurate numerical results, how the overall
response of the panel evolves with time at the first millisecond and
clarifies thewave propagation that occurs between the two facesheets
longitudinally as well as vertically. Initially, the upper loaded
facesheets move vertically, whereas the lower facesheet is still at rest.
It is followed by large deformation of the upper facesheets but with a
small deformation in the lower facesheets, thus leading to a
significant reduction of the thickness of the core. In the next time step,
t � 0.25 ms, the deformations of the lower facesheet increase,
whereas those of the upper one do not change significantly. In the
next time steps, both facesheets almost move together with a small
extension in the core thickness. The response starts to change
direction at t � 0.55. Here, the lower facesheet moves upward but
not in tandem with the upper facesheet that still has significant
vertical displacements; see t � 0.65 ms. Above that time step, the
two facesheets move upward with unequal displacements. Please
notice that, during that time, the core height is changing from

contraction to expansion and the shape of its edge section changes
from expansion to an S-type shape and to contraction. All these
patterns are results of the waves that travel along the panel and
through the core, in thevertical direction, between the two facesheets.
The vertical displacement at midspan and the in-plane displace-

ments at the center of the support line at the x and y edges of the
facesheets and at the midheight of the core versus time appear in
Fig. 5. A very good correlation with the elasticity solution is ob-
served. The displacements almost coincide at the first 1.5 ms, and the
differences enlarge toward the end of the duration. These differences
are due to the numerical damping that occurs in the numerical inverse
Laplace used for the elasticity solution; seeKardomateas et al. [31]. It
is similar to the damping that occurs when time difference methods
such as theNewmarkmethod or others are used. Please notice that the
EHSAPT is solved using the initial value DAE solvers of Maple [30]
with an absolute and relative error of 10−7. Thevertical displacements
at midspan in Fig. 5a reveal that the displacements of the lower
facesheets are larger at the initiation (about 0.25 ms) of the blast as
compared with the loaded facesheets; see the deformed shape at
t � 0.25 ms for clarification. It occurs as a result of the incidentwave
that travels from the loaded facesheets to the lower facesheet through
the core. The vertical displacement of the core corresponds to an
average of the displacements of the facesheets. In addition, notice that

u
,v

[m
m

]
o

o

t

t

t t

t

t

t

t

b

b

b
b

b

b
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EHSAPT

ELASTICITY

c

c

c

c

c

c

EHSAPT

EHSAPT

ELASTICITY

ELASTICITY

a) Vertical displacements at center of plate

b) In-Plane displacements, x and y dir., at center of support line

[ms]

[m
m

]

[ms]

Fig. 5 Displacements versus time of the facesheets and core for a fully

distributed blast loading with comparison to the elasticity solution
(Kardomateas et al. [31]) (solid line � EHSAPT, dashed line �
elasticity).

xz
,

yz
[G

P
a]

zz
[G
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]

EHSAPT

EHSAPT

EHSAPT

ELASTICITY

ELASTICITY

ELASTICITY

Upper Interface Lower Interface

a) Shear stresses at center of edge support

b) Vertical normal stresses at center of plate
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t

t

t

t

t
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b
b

b
b

b

b
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t [ms]

t [ms]

Fig. 6 Interfacial stresses versus time at face–core interfaces due to fully
distributed blast loading with comparison to elasticity (Kardomateas
et al. [31]) (solid line � EHSAPT, dashed line � elasticity).
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Upper Facesheet

Lower Facesheet

t[ms]

Pressure Versus Time

Fig. 7 Geometry and mechanical properties of a specific panel loaded by localized blast distribution centered in the midst of the plate along with a
measured time function (C.L., center line).

t=0.5000000000e-1 t=0.1500000000

t=0.2500000000

t=0.4500000000

t=0.6500000000 t=0.7500000000

t=0.8500000000 t=0.9500000000

t=0.5500000000

t=0.3500000000

Fig. 8 Deformed shapes, in the first millisecond, at section A-A (Fig. 7) of a localized uniformly distributed blast load applied at the upper facesheet.
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the period of the transient response is about 1.7 ms. The in-plane
displacements of the facesheets and the midheight of the core in the x
and y directions are identical; see Fig. 5b. Here, the in-plane
displacements of the facesheets coincide with the elasticity solution,
and they are quite small as compared with those of the midheight of
the core. The discrepancy between the EHSAPT and the elasticity
increases with time due to the numerical damping phenomenon
involved in the elasticity solution. In addition, the magnitudes of
these displacements, at the midheight of the core, are much larger
than those of the facesheets; and its time period is much smaller than
that of the facesheets.
The interfacial stresses versus time at the face–core interfaces at

the center of the plate and the center of support line in the x and y
directions appear in Fig. 6. Avery good correlation with the elasticity
benchmark is observed. The interfacial shear stresses, at the center of
the support lines in the EHSAPT and the elasticity solution (see
Fig. 6a), almost coincide through the first 3 ms with a time period of
about 1.3 ms. Here, the interfacial shear stresses at the upper and the
lower interfaces are in tandem, and they are almost identical except
for extreme values. The vertical normal stresses at the interfaces
appear in Fig. 6b, and they reveal almost an erratic response, with
very short time periods much smaller than those of the adjacent shear
stresses. The comparison is very satisfactory at the first milliseconds,
and the differences enlarge with time due to the numerical damping
involved with the elasticity solution. Notice that the interfacial
normal stresses, at the upper and lower face–core interfaces, are in
tandem; and their extreme values are reached at the same time but
with different values.

In general, a very satisfactory comparison between the elasticity
and the EHSAPT model is detected, especially at the first 1.5 ms.

Blast Pressure: Locally Distributed

This case investigates the blast response of a localized pressure
load, located in the vicinity of center of the plate and uniformly
distributed at the upper facesheet, on a square area of 0.1a × 0.1b
with a blast pressure of 510e−1.25t MPa; see Fig. 7 for details. The
transient dynamic response here has been solved using a Fourier
series description of the localized pressure with nine terms in each
direction, which proved to converge. The results are described in
terms of deformed shapes at the first millisecond at various time steps
in addition to displacements, stress resultants of the facesheets
and core, interfacial shear and vertical normal stresses versus time,
and for a specific time at y � b∕2 versus x, as well as distributions
of the displacements and stresses of the core through its depth at
different times.
The deformed shapes of section A-A (Fig. 7) that passes through

center of the plate, at y � b∕2, at various time steps in the first
millisecond appear in Fig. 8. At the initial time steps (t � 0.05 to
0.95 ms), the localized load is associated with significant vertical
displacements around the center of the plate, with almost no
movement of the lower facesheet. Hence, the initial response is
localized and is concentrated in the vicinity of the localized load,
which is similar to a localized load on an elastic foundation.However,
in the next time step (t � 0.25 to 0.35 ms), the panel starts to behave
as a sandwich plate where the two facesheets are moving downward
but with unsmooth displacement patterns due to the localized loads
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Fig. 9 Displacements of facesheets and core and interfacial stresses versus time of a distributed localized blast load (solid line � EHSAPT,
dashed line � elasticity).
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(see deformed shape at t � 0.35 ms), and it is intensified at
t � 0.45 ms. The deformations change directions at t � 0.55 ms
and above, where the lower facesheets move upward, whereas the
upper loaded facesheets are still downward. It almost returns to the
response at the first time step at t � 0.75 ms, and both of themmove
upward above t � 0.85 ms. These shapes reveal that, in the first
millisecond, the travelingwaves are amixture of in-plane and flexural
waves in the facesheets, as well as in the vertical ones through the
depth of the core. Please notice that, due to the large displacements,
themagnification factors of the drawing of the displacements here are
half of that of the previous case.
The displacements and the interfacial stresses versus time appear

in Fig. 9. The in-plane displacements, in x and y directions, at the
midheight of the facesheets and the core at the center of the supports
appear in Fig. 9a. In general, the displacements are of the same order
as for the first case with the fully distributed pressure but with a
pressure load resultant that is almost one-quarter of that of first case. It
also reveals a very fast fluctuation for the core and a much slower
fluctuation for the facesheets. Here, the displacements of the core are
almost an order larger than those of the facesheets. Notice that the
trends here are similar to those of the fully distributed blast; see
Fig. 5b. The vertical displacements at the center of the plate (see
Fig. 9b) and are of an order larger than the in-plane ones but with
much larger time periods similar to those of the first case (see Fig. 5a).
Here, the curves are with local fluctuation, although the extreme
values are of similar order and at the same times as comparedwith the
previous case. Similar trends, but with local fluctuation as compared
with the fully distributed case (see Fig. 6), occur for the shear
interfacial stresses at the panel supports (see Fig. 9c) and the vertical
normal interfacial stresses at the center of the plate (see Fig. 9d). Also,
here, the time periods of the vertical normal stresses aremuch smaller
than those of the shear stresses.

The stress resultants of the facesheets and the core versus time
appear in Fig. 10, and they all reveal large fluctuations with short and
long time periods. Notice that the in-plane resultants, at the
center of the plate, in the x and y directions are identical; and
the contribution of the core is small as compared with those of the
facesheets (see Fig. 10a). Similar observations are detected for the in-
plane shear stress resultants, at the supports of the plate, but smaller in
values as compared with the in-plane normal stress resultants (see
Fig. 10b). The bendingmoments in the x and y directions at the center
of the plate are identical (see Fig. 10c) and with a very small
contribution of the core. Similar trends are observed for the torsion
moments at the corners of the plate (see Fig. 10d) but with values that
are an order smaller than those of the bending moments. Finally, in
Fig. 10e, the vertical shear stress resultants, at the supports of the
plate, of the core are presented. They are similar to those of the
interfacial shear stresses (see Fig. 9c), since the distribution of the
shear stresses through the depth of the core is almost uniform (see
Fig. 11f).
The distributions of the displacements and stresses at various

time steps, at the center of the support line and the plate through
the depth of the core, appear in Fig. 11. The in-plane displacements,
in the x and y directions, at the center of the supports (see Fig. 11a),
take a cubic shape at the various times and changes from negative
to positive values, whereas the vertical displacements, at the center
of the plate, are quadratic but with a small curvature (see Fig. 11b)
and large changes, between the upper and the lower displacements
of the core interfaces at the initiation of the blast. The in-plane
normal stresses, in the x and y directions at the center of the plate,
are cubic and at low time steps are in tension and compression
with identical signs through depth of core, see Fig. 11c, and they
take different signs at the t � 3.0 ms. Hence, the contribution of
the core to the overall bending is quite small at the beginning of
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Fig. 10 Stress resultants in facesheets and core versus time of a localized distributed blast load; top-red(t), bot-blue(b), core-green(c).
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the blast and it increases with time. The vertical normal stresses at the
plate center are almost linear or very close (see Fig. 11d) and, again,
the sign of the stresses does not change through the core’s depth at
the beginning of the blast and it changes at the last time step. The in-
plane shear stresses at the support line are cubic (see Fig. 11e), with
different signs at the various times andwith different signs and values
at the various face–core interfaces. The distributions of the vertical
shear stresses through the depth of the core, at the supports, are cubic
with a small curvature and identical signs. The signs changewith time
(see Fig. 11f).
The results along a section that passes through the centers of the

panel and the support line (y � b∕2) at a specific time of t � 0.5 ms
appear in Figs. 12 and 13. The in-plane and vertical displacements of
the facesheets and the core appear in Figs. 12a and 12b. The in-plane
displacements in the x direction reveal different wavelengths for the
core displacements. On the other hand, the vertical displacements
(Fig. 12b) reveal large curvatures in the vicinity of the loaded area.

The interfacial shear stresses at the face–core interfaces (see Fig. 12c)
are associated with larger values in the vicinity of the edge of the
loaded area, similar to a stress concentration phenomenon that occurs
in a unidirectional sandwich panel loaded by a localized load (see
Frostig et al. [5]). The vertical normal interfacial stresses appear in
Fig. 12d, which reveals very large stresses with different values and
shapes at the various interfaces. The various stress resultants appear
in Fig. 13. Here, the in-plane stress resultants, in the x direction,
appear in Fig. 13a, and they consist of compressive resultants in the
upper facesheet and tensile ones in the lower facesheet with a small
contribution from the core. Similarly, the contribution of the local
bendingmoment stress resultants of the core (see Fig. 13b) is small as
compared with those of the facesheets. The vertical shear stress
resultants appear in Fig. 13c, and they are very similar to the patterns
of the interfacial shear stresses (see Fig. 12c) due to the almost
uniform distribution of the shear stresses through the depth of core
(see Fig. 11f).
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Fig. 11 Displacements and stress distribution versus time through depth of core of a localized distributed blast load.
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Conclusions

A rigorous systematic analysis of the dynamic response of a sand-
wich plate with a compressible compliant core using the extended
high-order sandwich panel theory is presented. In addition, a numer-
ical study is conducted for a fully and locally distributed blast for a
specific configuration. The mathematical formulation is based on
Hamilton’s principle with kinematic relations of small deformations
and elastically linear materials. Notice that the equations of motion in

general are valid for any type of layout of the sandwich panel and any
combination of boundary conditions. In addition, it includes the high-
order effects of the core along with its in-plane rigidity, in the x and y
directions, throughpresummed cubic and quadratic distributions of the
displacements with unknown functions. The proposed computational
model provides a full detailed response in space and time of thevarious
constituents of the panel.
The mathematical formulation uses Lagrange multipliers to

enforce compatibility at the upper and the lower face–core interfaces,
in the three directions. It includes derivation of the equations of
motion along with the definition of the appropriate boundary con-
ditions using ordinary stress resultants for the facesheets and high-
order ones for the core as a result of the presumed cubic and quadratic
distributions of the displacements.
The benchmark solution is a closed-form solution of the elasticity

model for the case of an isotropic or orthotropic simply supported
sandwich panel. The governing equations of motion are presented
for the isotropic facesheets and core. They consist of a mixed set of
partially differential equations and algebraic ones.
The numerical study investigates a simply supported sandwich plate

with a particular setup, used for blast experiments at the University of
Rhode Island (seework by Gardner et al. [24]) and subjected to a blast
loading, but with somemodifications. The numerical solution replaces
the external loading with a Fourier series and uses the appropriate
trigonometric functions to replace the partially differential equations
with a set of ordinary differential equations and algebraic ones. The
numerical solution is achieved using a Maple built-in DAEs solver.
Two types of blast loads are considered: a fully distributed sinus
pressure used for comparison with the elasticity benchmark solution,
and a partially distributed blast on a small square area in the vicinity of
the center of the plate.
The results, in general, include structural quantities such as dis-

placements, stresses, and stress resultants, at specific locations, versus
time and the deformed shapes of a section that passes through the
center of the support line and the center of the plate, at the first
millisecond at various time steps. The deformed shapes of the
EHSAPTmodel, for the two cases, explain qualitatively yet accurately
the complicated transient dynamic repose and the wave propagation
involved.
In the first case, a very good correlation between the EHSAPTand

the elasticity solution throughout the duration time of the investiga-
tion is observed. Up to 2 ms, a very good comparison is detected
and it deteriorates with time due to the numerical damping that the
numerical inverse Laplace method used in the elasticity solutions
suffers from; see Kardomateas et al. [31]. The results reveal that the
vertical and the in-plane displacements of the facesheets have
different time periods than in the core. The in-plane displacements, in
the x and y directions, of the core and its vertical normal interfacial
stresses follow smaller time periods.
The second case demonstrates the effects of a localized blast load

on the response. Here, the uniform distribution of the load has been
replaced by a Fourier series using nine terms in each direction. The
response in general follows the trends observed in the first case, but its
stress patterns are erratic with small time periods and the contribution
of the core relative to that of the facesheets is small. The various
stress distributions, through depth of core, significantly change their
shapeswith time, from almost linear to nonlinear. The displacements,
stresses, and stress resultants in a section that passes through the
centers of the plates and the line supports reveal smooth curveswith a
stress concentration in the center of the plate vicinity and near the
edges of the loaded region.
Finally, the paper reveals that the EHSAPT is accurate, mathemat-

ically robust, efficient, and expandable to include various sandwich
panel setups; any type or combination of boundary conditions;
and any type of loading schemes (dynamic, blast or static, fully
loaded, or localized). In addition, due to the accurate robust solution
and its ability to determine any structural quantity at any point and
at any time, the physical insight is significantly enhanced. Thus, the
EHSAPT should be used for the analysis of very complex responses
such as the transient dynamic response of a general sandwich panel
with a compliant core.
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