
Buckling and Postbuckling of Delaminated 
Composites Under Compressive Loads 
Including Transverse Shear Effects 
G. A. Kardomateas and D. W. Schmueser 

Reprinted from 

~"!MJ~3Ul~~1_~7~ 
':'.\IERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS. INC• .: -;: LENFANT PROMENADE. SW· WASHINGTON. DC 20024 



337 VOL. 26, NO.3, MARCH 1988 AIAA JOURNAL 

Buckling and Postbuckling of Delaminated Composites
 
Under Compressive Loads Including
 

Transverse Shear Effects
 

G. A. Kardomateas" and D. W. Schmuesert 
General MOlors Research Laboratories. Warren, Michigan 

TM cklonaalioa of ddamillaltd c:oJllPOllICS aada' uIaJ c:o.pralloa II analyzed by a oa~lmelUloaal 

balm-9lale mock!. la IIIIs model. a fonaulaOoa Ibal ac:couau fOl' tbe traanUK "'r dfen. II abo preaeated. 
Wltb tbe penamOo. t«balque••u1ytkaJ lOIuOo.. for tIM crttkal lutabUity IotICI ... tbe postbucldlal 
ckf1«does 11ft obcalaed. All posstble hnubBlty moda. lIUIdJ. local ddamluOoa kddlac, pobal plate 
buddlal. &lid coapled &Iobel aad local (naIud) buddlq. a~ coeIickred. Spedfk empbuis II pIa~ ollltudy(aC 
the trallSTftW Ittear df«ts oa bodI tbe critkal load ud tbe potCaitical d1aractertltla. as wdl u the lanueace 
of tbe IflI-Iry AKb u tbal of tbe locatloa of the delamlaatloa across tbe thlckaeas. TM posCbuc:kllnc IOlulloll 
is u~ iD coajuactiotl wllb a J -lDtqral formulaOoll to Itud,. the postc:ritkal daaracteriltia witb rap«t to 
possible qaasist.lltic: extaasioll of 1M delamlaalloa aad tbe eaet"CY absorptloa capadty of • balm. 

;\ 0 menclalure
 
A, = cross-seC1ionaJ areas
 
D, = bending stiffnesses
 
D'2 = shear modulus
 
£, :: Young's modulus in the axial direction
 
G = energy-release rate
 
H :: thickness of the delamination
 
k i ::.JP,oID,
 
L = length of the beam/plate
 
f :: delamination length
 
M, = bending moments
 
Pi :: axial forces
 
T = thickness of the beam/plate
 
Ct :: section parameter
 
"13' "J' = Poisson's ratio
 
<t> = angle at the ~--uon where the delamination starts 
S"bscriprs 
b = base plate
 
I :: lower part
 
u = upper part
 
I = in-plane longitudinal direction
 
2 :: normal (out-<:>;-plane) direction
 
3 :: in-plane UaJlSverse direction
 

D
Introduction 

ELAMIN ATIO:-'; (separation of adjoining plies) has been 
a subject of concern in engineering applications of 

composite materials because of the resulting reduction in 
load-bearing capacity and degradation of structural integrity 
and stiffness. Delaminations may be developed during the 
production phase becau~ of manufacturing imperfections or 
during the operational ph<L~ due to. for example. impact of 
foreign objects. Under compression loading, the delaminated 
layer may buckle. and intl"rlaminar separation from growth of 
the delamination may folk~",·. 

Delamination buckling may, however, be a desirable dam­
age mechanism from an enl"rgy absorption viewpoint, because 
of the large displaceml"nt, involved in the post buckling stages. 
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as opposed to the small strains that characterize fiber and 
matrix fracture. Recent experimental studies that we per­
formed in order to characterize the bending performance of 
c.omposite test specimens have shown that delamination 
(separation of adjoining plies) is the primary failure mecha­
nism for the compressively loaded beam face. As illustrated in 
Fig. I. taken from a static crush test on a Kevlar/epoxy beam, 
delamination of composite laminae exhibit failure zones that 
can be considered as the corollary of the plastic hinge form­
ation that governs bending-induced failure of metallic beams. 

Hence. there is a need for understanding the mechanics of 
delamination failure that would enable the proper designing of 
composite parts. The problem has been dealt with by several 
investigators. l -6 Furthermore. it has been shownJ - S that the 
stability problem may involve local buckling of the delamina­
tion or combined local and global buckling (buckling of both 
the delamination layer and the overall plate). Our work differs 
from the other investigations in a number of ways. and, as will 
be evident in what folJows, the approach based on the per­
turbation 1echnique that we use leads to explicit analytical 
expressions for the initial post buckling behavior. 

In studying buckling instability in composites, consider­
ation should be given to the effect of the transverse shearing 
force that is introduced by the deflection. Consider an 
orthotropic homogeneous linearly elastic material with the x. 
y. z or I, 2, 3 notation referring to the in-plane longitudinal, 
normal (out-of-plane), and in-plane transverse direction. It is 
known' that inclusion of transverse shear effects reduces the 
critical buckling load for a beam column of length f, 
cross-sectional area A. and moment of inertia / by approxi­
mately the factor 1/(1 + a"7?£,//4!AGI))' where Ct is a 
numerical factor depending on the shape of the cross section 
(Ct = 1.2 for a rectangular cross section) and £ and G are the 
extensional and shear moduli. For example, in a unidirectional 
laminate, where the principal material direction f coincides 
with the axis of the beam column. the ratio E,IG~ is much 
greater for composite laminates that for their metal counter­
parts.' Thus. although the factor just given is ver)' nearly 
equal to unity for metals. it can be significantly larger for 
composite materials. making predictions based on neglecting 
this effect nonconservative. A formulation that accounts for 
the effects of transverse shear will be presented in this work. 

To solve the stability problem. the perturbation or small 
parameter method 9 is used in this work. The method consists, 
in genet'lll, of developing the solution in powers of a parameter 
that either appears explicitly in the problem or is introduCt'd 
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arlillcially. The perturbation is generaled in the neighborhood 
of the solution for Ihe inilial (before inslability) Iyllem such 
lhal the kno..'n propenia of Ihe iniliallyslem am be ulilized 
for Ihe IOlulion 10 Ihe penurbcd lyalcm. An analytical 
solulion for Ihe poslbuckling denectionl of the delaminaled 
composile will Ihus be presenled. 

In general, a Griffith-Iype fraclure ailerion hal been used 
10 study delaminalion growth. The cncrgy·relcue rale has 
bcen compuled eilher by a numerical differentiation of Ihe 
10lal pOlential energyl with respect to the delamination length 
or by evaluating the palh-independenl J-inlegral.'o The laller 
method allows a slraighlforward evaluation of the energy-re­
lease rale in lerms of the axial forces and bending moments 
acting across Ihe various cross sections adjacent to the tip of 
the delamination. This method will be used here afler being 
modified to include transverse shear effects. 

AnalysIs 
la~bUil, mocks a.ct eoyft1ll,,& Eqaatlo. 

In the prescnl analysis, the configuration unda study is 
represented in the sketch of Fig. 2 and consists of a 
homogenc:ous, onhouopic beam plate of thickness T and of 
unit "'idlh containing a single delaminalion at deplh 
H(H:5 T 12) from Ihe lOP surface of the plate. The plate is 
assumed to be clamped-clamped and subjected to an axial 
compressive force P at Ihe ends. The delaminalion is 
symmetrically located in Ihe cenler of the beam. Over this 
region, the laminate consists of the part above the dclamina~ 

lion, of thickness H referred to as Ihe "upper" pan, and the 
pan below Ihe dc:lamination, of thickness T-H referred to as 
Ihe "'ower" pan. The section near each end where the 
laminate is inta~'1 and of thickness T is referred to as the 
"base" laminate. The coordinate systems for the separate 
pans are shown in Fig. 3. 

The laminate is loaded, and at the critical level three 
different possible modes of instability can be identified. First, 
global buckling of the whole beam may occur before any olher 
deflection pattern takes place. Second, both local and global 
buckling, in\ohing transverse deflections for both the upper 
and lower pans as well as the base plate, may occur and we 
will caD t'his "!I1i,ed" buckling, Third, only local buckling of 
the d.e'laminated upper layer may occur, the lower pan and the 
base plate remaining flat. The lalter instability mode has been 
also referred 10 as "thin film delamination."l 

Let us de\elop th~ governing equations for the general 
mixed bucklinf ca..~. The differential equations for the 
deflections of the differem pans (upper delaminated layer, 
lower pan, and base plate) can be wrilten~ 

(I) 

In Eq. (I), D i5 the bending stiffness, D, = Ell? /i12 
(I - J·I,J·JIJ:. t, t-.:ing the thickness of the corresponding pan. 
The coordinate systems have been selected to satisfy the 
boundary condi:iollS 

Y. = 0 at x = 0, t for i = U ,I 
(2) 

,. = 0 at x=o for i = b 

These diffc:rem pans have a common section ,.,here the 
dt."lamination starts. The corrcsponding force and moments at 
this inrc:rfa.:-c: f0r the different parts are denoted by Pi' M i 

(Fig. ~). Force and lUOmenl equilibrium at this section give 

p. + P, = P" '" P (3) 

(4) 

Fig. I DdamlaaUoa bllCkling oa the compressive face of a ltatkally 
crusbed composite bealll. 

p 

Fig. 2 Delamination/buckling geomdr)' 

Fig. 3 ~finilion or the coordinate ~·slems. 

The deflections of the upper and lower pans should be 
geomelrically compatible. Thus, a second condition necessary 
for a solution invohes the compatible shonening of the upper 
and lower parts, which is expressed as 

P.f P,f
 
(I - PIJP)I) A.,EI - (I - PUP)I) A~I
 

I" I" 
+ - \ ,,' ld.\' - - \ )'. 2 d\' = T,' 'x = 0 (5)

2,~·· 2.0 ' .• 

In Eq. (5), A., A, are the cross-sectional areas of the upper 
and lower pari. Notice that at the common section 

Y.I.-o =)','1 •• 0 =)'~ I•. , (6) 

An obvious solution of Eqs. (3-5) is p. = PH /T, P, = P(T­
H)/T, y.(x) = y,(x) = y,,(x) = O. This is the stale of SlrCSS 
befor instability, with no transverse dencetions. 
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Two Iimitina instability modes can be readily identified 
(Fia. 4). Fiut, the load required fOT alobal buckling. that is. 
the bucklina load of the composite beam plate liS a whole 
includina transverse shear, is sliahtly Imaller than the Euler 
load Pn<1 and is aiven by' 

P ../1 + 4aPn<I/(AbGd - I.
 
Jio ~ 2a/(A bG.:l '
 

This casc of alobal budding preceding any other instability 
mode would occur for a relatively small delamination length. 

On the other hand, if the length of the delamination is 
ralatively Iarae, then lou.! buckling of the delaminated layer 
precedes any other mode of instability because the delamina· 
tion is sufficiently slender in comparison with the whole plate. 
In this casc. the only out-of-plane displacement is that of the 
upper detached segment. The critical compressive force at the 
upper segment including transverse shear effects p•. is againa 
slightly smaller than the.' Euler load P•.n<1 and is given by' 

(8a) 

(8b) 

Thus. an upper limit on the applied load p. corresponding 10 

the instability being initi2:~ by the local buckling of the upper 
part. is taken to be 

Po." = (TIH)P•.a (9) 

If the critical instability load is smaller than PJio and p""". then 
combined local and global buckling involving out-of-plane 
deflections for both the delaminated layer and the base plate 
takes place. This general .:as<: is dealt with in detail in the next 
section. 

Budding 
The perturbalion pro-.~ure used here to solve Eq. (I) in 

conjunction "'ith the bou:Jdary conditions (2) and (6) is briefly 
outlined. Initially. as th~ ,-ompressive ~oad P is being applied, 
the plate remains flat at a state of pure compression and the 
solution for the upper ddaminated part u. lower part I, and 
base plate outside th~ d~:aminated region (b) is 

y •.O=o. 10(,:=0. p.,o=PoH1T 

YI.O=O. At..: =o. pt.o=Po(T -H)IT 

Yb.o=O, J,fr : =O. Pb,o=PO (10) 

Let the angle at the int~n'a,"'e of the delaminated and base plate 
be denoted by o. The d~:le\.,ion and load quantities al ~ach 

part. J'i(X). P, • .\1,. are ci~'eloped into ascending perturbation 
series with respec1 to o. 

( II) 

By definition, at this in:afa,e. defined by x = 0 for i = u.l 
and by x = (, = (L - f) :: for i = b (Fig. 3) 

.~.
 
Lo<.1 

rIll. 04 hutabfJlty moda for a delaminated composlt~. 

Substituting Eq. (II) into the differential equation (I) and 
equating like powers of t/J lead to a series of linear differential 
equations and boundary conditions for each parI. In the first 
approximation. the terms in the first power of t/J are equated 
and we obtain the small deflection equation 

The solution for the upper and lower parts should fulfill the 
requirements of symmetry; for example, Y .;(0) = - yi,(I'), and 
the boundary conditions 

Yi.1 = 0 at x = 0, f 'for i = u. 1 

The base plate should fulfill the conditions of the end fixity. 
For a delaminated clamped-elamped plate, these are 

Yb.1 = 0, Y~.l = 0 at x = 0 

The solution, satisfying Eq. (12). is given for i = u.1 by 

I [(ki rl ) ki •rI ] (13))'i,1 = k • sin(k .rI/2) cos 2 - ki.oX - cos-2­
i O i

and for the base plate outside the delamination. 

(14) 

f l =(L -1)/2 

The associated equilibrium and compatibility equations (3-5) 
up to the order 0 are given in terms of th~ moments at the 
interface 

and 

(16) 

The e.'nd moments M i I = -DJ" are given from Eqs. (J 3) and) .... 1 = I. \ • = Y,.J = ... = 0 (12) 
(14) in terms of the farst-order quantities. Substituting those 

at the common section. expressions into the aforementiofl~d two equations and elim· 
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inating thc quantity 1',.1" /2 - P•. I(T - H)/2 givc an cqualion 
for Ihc nilical buckling load Po as follows: 

H 'k•.o cOI(k•.J/2) + (T - H )'k,.o eOI(k,.JI2) 

+ Tlk •.o cotkb.rI, + 6TH(T - H)/t. 0 (17) 

POSIbucklintt 
When Ihe terms in tP~ arc equated, thc following differential 

equations arc obtained from Eq. (I): 

The second-order solution for the upper and lower parts 
should again fulfill the requirements of symmetry and the 
boundary condilions 

Yi.2 =0 at x =O,t for i = U ,t 

For the ba~ plate. it should fulfill Ihe conditions of the end 
fixity. 

J'b." =0 J'~.:' =0 at x =0 

The solution to the second-order problem is a superposition of 
the general solution and a panicular solution. For the upper 
and lower parts. it is given as 

(k,.rl '1M) i"O']Y,-"=c" [cos 2- li,.v -cos-­
2 

+ Pi. 1 [(x -!)sin (k i. J -6. <r)+~in ki.Jjl
2D)<0 sin(k,.aI'I2) 2 2" 2 2 

(I 8) 
The constant C,2 is found from Eq. (12) in terms of Pi •1 

For the base plate, we find similarly the second-order solution 
by 

and. from Eq. (I::'). 

The equilibrium equation (4) ior the second-<Jrder terms is. in 
turn, 

(20) 

The geometric compalibilit\ :-quation (5) for the second-order 
terms is expressed as 

(21) 

Noti~ that the ~ond-<Jrder moments Mi.2 = -DJ'i:~ at the 
intet'face are given from EQ~. {18) and (19) in terms of the (yet 
undetermined) first-<Jrder Quantities. Thus, eliminating the 

quantily P,.2H12 -P•.2(T -H)12 from Eqs. (20) and (21) glveli 
Ihe following equation for Ihe finl-<Jrder foren 1'•. 1 and p,.,: 

eOI(k. J/2) tJ 
+ 2Jc•.o liin(k•.J/2) 4 

tros2(k, JI2) ros(k/(,t/2) t]
 
- 4 lin2(k;.JI2) + 2Jc,.0 lin(k,.J/2) -4
 

_ [ lin(k,.J> - k,.of sin(k•.J> - k•.of] EtH(T - H) (22) 
- k,.o sin2(k,.JI2) k•.o sin 2(k•.Jl2) 8t( I -"Il"ll) 

The second equation needed for finding p•. ,. P'.I is the first­
order equilibrium equation (15) at the interface, namely, 

(23) 

The foregoing system of linear equations allows finding 1'•. 1 

and 1', I and hence the first-order applied force 1', =P. 1+1'/ ,. 
The solution for the third-order problem is given' in the 
appendix. 

Traasv~ Shear Effects 
As was nOled in the imroduction. in studying stability 

problems of composite materiaJs. consideration should be 
given to the effect of the transverse shearing force that is 
imroduced by the deflection. This is due to the relatively low 
ratio of shear to extensional modulus of composites as 
opposed to their metal counterparts. 

To correct for this effect, let us first consider the differential 
equations of the deflection curve. When buckling occur~, 

there will be a component Q = I' sinO = PO of the compressive 
axiaJ force I' acting on the cross sections (Fig. 5). Thus, in 
addition to the angle 0 between the x axis direction and the 
normal to the cross section (change in slope due to the bending 
moment M). there is an additional slope. due to shearing 
strains, of aQ/AGu (where a is a numerical factor depending 
on the shape of the cross section). measured from the normal 
to the tangent of the axis of the deflected beam.6 Therefore, 
the slope of the deflected curve is 

rll. 5 ~form.lioll dIM' 10 I~ trallS~rrw sbfllr colDponml of Ibr 
uiaI fo~. 
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Since d61dx - MIV, Io\e obtain the followina exprenion for 
curvature: 

and the differential equation for the defleclion,' modified to 
include transverse shear effects, may be wrillen 

(24) 

Thus, we may account for the effect of transverse Jhear by 
replacing the rigidity V "'ith the reduced rigidity VO c VI 
(I + aPoIAG,v (where Io\e have substituted the critical load 
Po' since we are interest«l in the behavior around this point) 
that, in the foregoing solution, would mainly change the 
definition of k. For example, 

Discussion o( Num~rical R~lts 

Numerical examples are presented for Kevlar/epoxy, 
graphite/epoxy, and glass/epoxy composites. The elastic 
constants typical of thex materials are given in Table I. In 
including trans"erse shear effects, a rectangular cross section 
(01 = 1.2) was assumed. In the examples, the filaments are 
parallel to the x axis. The different regions of buckling 
instability can be identified in the plots of the critical 
instability load, normalized with respect to the Euler load for 
the delaminatC'd layer, .h-:E,H)/12(1 - ~1l~JI)f2, vs delamina­
tion length (Fig. 6). The characteristic equation (17) is solved 
for the Qtical load Po<:' If Po<: < (Pr,lo' PioJ, as given by Eqs. 
(7) and (9), then combin<:'d mixed buckling involving out-of­
plane deflections for boLh the delaminated layer and the base 
plate takes place. For shon delamination lengths, global 
buckling is dominant, whereas for relatively large lengths, 
local buckling of the delaminated layer occurs first. In 
addition, the range of mi~ed (combined loCal and global) 
buckling is smaller if the delamination is located closer to the 
surface (larger T/H). In the case of TIH = 24, it is seen that 
the instability load can t'<: d~errnined essentially by the simple 
formulas (7) and (9). The effect of material parameters is 
illustra:ed in Fig. 7. It is = that the range of the different 
ir.stability modes is not affected by the material data, whereas 
the increased instability lvad of the higher modulus graphitel 
epoxy is expected. 

Finally, the effect of rrans"erse shear on the buckling load 
is shown in Fig. 8 fo~ the case of graphite/epoxy with 
T IH = ISand L IH = ~\). Including these effects is expected 
to lower the value of the .::riticalload. The decrease is larger in 
the midsection of the .:une (mixed buckling). For this 
example, it is as much 2> 20"10 for tIH = 30 and only about 
3070 for (! H = 100. Th~ extent of the regions of different 
instability modes is nOlo !:low ever, affected. 

Gro"'1.b Cbaracteristics 
As Fig, I shows. unlike metallic beams that absorbed energy 

via plastic hinge forrna:ion under bending loads, the com­
posite beams exhibite'd .klarnination buckling on their com­
pressive faces. The post.:-:-1li,-a! deformation. both ~fore and 
after the growth of the .klarninated regions, strongly affects 

Tabk 1 ~atrrial constants 

£ E, G" 
Malcrial G" :n' GN/m' GN/m' Pn 

Graphilc~pmy ::l~ 6.5 3.2 0.26 
Ke-'Iar-r-poxy -:'l' 4.5 2.5 0,35 
Ghw~x)' ~~ 14 8.6 0.26 

the enerlly-absorplion characteristics. Thus, the postbucklina 
IOlution lhat has been oblain«l in the previous aection will be 
used in the following to investipte the postcritical characteris­
tica. 

The midpoint denections of the upper and lower pans as 
liven by the aforementioned postbucklinll solution have been 
plotted in Fill. 9 as a function of the applied compressive load 
for the example case of T I H = 6, L I H = 200, and delamina­
tion length (I H co 60, which corresponds to mixed buckling. 
The fact wonh mentioning is thaI the initial post buckling 
geometry under increasing appli«l load is characterized by a 
negative angle at the interface <P that causes both the upper 
and lower parts to be denected upward; the denection of the 
lower pan is two orders of magnitude smaller than that of the 
delaminated layer. ThiJ behavior was also predicted in Ref. 4 
by an order-of-magnitude analysis. 

The initiation and Jubsequent process of delamination 
growth can now be analyzed on the basis of a Griffith-type 
fracture criterion. Predicting whether the delamination will 
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grow requires an evaluation of the energy-releallC rate. This 
quanlity is the differential of the tOlal potential energy with 
rnpectto the delamination length.% Alternatively, the path-ln· 
dependent i ·integral concept II may be ulICd to derive the 
energy-release rate from the currenl stress and displacement 
distribution. The laller method was applied for a one-dimen­
sional deiamination lO and resulted in an algebraic expression 
for the energy-release rate in terms of the axial forces and 
bending moments actin!! across the various cross IICctions 
adjacent to the tip of the delamination. This expression can 
also be modified to account for the effect of transverse shear. 
The rate of change or slope produced by the shearing force Q 
represents the additional curvature due to shear. Following the 
urne argument as in deri\ing the differential equation for the 
deneetions in the pr~ious 5Cetion, we can include this 
additional term in the equation for the moment! and, hence. 
modify accordingly the equation for the energy-release rate. In 
terms of the quantities 

p. = p(H/n - P" M· = M", M·· = P·TI2 - M· 

the energy-release rate per unit width is expressed as 

G = lUI - ",,",,) 'p.: _ \l(M'/H)'
2E,tT- H) ( 

II - aP'/(A r) ;1 _ 1~(1 - """,,)
....,.J Y,(T-H) 

x [p,~ + 12[M"/(T - HW[I + aP'/(APWJ (25) 

The relation between th~ nondimensional strain energy-release 
rate. G = G /(ET~ / L '). and applied load normalized so as to 

be independent of delamination length. P = P/[4"?E1T J/ 

12(1 - "1l"JI)L 2], is pIoned in Fig. 10 for the example case of 
T/H = 6, L/H = 200 and TWO close values of the delamina­
tion length, IIH = 60,61 (buckling instability of the mixed 
type). 

After initial buckling ......bether further delamination occurs 
depends OD the magnitude of the fracture energy G • definedc 
as the energy required to produce a unit of Dew delamination. 
As Fig. 10 sbows. Lh~ energy-release rate increases with 
increasing applied load during initial postbuclcling. Further­
more. the force P corresponding to a constant G decreases 
with delamination g:ro\\Lb. Hence, if G is relatively small.c 
allowing gro"'1h to nan. delamination growth under a 
constant applied load is generally a catastrophic process. For 
materials of greater G,. the load may increase substantially 
beyond the buckling load before the energy-release rate 
reaches the critical \alu~. at which poinl delamination growth 
starts and proc~s CBta>uophically unless_the load decreases. 
It should be born in plind that in Fig. 10, G is the normalizedc 
energy-release rate. Gc = Qc/(ETI/L ') and, thus, although Gc 
is a material constant. G, depends on the geometry being 
larger for a thinner pla:e. 

The transverse shear erfC'Cts are also illustrated in Fig. 10. 
Including these effe>.."1s r~ults in a steeper G - P curve. which 
indicates thattrans\'e~shear effects would promote the onset 
of growth and that m0~ energy (the energy of the transverse 
shear forces) would be rdeased per unit applied load. Another 
effect worth consideriq; is that of the lay-up angle. This is 
shown in Fig. II. "'hid! gi\'es the energy-release rate as a 
function of the applied load for thrcc different lay-up angles 
(transverse shear dfe>..-...; "'ere not included in this example). 
Scales of the sam~ lenf"=h for the applied load (corresponding 
to the different criti.:aJ lvad in each case) have been used. The 
noteworthy featur~ is ~ increase in the slope of the G - P 
curves with the hiE:her 13y-up angles. This means that growth 
could occur earlier anj that there will be potentially more 
energy absorbed since the energy released per unit applied load 
is higher. Ind~. stati.: t-cnd tests of Kevlar/epoxy composite 
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beams with 0 deg, [ ± 21 deg]" and I ± 45 degls angles that we 
performed. showed the higher lay-up angles to be more 
energy-absorbent than the rails with lower lay-up angles. 

Finally, it should be noted that the fracture toughness may 
be affected by the ratio of mode I and mode II components of 
the energy-release rate; this cannot be captured with the 
i-integral method used here. 

Conclusions 

In summaI)', an analytical formulation was developed to 
study the compressive stability of delaminated composites. 
The analysis was based on a one-dimensional beam-plate 
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model. The perturbation method of solution that WlU used 
leads to anal)'tical exprrssions for Ihe inilial poslbuckling 
denections. An inv«liaalion of the Iransverse shear effects on 
bOlh the buckling load and the POSI buck ling behavior wu also 
rx:rformed. These effeclS cause a reduction in the critical load 
and an increase in Ihe energy-release rale. The phenom~olog· 

ical aspecls of Ihe problem were invrstigaled over a broad 
range of values for the delamination size and thickness. In this 
sludy, bolh local bucklin~ of Ihe delaminaled layer and mixed 
(combined local and global) buckling were considered as well 
as Ihe possibililY Ihal global buckling may precede any olher 
mode of inslabilily. The poslcritical characterislics such as 
delamination growth were studied by using the postbuckling 
solution to compute the energy-release rate from a i-integral 
formulation. 

Appendix 
The solution for the third order problem is given as follows. 

First. the nonlinear terms are included by expanding the 
definition for the curvature in the equation. 

D~(~)+PI' '=0' ~=-;=y=.="==. (AI)
'dx .pi ' , • pi .JI _(y, ')2 

Therefore, the differenrial equation for the third order 
problem can be ",rillen: 

D'yu ' , , + p •.O.!',.l' = - Pi.!Yi.2· - P,.2Y,.1 

(A2) 

As an illustrati"e example, the third order solution for the 
base plate is given by: 

Yb.l =cbJ(I - coskb.<lx) - db~ sin kb.oX 

P' clk l 
+ • b.1 x: ;::OSkbJI-~cos l kbOx (A3)

8D;,o smkb,J, ' 16 ' 

(A4) 

The constant ct , is f0und from condition (12). Now the 
equilbrium equation (~) for the third order terms is 

and the geometric compatibility equation (5) for the third 
order terms is, in turn. 

_ 2(1 - ~Il~)!)r [p !!.. _P (T - Jf)] 
(A6)wE,H(T - H) t,I2 •.1 2 

Notice thaI Ihe third order momen" M',I - - DIY"I' , at the 
inlerface are given in terms of the already found firsl order 
and the yet undetermined second order foren. Thus, eliminal­
ing the quantily Pt.JH /2 - P.,I(T - H)/2 from (A.S), (A6) and 
laking into accounr thaI P b,l = p • .2 + P t,l gives one equation 
for the second order forces P.,l and Pt,l' 

The second equation needed for finding P.,l' Pt " is Ihe 
second order equilibrium equation (4) at the interface 

P...2(T - H)12 - Pt•2H 12 = F(P... I' Pt,.) (A7) 

F being the left-hand side of equation (22). The system of 
those two linear equations allow finding p ...2 and PI.1 and 
hence the second order applied force P = p .. .2 + Pt ,2' 
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