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In the literature, there are various simplifying assumptions adopted in the kinematic rela-
tions of the faces and the core when considering a geometrically nonlinear problem in
sandwich structures. Most commonly, only one nonlinear term is included in the faces
and the core nonlinearities are neglected. A critical assessment of these assumptions, as
well as the effects of including the other nonlinear terms in the faces and the core, is the
scope of this paper. The comprehensive investigation of all the nonlinear terms is accom-
plished by deriving and employing an advanced nonlinear high-order theory, namely, the
recently developed “extended high-order sandwich panel theory” (EHSAPT). This
theory, which was derived as a linear theory, is first formulated in this paper in its full
nonlinear version for the simpler one-dimensional case of sandwich wide panels/beams.
Large displacements and moderate rotations are taken into account in both faces and
core. In addition, a nonlinear EHSAPT-based finite element (FE) is developed. A series
of simplified models with various nonlinear terms included are derived accordingly to
check the validity of each of these assumptions. Two sandwich panel configurations, one
with a “soft” and one with a “hard” core, loaded in three-point bending, are analyzed.
The geometric nonlinearity effects and the relative merits of the corresponding simplifica-
tions are analyzed with these two numerical examples. In addition to a relative compari-
son among all these different assumptions, the results are also compared to the
corresponding ones from a commercial FE code. [DOI: 10.1115/1.4033651]
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Introduction

Sandwich structures are widely used in the aerospace, marine,
ground transportation, and civil industries due to their extraordi-
nary mechanical properties combined with lightweight. A typical
sandwich panel consists of two high stiffness thin faces, which are
separated by a low density thick core. This configuration enables
the sandwich structures to exhibit high bending stiffness with little
resultant weight. Both low stiffness soft materials, such as nonme-
tallic honeycomb and polymeric foam or relatively higher stiff-
ness metallic honeycomb or balsa wood, can be used as the core
materials. In practice, the soft core sandwich structures are widely
used due to their advantages of weight saving and efficient manu-
facturing processes compared to others with metallic core. Com-
pared to other sandwich structures, the soft core makes sandwich
structures to have several distinguish features, such as the trans-
verse compressibility and the shear effect [1]. Due to these fea-
tures, the sandwich structures are more sensitive to the localized
effects, which always are a result of stress concentrations and
large deformation gradients. Failures are most likely to happen in
these areas. In general, these localized effects are associated with
large deformations and moderate rotations. So, the geometric non-
linearities need to be considered and well understood when these
problems are addressed.

Sandwich structures have been investigated by many research-
ers. Back to 1970, Pagano [2] gave the three-dimensional elastic-
ity solution to the linear static behavior of sandwich plates, and in
2011, Kardomateas and Phan followed Pagano’s work and
extended the elastic solution to the negative discriminant case [3].
These elasticity analytical solutions serve as benchmarks but are
only available for certain loading and boundary conditions and do
not include nonlinearities. In addition, sandwich structural

theories have also been developed. Plantema [4] and Allen [5]
well summarized the work done in the 1960s. The earliest models
are called the classical or first-order shear models. In these mod-
els, the core is assumed to be incompressible in its transverse
direction and the in-plane rigidity is neglected, and only the shear
resistance can be considered. These assumptions may be accepta-
ble for sandwich structures with a high stiffness core, such as
metallic core. But it has been shown to be inaccurate for sandwich
structures with very soft core [3]. Later, models considering the
flexible core were developed to overcome this limitation. In 1992,
Frostig et al. [6] proposed the HSAPT, in which the transverse
compressibility and the shear effects of the core sheet are
included. However, the axial rigidity was neglected in this model.
In 2012, Phan et al. [7] formulated the EHSAPT, in which the
axial rigidity of core was included in addition to the transverse
compressibility and shear effect. By comparison to the elasticity
solution, the EHSAPT shows high accuracy in both displacement
and stress distributions for a wide range of core materials [7].

The major part of the research works related to sandwich struc-
tures is performed under the framework of small displacement
and small deformation. Indeed, the above models and theories
were originally proposed and analyzed with the infinitesimal kine-
matic relation. This has enabled researchers to have a basic under-
standing of sandwich structures, but at the same time, it limits the
further understanding involving phenomena that exhibit geometric
nonlinearity. In 2003, Sokolinsky et al. [8] compared the linear
HSAPT and nonlinear HSAPT with the experimental results from
four-point bending tests of a sandwich beam. It was shown that
the linear analysis is efficient in estimating the transverse dis-
placements while the geometric nonlinearities should be consid-
ered when accurate predictions are required for the longitudinal
displacements and peeling stresses.

The large deformation could be considered by imposing the
geometric nonlinearities in the kinematic relations. The literature
survey reveals that various simplifications are often made when
including the geometric nonlinearities. These assumptions and
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simplifications are made mainly due to the complexity of the gov-
erning equations. Indeed, the complicated governing equations
make it nearly impossible to consider the full nonlinear kinematic
relations. Usually, in papers involving geometric nonlinearities,
only some of the nonlinear terms appear in the kinematic rela-
tions. These simplifications are various in the literature, and no lit-
erature can be found that critically examines the effects and
validations of these simplifications. This is actually one of the
goals of this paper.

Most of the researches on this topic only consider large defor-
mation in the face sheets, while small deformations and infinitesi-
mal linear strain relations are used in the core. Frostig and
Baruch’s nonlinear HSAPT model [9] assumes the faces under-
going small displacements and large rotations while the core is
assumed to deform with small displacements and rotations. Soko-
linsky and Frostig [10,11] analyzed the nonlinear static behaviors
of sandwich beams by following the nonlinear HSAPT. In 2008,
Li and Kardomateas [12] presented a nonlinear higher-order
theory for sandwich plates. The nonlinear kinematic relations
were adopted in the faces while the core was considered to have
large rotations with small displacements.

In some models, although the core uses large deformation and
Green–Lagrange strain during the equation derivation, the simpli-
fications are made to simplify the final equations and enable it to
be solvable. In 2003, Hohe and Librescu [13] presented a nonlin-
ear theory for double-curved sandwich shells with compressible
core. In both faces and core, the large deformation is expressed by
the Green–Lagrange strain tensor, and then, only the nonlinear
strain terms with respect to the transverse displacements are kept
while the other nonlinear terms are discarded. In 2005, Frostig
et al. [14] formulated the nonlinear field equations which use the
nonlinear kinematic relations of large displacement and moderate
rotation in both faces and core, followed by two simplified mod-
els. The simplifications are all made in the core sheet. One model
only includes the nonlinear kinematic relations of the shear angle
while the other one assumes that the linear kinematic relations are
still valid. These two models are the models used for the analysis
eventually. The latter one coincides with the nonlinear HSAPT. In
these two models, which can be thought of as an extension of the
HSAPT, the axial rigidity of the core sheet is still neglected. In
2014, Dariushi and Sadighi [15] used the Green–Lagrange strain
in both faces and core. Since the classical beam theory was
adopted in the faces, the face sheets have nonzero nonlinear trans-
verse normal strain component and shear strain component while
the corresponding linear parts are equal to zero.

When geometric nonlinearities are considered, the analytical
solutions are usually not available, and the numerical results are
also not easy to obtain. Hence, a stable numerical approach is
needed. Two methods have been traditionally used in this regard:
one is the finite difference method [14], and the other is the FE
approach, the latter being more commonly used in solid mechan-
ics due to its advantages of easily handling the boundary condi-
tions and presenting clear physical meaning and standardized
formulation. Several special FEs for sandwich structures have
been reported for linear or nonlinear analysis. In general, two
kinds of such FEs have been proposed: One is the layer-by-layer
element [16,17], which is based on the “zigzag” theory. The dis-
placement has a piecewise variation through the thickness. Multi-
ple elements through the thickness direction are need for
laminates and sandwich composite plates. The other kind of FE is
based on the sandwich theory [18–21]. Only one element is
required through the thickness direction, and it contains the infor-
mation of all sheets. Hu et al. [18] used a one-dimensional ele-
ment with the nonlinear kinematic equation in the skin and linear
relation in the core to get the global and local buckling of sand-
wich beams. Several elements were formulated based on the high-
order theory for the sandwich plate. The linear dynamic and linear
static analyses were performed successfully [19,20]. Based on the
EHSAPT, one novel element was recently proposed by Yuan
et al. [21] in 2015. The linear static behavior of sandwich beam/

wide panel was analyzed. It gives identical displacement and
stress distribution as the elasticity solution.

This paper presents the nonlinear formulation of EHSAPT, in
which large displacements and moderate rotations are considered
in both faces and core. To assess the relative merits of the com-
monly used simplifications in the literature, various simplified
models using different combinations of nonlinear terms in the
kinematic relations will be considered. The EHSAPT-based ele-
ment is further developed to include the nonlinear Green–
Lagrange strain expressions, and it is then used to obtain the
numerical results. A commercial finite element analysis (FEA)
software is also used for comparison. Conclusions are finally
drawn based on the results.

Theory and Derivation

The nonlinear formulation is an extension of the linear formula-
tion of the EHSAPT [7]. The faces are considered as
Euler–Bernoulli beams with bending and axial rigidities while the
core has a high-order displacement pattern.

Consider a sandwich panel of length a with a core of thickness
2c and top and bottom face sheets of thicknesses ft and fb, respec-
tively. For convenience, a right-hand Cartesian coordinate system
is set with the origin placed at the left edge of the beam. The x
axis coincides with the middle line of the core, and the z axis is
along the thickness direction, as shown in Fig. 1. We only con-
sider loading and deformation in x–z plane, and we denote the dis-
placement components in x and z coordinates as u and w,
respectively.

Following the Euler–Bernoulli assumptions, the displacement
field in the top face sheet ðc < z � cþ ftÞ is expressed as

ut x; zð Þ ¼ ut
0 xð Þ � z� c� ft

2

� �
wt

0;x xð Þ; wt x; zð Þ ¼ wt
0 xð Þ (1)

and in the bottom face sheet ð�c� fb � z < �cÞ, it is

ub x; zð Þ ¼ ub
0 xð Þ � zþ cþ fb

2

� �
wt

0;x xð Þ; wb x; zð Þ ¼ wb
0 xð Þ (2)

where ut;b
0 and wt;b

0 are the axial and transverse displacements of
the centroid of the top and bottom faces.

In the core sheet (�c � z � c), the axial displacement ucðx; zÞ
is a cubic polynomial in the coordinate z

uc x;zð Þ¼
z2

2c2
1þ z

c

� �
ut

0 xð Þþ ftz
2

4c2
1þ z

c

� �
wt

0;x xð Þþ 1� z2

c2

� �
uc

0 xð Þ

þz 1� z2

c2

� �
/c

0 xð Þþ z2

2c2
1� z

c

� �
ub

0 xð Þ

þ fbz2

4c2
�1þ z

c

� �
wb

0;x xð Þ ð3Þ

Fig. 1 Definition of the geometry and coordinate system for
the sandwich panel

091008-2 / Vol. 83, SEPTEMBER 2016 Transactions of the ASME

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.org/ on 10/03/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use



and the transverse displacement w(x, z) is assumed to be a quad-
ratic function of z

wc x; zð Þ ¼
z

2c
þ z2

2c2

� �
wt

0 xð Þ þ 1� z2

c2

� �
wc

0 xð Þ

þ � z

2c
þ z2

2c2

� �
wb

0 xð Þ (4)

where uc
0 and wc

0 are the axial displacement and the transverse dis-
placement of centerline of the core sheet. /c

0 is the slop of the
centroid of the core.

It is easy to prove that the displacement continuity conditions at
the interfaces of the core and the two face sheets (z ¼ 6c) are ful-
filled by the given displacement fields. Thus, the displacement
field of the sandwich panel can be expressed by seven unknowns,
ut

0ðxÞ; wt
0ðxÞ; ub

0ðxÞ; wb
0ðxÞ; uc

0ðxÞ; wc
0ðxÞ, and /c

0ðxÞ, which are
functions of the x coordinate.

During the deformation, the materials are assumed within the
linear elastic region and only geometric nonlinearities are consid-
ered. All sheets are considered undergoing large displacement and
moderate rotation. If the Green–Lagrange strain is used directly,
and recalling the displacement assumptions of the face sheet,
listed by Eqs. (1) and (2), the strain components of the face sheets
are

�t;b
xx x; zð Þ ¼

@ut;b x; zð Þ
@x

þ 1

2

@ut;b x; zð Þ
@x

� �2

þ 1

2

@wt;b x; zð Þ
@x

� �2

(5a)

�t;b
zz x; zð Þ ¼

1

2

@ut;b x; zð Þ
@z

� �2

(5b)

ct;b
xz x; zð Þ ¼

@ut;b x; zð Þ
@x

@ut;b x; zð Þ
@z

(5c)

Compared to the general Green–Lagrange strain, some terms are
neglected due to the zero value as a result of Eqs. (1) and (2).
Notice that the Green–Lagrange strain results into nonzero trans-
verse normal strain and shear strain in the face sheets. However,
when an Euler–Bernoulli beam is considered, we usually consider
only the axial normal strain �xx regardless of the analysis being
linear or nonlinear. In the literature, some researchers include
these two strain components �zz and cxz with zero linear part and
nonzero nonlinear part in the face sheets, e.g., in Ref. [15]. The
effects of these two additional strain components would be dis-
cussed later. For convenience, the strain components of the face
sheets are written as

�t;b
xx x; zð Þ ¼

@ut;b x; zð Þ
@x

þ a1

2

@ut;b x; zð Þ
@x

� �2

þ a2

2

@wt;b x; zð Þ
@x

� �2

(6a)

�t;b
zz x; zð Þ ¼

a3

2

@ut;b x; zð Þ
@z

� �2

(6b)

ct;b
xz x; zð Þ ¼ a4

@ut;b x; zð Þ
@x

@ut;b x; zð Þ
@z

(6c)

where the values of ai can be 0 or 1. These coefficients are in the
nonlinear terms to control whether the corresponding term is
included or neglected.

Similarly, the strain components in the core sheet are written as
follows:

�c
xx x; zð Þ ¼

@uc x; zð Þ
@x

þ b1

2

@uc x; zð Þ
@x

� �2

þ b2

2

@wc x; zð Þ
@x

� �2

(7a)

�c
zz x; zð Þ ¼

@wc x; zð Þ
@z

þ b3

2

@uc x; zð Þ
@z

� �2

þ b4

2

@wc x; zð Þ
@z

� �2

(7b)

cc
xz x; zð Þ ¼

@uc x; zð Þ
@z

þ
@wc x; zð Þ

@x
þ b5

@uc x; zð Þ
@x

@uc x; zð Þ
@z

þ b6

@wc x; zð Þ
@x

@wc x; zð Þ
@z

(7c)

Again, coefficients bjðj ¼ 1; :::; 6Þ are used, and their values are
equal to either 0 or 1. When bj ¼ 1, the corresponding term is
included in the kinematic relation and vice versa.

Hence, by controlling the different combinations of ai and bj,
the kinematic relations can be reduced to the various simplified
models. Some particular cases are listed as follows:

(1) ai ¼ bj ¼ 0: linear ESHAPT [7,21]
(2) a2 ¼ 1; ai ¼ bj ¼ 0; ði 6¼ 2; j ¼ 1; :::; 6Þ: only faces

nonlinear
(3) a2 ¼ 1; ai ¼ bj ¼ 0; ði 6¼ 2; j ¼ 1; :::; 6Þ, and Ec

1 ¼ 0: non-
linear HSAPT [8,10,11,14]

(4) b2 ¼ b3 ¼ 1; bj ¼ 0; ðj ¼ 1; 4; 5; 6Þ: neglecting the higher-
order nonlinear terms of the core, e.g., the ½uc

;xðx; zÞ�
2

in
comparison to the uc

;xðx; zÞ in the �c
xx, etc.

The kinematic relations are given by Eqs. (6) and (7). For con-
venience and consistency, the strain components of the faces and
the core are expressed as a vector f�t;b;cg ¼ ½�t;b;c

xx �t;b;c
zz ct;b;c

xz �
T
.

The strain vector can be further divided into a linear part and a
nonlinear part. Considering the EHSAPT displacement assump-
tions (Eqs. (1)–(4)), the general strain expressions of the faces and
the core are represented by the displacement vector,
f�Ug ¼ ½ut

0 wt
0 ub

0 wb
0 uc

0 wc
0 /c

0�
T
. By collecting terms, it

takes the following form:

�kf g ¼ Lk
L

� �
�Uf g þ 1

2
Lk

NL f�Ug
� 	� �

�Uf g k ¼ t; b; c (8)

where the first term of the right-hand side stands for the linear part

of the strain vector, and ½Lt;b;c
L � is the same as the one used in the

linear EHSAPT. The second term gives the nonlinear strain part,

and ½Lk
NLðf�UgÞ� is a function of the displacement vector f�Ug and

depends on the nonlinear coefficients ai and bj. It will be denoted

as ½Lk
NL� for short.

Due to the square terms of the Lagrange strain, the variation
form of strain vector is given as

df�kg ¼ ð½Lk
L� þ ½Lk

NL�Þdf�Ug k ¼ t; b; c (9)

The stress vector in the three sheets is
frt;b;cg ¼ ½rt;b;c

xx rt;b;c
zz st;b;c

xz �
T
. For sandwich panels made out of

an orthotropic core, the stress in the core can be obtained from

rc
xx

rc
zz

sc
xz

8>>>><
>>>>:

9>>>>=
>>>>;
¼

Cc
11 Cc

13 0

Cc
13 Cc

33 0

0 0 Cc
55

2
66664

3
77775

�c
xx

�c
zz

cc
xz

8>>>><
>>>>:

9>>>>=
>>>>;

(10)

where Cc
ij are the stiffness constants of the core. According to the

two-dimensional elasticity, the material constants of the core are
given by [1]

Cc
11 ¼

Ec
1Ec

3

Ec
3 � Ec

1�
c
31

2
; Cc

13 ¼
�c

31Ec
1Ec

3

Ec
3 � Ec

1�
c
31

2
; Cc

33 ¼
Ec

3
2

Ec
3 � Ec

1�
c
31

2
;

Cc
55 ¼ Gc

31

In the face sheets, when a3 ¼ a4 ¼ 0, the stiffness constants of
the face sheets are simply Ct;b

11 ¼ Et;b
1 , and the stresses are
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rt;b
xx ¼ Ct;b

11�
t;b
xx . When a3 ¼ 1, or a4 ¼ 1; Ct;b

ij are obtained in the
same way as the core.

FE Formulation

Earlier, a special FE was formulated based on the EHSAPT
[21], and the linear static problem of sandwich panels was solved.
It yielded identical results compared to the elasticity solutions. In
this part, the EHSAPT-based FE will be further developed to
include the nonlinear kinematic relations. This will be used to
obtain numerical results that demonstrate the relative merits of the
various nonlinear terms.

The EHSAPT-based element can have two nodes or more than
two nodes [21]. The two-node element has shown very high accu-
racy in the linear static cases [21], and it will be used here for the
nonlinear cases due to its simplicity. This element only requires a
one-dimensional FE model based on the sandwich beam/panel, as
shown in Fig. 2. The sandwich beam is discretized by m elements.
Hence, there are n ¼ mþ 1 nodes totally for a two-node element
model. The modeling process is much easier when compared to
the general FE analysis, where a two-dimensional FE model is
required for a sandwich beam/wide panel. Each node of this
EHSAPT element has ten degrees-of-freedom (DOFs), and these
DOFs are placed through the thickness direction. One single node
contains the displacement information of all sheets. The displace-
ment vector is listed as

Uif g¼ ut
i wt

i

dw

dx

t
� �

i
ub

i wb
i

dw

dx

b
� �

i
uc

i wc
i

dw

dx

c
� �

i

/c
i

" #T

(11)

where wt;b;c stand for the transverse displacements of the midline
of the top face, bottom face, and core, and dwt;b;c=dx are their
first-order derivatives with respect to x. Also, ut;b;c represent the
axial displacements of the midline of three sheets, and /c is the
rotation angle of the core’s centerline. The subscript i means that
these unknowns are located at ith node.

The displacement field in each element is marked with tilde.
Lagrange interpolation polynomials are used to interpolate the
axial displacement field, ~ut;b;c, and the rotation angle of the core,
~/

c
, within each element. Hermite interpolating polynomials are

used to interpolate the transverse displacement field ~wt;b;c. So,
~ut;b;c and ~/

c
have C0 continuity between adjacent elements, and

~wt;b;c have C1 continuity. Details about this element can be found
in Ref. [21]. By introducing the local coordinate s ¼ x� xi, the
displacement field within ith element is represented as

f~UðsÞg ¼ ½NðsÞ�fUeg (12)

where

f~UðsÞg ¼ ~utðsÞ ~wtðsÞ ~ubðsÞ ~wbðsÞ ~ucðsÞ ~wcðsÞ ~/
cðsÞ

h iT

and fUeg ¼ ½fUig fUiþ1g�T is a 20� 1 column matrix repre-
senting the unknown displacement vector of the ith element. Also,
½NðsÞ� is the 7� 20 displacement interpolation matrix (see the
Appendix).

Using the element displacement vector f~UðsÞg of Eq. (12)
instead of the midline displacement f�Ug, which appears in Eqs.
(1)–(4), and by substituting into Eq. (8), the strain is expressed in
terms of the element node displacements, as follows:

�kf g ¼ Bk
L

� �
Uef g þ 1

2
Bk

NL

� �
Uef g k ¼ t; b; c (13)

where ½Bk
L� ¼ ½Lk

L�½NðsÞ� and ½Bk
NL� ¼ ½Lk

NL�½NðsÞ�. Notice that ½Bk
L�

is the same as the one used in linear analysis and is independent
of fUeg. The second part stands for the nonlinear part f�NLg and
½Bk

NL� depends on fUeg.
Similarly, the variation is

df�kg ¼ ½Bk
L� þ ½Bk

NL�
� 	

dfUeg k ¼ t; b; c (14)

The nonlinear element stiffness matrix comes from the minimi-
zation of the total element potential energy that consists of the
strain energy of top face, core, and bottom face and the work of
external load; thus, one has

dPe ¼ dUt þ dUc þ dUb þ dVe ¼ 0 (15)

where dUk ðk ¼ t; c; bÞ are the variations of strain energy, and
dVe is the variation of external potential energy associated with
applied loads. In terms of strains and stresses, the variation of ele-
ment total potential energy is

dPe ¼
ðhi

0

ðcþft

c

df�tgTfrtgdzdsþ
ðhi

0

ðc

�c

df�cgTfrcgdzds

þ
ðhi

0

ð�c

�c�fb

df�bgTfrbgdzds� dfUegTfReg (16)

where fReg is the nodal equivalent force.
Notice that, using Eqs. (13) and (14), and collecting the linear

part, the variation of strain energy of each sheet is written as

dUk ¼ dfUegT ½Kk
eL
� þ ½Kk

eNL
�


 �
fUeg k ¼ t; b; c (17)

where ½Kk
eL
� is the linear part of the element stiffness contributed

by different sheets and independent of fUeg, and ½Kk
eNL
� is the non-

linear part stiffness matrix due to the geometric nonlinearities.
These can be represented in the following form:

½Kk
eL
� ¼

ð ð
vk

½Bk
L�

T ½D�½Bk
L�dzds

Kk
eNL

h i
¼
ð ð

vk

�
1

2
Bk

L

� �T
D½ � Bk

NL

� �
þ 1

2
Bk

NL

� �T
D½ � Bk

NL

� �

þ Bk
NL

� �T
D½ � Bk

L

� ��
dzds k ¼ t; b; c

where vk stand for the space domain of the top face, the bottom
face, or the core within the element.

By substituting into Eq. (16), it leads to the element equilibrium
equation

ð½KeL
� þ ½KeNL

�ÞfUeg ¼ fReg (18)

where

½KeL
� ¼ ½Kt

eL
� þ ½Kc

eL
� þ ½Kb

eL
�

Fig. 2 Sketch of the EHSAPT-based FE model (two-node element)
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and

½KeNL
� ¼ ½Kt

eNL
� þ ½Kc

eNL
� þ ½Kb

eNL
�

The secant stiffness contains a linear part and a nonlinear part.
Both face sheets and the core contribute to these two parts. When
all the nonlinear coefficients ai and bj are equal to zero, ½KeNL

� is
eliminated. In this case, only the linear part is left, and it is exactly
the same as the one used in the linear analysis [21].

The stiffness matrix of the structure is obtained by assembling the
element stiffness matrices. The arc-length method [22,23] is used to
solve this nonlinear problem and to track the equilibrium path.

Numerical Examples and Discussion of the Results

In this part, two sandwich panels loaded in three-point bending
will be analyzed with the EHSAPT-based element including the geo-
metric nonlinearities. Two different core materials will be used, in
order to investigate the relative merits of various simplifications on
the nonlinear kinematic relations. The results will also be compared
to the numerical results obtained by the commercial FE code ADINA.

The geometry follows the sandwich panel used in Ref. [14].
The length of the panel is a¼ 300 mm. It contains two face sheets
with same thickness, ft ¼ fb ¼ 0:50 mm, and a core of thickness
2c ¼ 19:05 mm. The top and bottom face sheets are made out of
Kevlar with equivalent modulus of elasticity of 27.4 GPa. The
core is made out of lightweight foam, Rohacell 50, with exten-
sional modulus equal to 52.5 MPa and shear modulus Gc

31 ¼ 21:0
MPa or Rohacell 200 WF with extensional modulus 350.0 MPa
and shear modulus 150.0 MPa. A concentrated load is applied at
the middle, and the beam/wide panel is loaded in three-point
bending. The displacement constraint is applied at the lower sur-
face, i.e., the edges of the bottom sheet. Since the geometry and
loading condition exhibit symmetry about the midspan, only the
left half-beam is analyzed. Together with the symmetry condi-
tions, the boundary conditions applied to the EHSAPT-based FE
model are

wb
1 ¼ 0 first nodeð Þ

ut
n ¼ ub

n ¼ uc
n ¼ 0 last nodeð Þ

dwt

dx

� �
n
¼ dwb

dx

� �
n
¼ dwc

dx

� �
n

¼ /c
n ¼ 0 last nodeð Þ

8>>>>><
>>>>>:

(19)

To ensure accuracy, 340 EHSAPT-based two-node elements
are used to build this half-beam model, that is, m¼ 340 and
n ¼ mþ 1 ¼ 341. Furthermore, the elements are nonuniformly
distributed and placed with a bias toward the edges and the center
of the beam, where load concentrations occur.

The commercial FEA software ADINA is used to compare the
results. It is well known that numerous issues may happen when
using commercial software, such as numerical difficulties and
poor convergence. Thus, extra attention is needed to build the
nonlinear FE model. A two-dimensional model with very fine
mesh is built, as shown in Fig. 3. The nine-node plane stress ele-
ment is used to model the face sheets and core. Through the

thickness direction, four elements are used in the face sheets, and
15 elements are placed in the core. There are 19,787 nodes totally
in the model. The large displacement and small strain analysis
control option are chosen to consider the geometric nonlinearities.

Example 1: Soft Core Sandwich Panel. The first example to
consider is a sandwich beam with a low density very soft core,
Rohacell 50 foam. Various simplified models, which are reflected
by the different combinations of coefficients ai and bj, are used.
The corresponding applied load versus transverse displacement
curves at the middle point of top face are given in Fig. 4. The mid-
dle point is where the load is applied and where the maximum
transverse displacement is reached. These curves are denoted as
curves 0–12 for convenience. Curve 0 is the result based on the
linear version of EHSAPT, neglecting all nonlinear terms. The lin-
ear kinematic relation, infinitesimal strain, is used, and the dis-
placement is proportional to the applied load. The result obtained
by the commercial FE code ADINA is included in the figure as
curve 12. Due to numerical issues, the ADINA cannot yield further
results for displacements larger than 14 mm. The curve goes back
because the elements are distorted. The element edges would pen-
etrate each other under higher load. When changing the mesh size
and the load step size, this issue cannot be overcome. This numer-
ical issue always happens around that point, and it is interesting to
notice that models with coarse elements can indeed go a little bit
further. The other curves are results using EHSAPT with different
coefficients ai and bj. Only the coefficients, whose value is equal
to 1, are noted, and all others are assumed to be equal to zero.
With the exception of the linear result, curve 0, all other curves ex-
hibit nonlinear response when the load is higher than 500 N. When
the load is under 500 N, and the maximum transverse displacement
smaller than 3.5 mm, all curves agree well and are almost identical
to the linear result; this is the region where the infinitesimal strain
relation is valid. Under higher applied load, notable discrepancies
among the different simplifications are observed.

Curves 1–4 consider the transverse normal strain �t;b
zz or/and

transverse shear strain ct;b
xz in the faces. These two strain compo-

nents are the consequence of using the Green–Lagrange strain
directly under the assumed displacement field of the faces. These
three curves show a distinctly different nonlinear behavior when
compared to the other results, including ADINA. According to these
curves, the sandwich panel becomes stiffer when the load is
increased, which is unreasonable. This unusual result is because
the nonzero nonlinear terms of transverse normal stain and trans-
verse shear strain cause the sandwich panel to be “locked.” Recall
that the Euler–Bernoulli assumptions used in the face sheets imply
that the transverse rigidity and shear modulus are large enough
that there is no transverse normal strain and shear strain in the
face sheets (these assumptions are expressed in the displacement
field). Any nonzero transverse normal strain and shear would
cause a large stress component that would make the beam to be
locked. Hence, only the axial normal strain should be considered
in the face sheets. There is no problem in the linear analysis since
�t;b

zz and ct;b
xz vanish automatically. However, when considering

large displacements and using the Green–Lagrange strain in the
faces, a3 and a4 should be zero in order to be in agreement with
the Euler–Bernoulli assumptions. In addition, a1 can also be zero

Fig. 3 FE model in ADINA
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since ðut;b
;x Þ

2
usually can be neglected compared to ðwt;b

;x Þ
2
, which

can be seen from curves 1 and 2. So, the strain that needs to be
considered in the faces should the same as the ordinary
Euler–Bernoulli beam, i.e., only a2 ¼ 1.

Curves 5 and 6 are the results when the nonlinear kinematic
relation is only used in the faces while the core is assumed to
retain the linear kinematic relation. This is the most commonly
used assumption in sandwich panel nonlinear theories that con-
sider the geometric nonlinearities, e.g., Refs. [10–12,14]. These
two curves exhibit the same softening tendency as ADINA and the
other models. Curve 6 neglects the axial rigidity of the core by
setting Ec

1 ¼ 52:5� 10�5 MPa, as an approximation to zero. This
degenerates the nonlinear EHSAPT to the nonlinear HSAPT. As
expected, it yields similar results as using nonlinear HSAPT
directly [14]. A limit point is observed in curve 6 around 1438 N
while it is reported as 1423 N in Ref. [14]. Since the axial rigidity
is neglected, curve 6 is the lowest curve among these results, even
in the linear region.

Curves 7–11 list several representative simplified models that
include full or part of the nonlinear kinematic relation in the core.
Curve 7 only includes the same nonlinear term as the faces,
ðwt;b

;x Þ
2
, and the other terms are neglected. Curve 8 neglects the

higher-order nonlinear terms (i.e., it neglects ðuc
;xÞ

2
in comparison

to uc
;x in the �c

xx; ðwc
;zÞ

2
in comparison to wc

;z in the �c
zz; uc

;xuc
;z in

comparison to uc
;z in cc

xz, and wc
;xwc

;z in comparison to wc
;x in cc

xz).
These two yield almost same results. Curve 9 takes the full nonlin-
ear expressions of �c

xx and �c
zz and only the linear part in the shear

strain cc
xz. Curve 11 includes all the nonlinear terms in the core

while curve 10 only includes the nonlinear terms related to the
transverse displacement. These two are very close to each other.
Among these results, curves 10 and 11 are the two results that are
the closest to ADINA. To this point, one may draw the conclusion
that the nonlinear strain terms of the core have a great effect and
cannot be neglected. Also, it can be concluded that the nonlinear
effects caused by the transverse deflection have a more pro-
nounced effect. It can also be seen that the EHSAPT-based ele-
ment can get the whole response curves without any numerical
difficulties while the ADINA fails to converge at some point in the
nonlinear region.

Fig. 4 Load versus midspan displacement of sandwich panel with soft core

Fig. 5 Displacement profile in faces and core at P 5 1300 N: (a)
axial displacement and (b) transverse displacement
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A comparison between the nonlinear EHSAPT and the linear
EHSAPT appears in Fig. 5. It plots the axial and transverse dis-
placements along the axial direction at load P¼ 1300 N. The non-
linear EHSAPT refers to the case of a2 ¼ bj ¼ 1; ðj ¼ 1; :::; 6Þ
and is plotted with line. The linear EHSAPT is plotted with
markers. The linear EHSAPT and nonlinear analysis give similar
transverse displacement distribution while the axial displacements
are completely different. The linear analysis predicts the axial dis-
placement of the three sheets as a symmetric pattern; the top face
and bottom face rotate with respect to the core. But when the geo-
metric nonlinearities are included, the edges would move toward
to the center. Although the transverse deflections along the x
direction are similar in this analysis, it can be seen that the local-
ized effect (local dimpling at the load application) can only be
captured when considering the large displacement and nonlinear
kinematic relation. Thus, it is necessary to include the geometric
nonlinearities in order to obtain accurate displacement results that
include the local dimpling.

Figures 6 and 7 give the through-thickness strain and stress dis-
tributions of the core at P ¼ 1300 N. Both EHSAPT
(a2 ¼ bj ¼ 1; j ¼ 1; :::; 6) and ADINA results are given.
Green–Lagrange strains are used by both EHSAPT and ADINA.
The conjugate stress is the second Piola–Kirchhoff stress. Since
the direct stress output of ADINA is the Cauchy stress, the stress
results denoted as ADINA are the corresponding second
Piola–Kirchhoff stress results obtained based on the constitutive
law and the ADINA strain result. The linear EHSAPT results are
also plotted. Figure 6 is the cross section located at x ¼ 0:5a (load
application), and Fig. 7 is at x ¼ 0:4a. Recall the displacement
assumptions used in EHSAPT, namely, the axial displacement
field of the core, uc, is assumed to be a cubic function of z, while
the transverse displacement, wc, is a quadric polynomial, as shown
in Eqs. (3) and (4). Hence, the linear part (major part) of the �c

zz
can only be a linear function of z. The axial strain �c

xx and shear
strain cc

xz along the z direction are cubic functions. So, the
EHSAPT is not expected to yield the exactly same strain and
stress distributions as ADINA in cases that the distribution exhibits

a high nonlinearity but rather, an approximated result. For exam-
ple, at x ¼ 0:5a, where the concentrated load is applied, the strains
and stresses have extreme high values near load concentration.
Hence, EHSAPT gives a reasonable approximation to the ADINA

results, as shown in Fig. 6. It should be pointed out that only one
element is used by EHSAPT through the thickness, while 15 ele-
ments are used in the ADINA model through the thickness. Figure 7
gives the strain and stress results at x ¼ 0:4a ðx ¼ 120 mm). At
this location, the axial normal strain and stress are exactly the
same as ADINA. Also, a good approximated result is obtained for
the shear strain and stress. The transverse normal stresses are not
the same, due to the linear transverse strain implied by the
EHSAPT displacement field assumption, plotted in Fig. 7(b). But
the EHSAPT gives the same stress magnitude level. This is an
unavoidable limitation of EHSAPT. Both Figs. 6 and 7 show that
the linear EHSAPT is not adequate to predict the strains and
stresses when P ¼ 1300N, and that the geometric nonlinearities
have a very noticeable effect on the strain and stress distributions.

In addition to the stress, the resultant force is another way to
measure the load distribution among the different sheets for sand-
wich structures. Sometimes, it is more meaningful and can illus-
trate how the load is transmitted between the different sheets.
Figure 8 plots the resultant force of the three sheets. Both
EHSAPT results and ADINA results are given. To compare the
resultant force magnitude in each sheet, the resultant force of
the top face is given with a negative value. Figure 8 shows that
the EHSAPT yields almost the same resultant axial force as ADINA,
before ADINA fails. It is seen that the resultant force in the bottom
face keeps increasing as the panel deforms but the resultant force
in the top face increases initially and eventually drops down. The
resultant force in the core is much smaller than that of the faces.
This resultant axial force response clearly reveals the details of
the nonlinear behavior of a sandwich beam under three-point
bending. In a sandwich structure, the bending moment is mainly
balanced by the faces. With the moment caused by an axial inter-
nal force in the top and bottom faces, the external load is bal-
anced. In the example considered, the top face is in compression

Fig. 6 Strain and stress distribution in the core at x 5 0:5a : (a) axial strain, (b) transverse nor-
mal strain, (c) axial stress, and (d) transverse normal stress
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while the bottom face is in tension. With the increasing of the
applied load, the top face buckles since it is under compression.
Once it reaches its limit point, it cannot take more axial load, and
the bottom face and the core become the only components to bear

the load. That is why, initially, the axial load of the top face is
similar to that in the bottom, but at some point, the resultant force
in the top face starts to drop while the force in the bottom face still
increases and has a larger magnitude than the top face.

Example 2: Moderate Core Sandwich Panel. In this example,
the geometry, loading conditions, and boundary conditions are the
same as in the previous example. Kevlar is used to construct the
faces and similar foam, but with higher stiffness, Rohacell 200 WF
is used as the core material. Rohacell 200 WF has a higher density
with higher elastic modulus, and its elastic modulus is 350.0 MPa
and its shear modulus is 150.0 MPa. Thus, it is about seven times
stiffer than Rohacell 50, which was used in the first example.

The transverse deflection at midspan of the top face versus the
applied load curves are given in Fig. 9. Several selected simplified
cases are included. Curve 0 is the linear EHSAPT result. Curve 5
is the result from ADINA. Curves 1–4 are the nonlinear EHSAPT
results. In these curves, the face sheet only considers one nonlin-
ear term, the ðwt;b

;x Þ
2
. Due to the stiffer material used in the core,

the response predicted by ADINA is closer to the linear result
(curves up to a deflection value of 20 mm). It should be noticed
that the commonly used assumption that the face sheet undergoes
large displacement only and the core employs the linear kinematic

Fig. 7 Strain and stress distribution in the core at x 5 0:4a : (a) axial strain, (b) transverse nor-
mal strain, (c) axial stress, (d) transverse normal stress, and (e) shear stress

Fig. 8 Resultant axial force versus applied load
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relation leads to a stiffer nonlinear response, which is unrealistic.
Indeed, when the nonlinear kinematic relation is only included in
the faces (curve 1), the slope becomes larger and the curve 1 is
above the linear result. Curve 2 represents the case that only uses
the nonlinear kinematic relation in the faces, but the axial rigidity
of the core is neglected. It degenerates the EHSAPT to the nonlin-
ear HSAPT. Curve 2 lies on the lower side of the linear results,
but it is much lower than the ADINA results, even in the small
deflection part. Curves 3 and 4 are the results when using the non-
linear kinematic relation in both faces and core. Again, they yield
the closest result to the commercial software ADINA. Even when
only one nonlinear term ðwc

;xÞ
2

is considered in the core (in addi-
tion to the faces), the result is much improved, as shown as curve
3. This example shows that it is not sufficient to only consider the
large displacement and geometric nonlinearities in the faces, espe-
cially when the core has high rigidity. In that case, the results may
even be worse than the linear analysis result.

Conclusions

The geometric nonlinear effects in sandwich panels are ana-
lyzed based on the EHSAPT. Large displacements with moderate
rotations are considered in both faces and core, and the
Green–Lagrange strain is used in all layers. In addition, the previ-
ously developed EHSAPT-based element (which was used to
solve the linear static problem) was further developed to include
the geometric nonlinearity effects. The nonlinear response was
successfully obtained with the arc-length method. In the literature,
various simplifications have been made when considering the
large deformation of sandwich structures. These simplifications
are critically assessed in this paper. Thus, a series of simplified
models are derived, analyzed, and compared to verify the validity
of these assumptions.

Two three-point bending examples are analyzed. These two
examples use two similar sandwich panels with the same

geometric properties, loading conditions, and boundary condi-
tions. The only difference is the core material. The soft material
and high density moderate materials are used in the core, respec-
tively. For verification, the results are compared with the results
obtained by the commercial FEA software ADINA. The applied load
versus midspan transverse displacement is used to analyze the
nonlinear static response. The numerical examples reveal that
these simplified kinematic relations yield similar results under
small deformations, where the response is almost linear. When the
sandwich panel exhibits nonlinear behavior, divergences are
observed. It is concluded that in the faces, only the axial normal
strain nonlinear term should be included. The transverse normal
strain and shear strain nonlinear terms of the faces should not be
included because they come from the nonlinear terms of the
Green–Lagrange strain and violate the Euler–Bernoulli assump-
tion adopted in the faces by EHSAPT. When the axial rigidity of
the core is considered, as in the EHSAPT, the geometric nonli-
nearities of the core are important and cannot be ignored, espe-
cially when the core is of higher stiffness. In this case,
considering that only the faces undergo large deformation can
lead to a stiffer response, which is unrealistic. For other theories
that neglect the axial rigidity of the core, such as the HSAPT,
considering the large displacement only in the faces can still get
the correct response tendency. But the response curve is lower,
and the deformation is larger than it is expected, even at the
small deformation region. In sum, the nonlinear EHSAPT,
including the full Green–Lagrange strain in the core sheet and
nonlinear axial normal strain in the faces, yields the closest
results to ADINA, for both soft core material and harder core mate-
rial. In the example with soft core, it successfully captures the
limit point, whereas the top face buckles and cannot take more
axial load.

The EHSAPT-based element is successful in performing
the static analysis considering the geometric nonlinearities. The
one-dimensional model used by this element shows high effi-
ciency when compared to ADINA or similar commercial FEA soft-
ware. A two-dimensional model needs to be built when using
ADINA, and special care is needed to avoid the numerical difficul-
ties. When using ADINA, the numerical difficulties are observed in
this paper and in other literatures [14]. The proposed EHSAPT-
based element can yield the entire nonlinear static response
curve.

Acknowledgment

The financial support of the Office of Naval Research, Grant
No. N00014-11-1-0597, and the interest and encouragement of
the Grant Monitor, Dr. Y.D.S. Rajapakse, are both gratefully
acknowledged. The authors would also like to acknowledge the
valuable input of Professor Izhak Sheinman of Technion Israel
Institute of Technology regarding ADINA.

Appendix: Displacement Interpolation Matrix

The displacement interpolation matrix of the two-node
EHSAPT-based element is given as follows:

½NðsÞ � ¼

N1 0 0 0 0 0 0 0 0 0 N2 0 0 0 0 0 0 0 0 0

0 N3 N4 0 0 0 0 0 0 0 0 N5 N6 0 0 0 0 0 0 0

0 0 0 N1 0 0 0 0 0 0 0 0 0 N2 0 0 0 0 0 0

0 0 0 0 N3 N4 0 0 0 0 0 0 0 0 N5 N6 0 0 0 0

0 0 0 0 0 0 N1 0 0 0 0 0 0 0 0 0 N2 0 0 0

0 0 0 0 0 0 0 N3 N4 0 0 0 0 0 0 0 0 N5 N6 0

0 0 0 0 0 0 0 0 0 N1 0 0 0 0 0 0 0 0 0 N2

2
666666664

3
777777775

Fig. 9 Load versus midspan displacement of sandwich panel
with moderate core
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where Nkðk ¼ 1; :::; 6Þ are functions of the local coordinate, s,
and the length of ith element is hi ¼ xiþ1 � xi

N1 ¼ 1� s

hi
; N2 ¼

s

hi

N3 ¼ 1� 3
s2

h2
i

þ 2
s3

h3
i

; N4 ¼ s� 2
s2

hi
þ s3

h2
i

N5 ¼ 3
s2

h2
i

� 2
s3

h3
i

; N6 ¼ �
s2

hi
þ s3

h2
i
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