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The deformation of delaminated composites under axial compression is analyzed by a one-dimeansiona!
beam-plate model. In this model, a formulation that accounts for the transverse shear effects is also presented.
With the perturbation techaique, aaslytical solutions for the critical instabllity load asd the postbuckling
deflections are obtained. All possible instability modes, namely, iocal delamination buckling, global plate
buckiing, 20d coupled global and iocal (mixed) buckling, are comsidered. Specific emphasis is placed on studying
the transverse shear effects on both tbe critical load and (he posteritical characteristics, as well as the influence
of the geometry such as that of the iocation of the delamination across the thickness. The postbuckling solution
is used in conjunction with a J-integral formulation to study the postcritical characteristics with respect to
possible quasistatic extension of the deiamination and the energy absorption capacity of a beam.

Nomenclature
= cross-sectional areas
= bending stiffnesses
=shear modulus
=Young's modulus in the axial direction
=energy-release rate
= thickness of the delamination
=VP,o/D,
= length of the beam/plate
=delamination length
= bending moments
= axial forces
=thickness of the beam/plate
= section parameter
, ¥y, =Poisson’s rauo
= angle at the section where the delamination starts
bscripts
= base plate
=lower pan
= upper part
=1n-plane longitudinal direction
=normal (out-oi-plane) direction
=in-plane transverse direction
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Introduction

ELAMINATION (separation of adjoining plies) has been
a subject of concern in engineering applications of
composite materials because of the resulting reduction in
load-bearing capacity and degradation of structural integrity
and stiffness. Delaminations may be developed during the
production phase because of manufacturing imperfections or
during the operational phase due to, for example, impact of
foreign objects. Under compression loading, the delaminated
layer may buckle, and interlaminar separation from growth of
the delamination may follow.
Delamination buckling may, however, be a desirable dam-
age mechanism from an energy absorption viewpoint, because
of the large displacements involved in the postbuckling stages,
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as opposed to the small strains that characterize fiber and
matrix fracture. Recent experimental studies that we per-
formed in order to characterize the bending performance of
composite test specimens have shown that delamination
(separation of adjoining plies) is the primary failure mecha-
nism for the compressively loaded beam face. As illustrated in
Fig. 1, taken from a static crush test on a Kevlar/epoxy beam,
delamination of composite laminae exhibit failure zones that
can be considered as the corollary of the plastic hinge form-
ation that governs bending-induced failure of metallic beams.

Hence, there is a need for understanding the mechanics of
delamination failure that would enable the proper designing of
composite parts. The problem has been dealt with by several
investigators.' Furthermore, it has been shown® that the
stability problem may involve local buckling of the delamina-
tion or combined local and global buckling (buckling of both
the delamination layer and the overall plate). Our work differs
from the other investigations in a number of ways, and, as will
be evident in what follows, the approach based on the per-
turbation technique that we use leads to explicit analytical
expressions for the initial postbuckling behavior.

In studying buckling instability in composites, consider-
ation should be given to the effect of the transverse shearing
force that is introduced by the deflection. Consider an
orthotropic homogeneous linearly elastic material with the x,
¥y, zor I, 2, 3 notation referring to the in-plane longitudinal,
normal (out-of-plane), and in-plane transverse direction. It is
known’ that inclusion of transverse shear effects reduces the
critical buckling load for a beam column of length ¢,
cross-sectional area 4, and moment of inertia / by approxi-
mately the factor 1/(1 + ax®E //48AG,,), where a is a
numerical factor depending on the shape of the cross section
(a = 1.2 for a rectangular cross section) and E and G are the
extensional and shear moduli. For example, in a unidirectional
laminate, where the principal material direction f coincides
with the axis of the beam column, the ratio E/G, is much
greater for composite laminates that for their metal counter-
parts.® Thus, although the factor just given is very nearly
equal to unity for metals, it can be significantly larger for
composite materials, making predictions based on neglecting
this effect nonconservative. A formulation that accounts for
the effects of transverse shear will be presented in this work.

To solve the stability problem, the perturbation or small
parameter method® is used in this work. The method consists,
in general, of developing the solution in powers of a parameter
that either appears explicitly in the problem or is introduced
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artificially. The perturbation is generated in the neighborhood
of the solution for the initial (before instability) system such
that the known properties of the initial system can be utilized
for the solution to the perturbed system. An analytical
solution for the postbuckling deflections of the delaminated
composite will thus be presented.

In general, a Griffith-type fracture criterion has been used
to study delamination growth. The encrgy-release rate has
been computed either by a numerical differentiation of the
total potential energy* with respect to the delamination length
or by evaluating the path-independent J-integral.'® The latter
method allows a straightforward evaluation of the energy-re-
lease rate in terms of the axial forces and bending moments
acting across the various cross sections adjacent to the tip of
the delamination. This method will be used here after being
modified to include transverse shear effects.

Analysis

Tastability modes sad Governing Equations

In the present analysis, the configuration under study is
represented in the sketch of Fig. 2 and consists of a
homogeneous, orthouropic beam plate of thickness 7 and of
unit width coniaining a single delamination at depth
H(H < T/2) from the top surface of the plate. The plate is
assumed 10 be clamped-clamped and subjected to an axial
compressive force P at the ends. The delamination is
symmetncally located in the center of the beam. Over this
region, the laminate consists of the part above the delamina-
tion, of thickness H referred to as the “‘upper’’ part, and the
parnt below the delamination, of thickness 7-H referred to as
the *“‘lower’™ part. The section near each end where the
laminate is intact and of thickness T is referred to as the
‘‘base’” laminate. The coordinate systems for the separate
parts are shown in Fig. 3.

The laminate is loaded, and at the critical level three
different possible modes of instability can be identified. First,
global buckling of the whole beam may occur before any other
deflection pattern takes place. Second, both local and global
buckling, involving transverse deflections for both the upper
and lower paris as well as the base plate, may occur and we
will call this ‘*mixed”" buckling. Third, only local buckling of
the delaminated upper layer may occur, the lower part and the
base plate remaining flat. The latter instability mode has been
also referred 1o as “‘thin film delamination.”"?

Let us develop th: governing equations for the general
mixed buckling case. The differential equations for the
deflections of the different parts (upper delaminated layer,
lower part, and base plate) can be written’

@ oy
D“?‘F + P,’a;i =0 (n

In Eq. (1). D is the bending stiffness, D, = E,}/[12
(I — »2ry)i. 1, being the thickness of the corresponding part.
The coordinate systems have been selected to satisfy the
boundary conditions

v=0 a x=0,¢ for i=u,
2)
=0 at x=0 for i=b

These different paris have a common section where the
delamination starts. The corresponding force and moments at
this interface for the different parts are denoted by P;, M;
(Fig. 3). Force and moment equilibrium at this section give

P, +P =P, =P )

M, -M P, (I;—”) - P,(%’) =M, @
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Fig. 1 Delamination backling on the compressive face of a statically
crushed compaosite beam.

Y

Fig. 3 Definition of the coordinate systems.

The deflections of the upper and lower parts should be
geometrically compatible. Thus, a second condition necessary
for a solution involves the compatible shortening of the upper
and lower parts, which is expressed as

u Pt
(- "13"31);4—3 —-(1- y”yM)A_,’El
1, It . ‘
ralga i —glp e =Ty =0 ®)

In Eq. (5), A,., A, are the cross-sectional areas of the upper
and lower part. Notice that at the common section

Yulieo=2 |x-0=}‘l;|/\-, (6)
An obvious solution of Eqs. (3-5)is P, = PH/T, P, = P(T -
H)/T, v,(x)=v(x)=y,(x)=0. This is the state of stress
befor instability, with no transverse deflections.
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Two limiting instability modes can be readily identified
(Fig. 4). First, the load required for global buckling, that is,
the buckling load of the composite beam plate as a whole
including transverse shear, is slightly smaller than the Euler
load P, and is given by’

V1 +4aP /(A,G)) - 1

p 4 E\T?
#lo 2a/(A,G,,) !

T 1201 = vy g0y )L 2

Q)

This case of global buckling preceding any other instability
mode would occur for a relatively small delamination length.
On the other hand, if the length of the delamination is
ralatively large, then local buckling of the delaminated layer
precedes any other mode of instability because the delamina-
tion is sufficiently slender in comparison with the whole plate.
In this case, the only out-of-plane displacement is that of the
upper detached segment. The critical compressive force at the
upper segment including transverse shear effects P, _ is again
slightly smaller than the Euler load P, ., and is given by’

5 V1 - 4aP,  /(A,G) — 1

wer = 2a/(A,G,y) (8a)
4xE\H?
Poow = —————
el 121 — vyq05,) 2 L

Thus, an upper limit on the applied ioad P, corresponding to
the instability being initia:ed by the local buckling of the upper
part, is taken to be

PL\' = (T/H)Pucr (9)

If the critical instability load is smaller than Py, and P, then
combined local and global buckling involving out-of-plane
deflections for both the delaminated layer and the base plate
takes place. This general case is dealt with in detail in the next
section.

Buckling

The perturbation provedure used here to solve Eq. (1) in
conjunction with the bouadary conditions (2) and (6) is briefly
outlined. Initially, as the compressive load P is being applied,
the plate remains flat at a state of pure compression and the
solution for the upper dzlaminated part u, lower part /, and
base plate outside the delaminated region (b) is

$0=0. M_.=0. P,o=PH/T
Y0=0, M =0, P o=P(T—-H)/T
Ypo=0, M, .=0. Pyo=PF (10)

Let the angle at the interface of the delaminated and base plate
be denoted by o. The dzilection and load quantities at each
part, y;(x), P,, M,, are dz\veloped into ascending perturbation
series with respect 10 o.

X)) =0d X))+ by (x) + -
P,=P .-0oP ,+¢Py+ ---
M, = oM - 6M,+ - un

By definition, at this in:erface, defined by x =0 for i = u,/
and by x =0, =(L -0 > fori=b(Fig. 3)

Ya' = L ME = )’.:3 =--- =0 (12)

at the common section.
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Fig. 4 [ bility des for a delaminated composite.

Substituting Eq. (11) into the differential equation (1) and
equating like powers of ¢ lead to a series of linear differential
equations and boundary conditions for each part. In the first
approximation, the terms in the first power of ¢ are equated
and we obtain the small deflection equation

D; y,.“l) + Pf,oYi‘.,' =0
The solution for the upper and lower parts should fulfill the
requirements of symmetry; for example, y,,(0) = — y; (0, and
the boundary conditions
y,=0 at x=0,¢ for i=u,l

The base plate should fulfill the conditions of the end fixity.
For a delaminated clamped-clamped plate, these are

You=0, y,,=0 at x=0

The solution, satisfying Eq. (12), is given for i = u,/ by

= Tyt o5 k)~ ]

ki%o =P, /D;

and for the base plate outside the delamination,

(1 = cosk, ox)
= o0 7 4
Fa kp.o sin ky of) (14
kio=PyD,, 6= —9/2

The associated equilibrium and compatibility equations (3-5)
up to the order o are given in terms of the moments at the
interface

M, +M, —-M, =P H/2—-P, (T-H)/2 15

and
T%%:PM_I(T—H)/Z—P,_W/Z (16)
The end moments M;, = —D,y- are given from Eqgs. (13) and

(14) in terms of the first-order quantities. Substituting those
expressions into the aforementioned two equations and elim-

SR L L T
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inating the quantity P,,/{/2 - P, (T — H)/2 give an cquation
for the critical buckling load P, as follows:

Hk, o cot(k, of/2) + (T — H )k, o cot(k,of/2)
+ Tk, o cOthy of, + 6TH(T — H)/t=0 17

Postbuckling

When the terms in ¢ arc equated, the following differential
equations arc obtained from Eq. (I):

DJ'..(;)"‘ P,y = Py

The second-order solution for the upper and lower parts
should again fulfill the requirements of symmetry and the
boundary conditions

Yi2=0 at x=0 for i=u,(

For the base plate, it should fulfill the conditions of the end
fixity.

¥52=0 y,- =0 at x=0
The solution to the second-order problem is a superposition of

the general solution and a parnticular solution. For the upper
and lower parts, it is given as

Y, 1=Ch { cos(k‘T"’f— E‘.0‘> = cos“—'zoi}
m[( ;)sm (fz—of—& 0‘>+§sm ‘;OFJ

(18)

The constant ¢, is found from Eq. (12) in terms of P,

P < kiof &;,0 ka>

p= — T ——+
2% T Dk, sinih, o ) M2 T2 %)

For the base plate, we find similarly the second-order solution
by

P
Ypa=Cp (1 —cosky ) — —w—'————x sink (19)
52=Cp2 b0 2Doky o sink, of, 50X

and, from Eq. (12).

P
Cpa =2—D,,—k—w_:u|1_(T— (sinky, of, + £k o COSKp of;)

The equilibrium equation (4) for the second-order terms is, in
turn,

Mo+M.~M,.=P H/2-P, (T—-H)/2 (20)

The geometric compatibility aquation (5) for the second-order
terms is expressed as

ot

e o | § ey S AT
5,}0’"-‘ dy—3 |, i dx TEH(T-H)
x[P,',H/Z—P__:(T—H)Q] @1)

Notice that the second-order moments M, ,= —D,y;, at the
interface are given from Eqgs. (18) and (19) in terms of the (yet
undetermined) first-order quantities. Thus, eliminating the
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quantity P,,H /2 — P, (T — H)/2 from Egs. (20) and (21) gives
the following cquation for the first-order forces P, , and Py

p l coskyofy 0 cos’ky b, 4 Ccos*k,ot/2)
“!'| 2kyo sink,of, 2 8in k,, oy 2 Asinkk,t/2)
cos(k, of/2) _(]
2k, o sin(k, of/2) 4

e [ cos ky oy _(,cos‘ﬁlor,__'_n
"1 2Ky 0 sinkyof; 2 sinkpoli 2

_tcos’(k,ol/2) . cos(k,4t/2) (]
T asin¥(k,ol/2) " 2k q sin(k of/2) 4

(22)

[ sin(k; of) —k,of

sin(k, o) —k, OI]EH(T H)
ko sin(k, ot/ 2) /(‘,o sm’(k ol/2)

8(1 —vyyy)

The second equation needed for finding P, ;, P,, is the first-
order equilibrium equation (15) at the interface, namely,

- P
PiH 2= P (T —H)/ 2= ik D)

P Py
k,o tan(k, of/2) k,,o tank, of,

(23)

The foregoing system of linear equations allows finding P, ,
and P,, and hence the first-order applied force P, =P, + P, .
The solution for the third-order problem is given in the
appendix.

Transverse Shear Effects

As was noted in the introduction, in studying stability
problems of composite materials, consideration should be
given to the effect of the transverse shearing force that is
introduced by the deflection. This is due to the relatively low
ratio of shear to extensional modulus of composites as
opposed to their metal counterparts.

To correct for this effect, let us first consider the differential
equations of the deflection curve. When buckling occurs,
there will be a component Q = P sinf = P§ of the compressive
axial force P acting on the cross sections (Fig. 5). Thus, in
addition to the angle § between the x axis direction and the
normal to the cross section (change in slope due to the bending
moment M), there is an additional slope, due to shearing
strains, of aQ/AG,; (where « is a numerical factor depending
on the shape of the cross section), measured from the normal
to the tangent of the axis of the deflected beam.é Therefore,
the slope of the deflected curve is

dyv " aPl
dv ~  AG,,

Fig. 5 Deformation due to the transverse shear component of the
axial force.
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Since d6/dx = M /D, we obiain the following expression for
curvature:

w50 26

and the differential equation for the deflection,” modified to
include transverse shear effects, may be written

D d4y

dly
T+aPiAG, o P

prie 0 (24)
Thus, we may account for the effect of transverse shear by
replacing the rigidity D with the reduced rigidity D* = D/
(1 + aPy/AG,,) (where we have substituted the critical load
P,, since we are interested in the behavior around this point)
that, in the foregoing solution, would mainly change the
definition of k. For example,

_12(1 = vy )Pl + aPy/AG)y)

kZ
o0 ET?

Discussion of Numerical Results

Numerical examples are presented for Kevlar/epoxy,
graphite/epoxy, and glass/epoxy composites. The elastic
constants typical of these materials are given in Table 1. In
including transverse shear effects, a rectangular cross section
(a =1.2) was assumed. In the examples, the filaments are
parallel to the x axis. The different regions of buckling
instability can be identified in the plots of the critical
instability load, normalized with respect to the Euler load for
the delaminated layer, 4=£,H?/12(1 — v;yvy,)€?, vs delamina-
tion length (Fig. 6). The characteristic equation (17) is solved
for the critical load Py . If Py <(Pyo, Pioo), as given by Eqs.
(7) and (9), then combined mixed buckling involving out-of-
plane deflections for both the delaminated layer and the base
plate takes place. For short delamination lengths, global
buckling is dominant, whereas for relatively large lengths,
local buckling of the delaminated layer occurs first. In
addition, the range of mixed (combined local and global)
buckling is smaller if the delamination is located closer to the
surface (larger 7/H). In the case of T/H = 24, it is seen that
the instability load can be determined essentially by the simple
formulas (7) and (9). The effect of material parameters is
illustrated in Fig. 7. It is seen that the range of the different
instability modes is not affected by the material data, whereas
the increased instability load of the higher modulus graphite/
epoxy is expected.

Finally, the effect of wransverse shear on the buckling load
is shown in Fig. 8 for the case of graphite/epoxy with
T/H = 15 and L/H = 200. Including these effects is expected
to lower the value of the criucal load. The decrease is larger in
the midsection of the curve (mixed buckling). For this
example, it is as much as 20% for & H = 30 and only about
3% for (/H = 100. Th: extent of the regions of different
instability modes is not. however, affected.

Growth Characteristics
As Fig. 1 shows, unlike metallic beams that absorbed energy
via plastic hinge formaion under bending loads, the com-
posite beams exhibited delamination buckling on their com-
pressive faces. The postrincal deformation, both before and
after the growth of the delaminated regions, strongly affects

Table 1  Material constants

E E, G
Material GN m° GN/m’ GN/m* o
Graphite-epory o 3. 6.5 3.2 0.26
Kevlar-epoxy ~ 4.5 2.3 0.35
Glass-epoxy &3 14 8.6 0.26
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the energy-absorption characteristics. Thus, the postbuckling
solution that has been obtained in the previous section will be
used in the following to investigate the postcritical characteris-
tics.

The midpoint deflections of the upper and lower parts as
given by the aforementioned postbuckling solution have been
plotted in Fig. 9 as a function of the applied compressive load
for the example casec of 7/H = 6, L/H = 200, and delamina-
tion length ¢/H = 60, which corresponds 1o mixed buckling.
The fact worth mentioning is that the initial postbuckling
geometry under increasing applied load is characterized by a
negative angle at the interface ¢ that causes both the upper
and lower parts to be deflected upward; the deflection of the
lower part is two orders of magnitude smaller than that of the
delaminated layer. This behavior was also predicted in Ref. 4
by an order-of-magnitude analysis.

The initiation and subsequent process of delamination
growth can now be analyzed on the basis of a Griffith-type
fracture criterion. Predicting whether the delamination will

T/H =24

Critical Load, Py = Pyt?/{42D,)
2
3 - "'\\\\\
N
\
b

T —T T B

o 40 a0 o0 %0 200
Delamination Length, £ = ¢/H

Fig. 6 Effect of delamination location on the buckling load
(Keviar/epoxy, L/H = 200, transverse shear effects included).

— Graphite-Epoxy

Pot?/(4m2D.)
5

Critical Load, Pqo
@

T T =

[+] «0 UJ ©o %0 200
Delamination Length, € = €/H

Fig. 7 Effect of material properties on the buckling load (7/H = 15,
L/H =200, transverse shear effects included). The modulus of the
Kevlar/epoxy has been used in normalizing the load.

\Trans\'ﬁ:‘c shear

Critical Lond, Py = Pot?/(4n2D,)

0+ .
) effects included
s
° T = T T )
o «0 80 w %0 200

Delamination Length, ¢ = ¢/H

Fig. 8 Effect of tramsverse shesr on the instability load for
graphite/epoxy, 7/H = 18, L/H = 200.
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grow requircs an evaluation of the cnergy-release rate. This
quantity is the differential of the total potential energy with
respect to the delamination length.? Alternatively, the path-in-
dependent J-integral concept'' may be used to derive the
energy-release rate from the current stress and displacement
distribution. The latier method was applied for a one-dimen-
sional delamination'® and resulted in an algebraic expression
for the energy-relcase rate in terms of the axial forces and
bending moments acting across the various cross scctions
adjacent to the tip of the delamination. This expression can
also be modified 10 account for the effect of transverse shear.
The rate of change of slope produced by the shearing force Q
represents the additional curvature due to shear. Following the
same argument as in deriving the differential equation for the
deflections in the previous section, we can include this
additional term in the equation for the moment! and, hence,
modify accordingly the equation for the energy-release rate. In
terms of the quantities

P*=PH/T)-P, M* =M, M** =P*T/2-M*

the energy-release rate per unit width is expressed as

_ 120 —wprn) s - 2

G = Spas 0% - 1AM /H)

A pe 2120 = wyey)

(1 =aP/ALG) ) - So 7
X {P':-t- 12IM /(T — H)*| +aP‘/(Aﬁ)]2} (25)

The relation between the nondimensional strain energy-release
rate, G = G/(ET*/L*). and applied load normalized so as to
be independent of delamination length, P = P/[4x*E, T/
12(1 — »,393,)L %, is plotted in Fig. 10 for the example case of
T/H =6, L/H =200 and two close values of the delamina-
tion length, #H = 60,61 (buckling instability of the mixed
type).

After initial buckling, whether further delamination occurs
depends on the magnitude of the fracture energy G_, defined
as the energy required to produce a unit of new delamination.
As Fig. 10 shows, the energy-release rate increases with
increasing applied load during initial postbuckling. Further-
more, the force P corresponding to a constant G decreases
with delamination growth. Hence, if G, is relatively small,
allowing growth to start, delamination growth under a
constant applied load is generally a catastrophic process. For
materials of greater G.. the load may increase substantially
beyond the buckling load before the energy-release rate
reaches the critical value. at which point delamination growth
starts and proceeds catastrophically unless the load decreases.
It should be born in mind that in Fig. 10, G, is the normalized
energy-release rate, G, = G./(ET?/L*) and, thus, although G,
is a material constant. G_. depends on the geometry being
larger for a thinner plaze.

The transverse shear effects are also illustrated in Fig. 10.
Including these effects results in a steeper G — P curve, which
indicates that transverse shear effects would promote the onset
of growth and that more energy (the energy of the transverse
shear forces) would be released per unit applied load. Another
effect worth considening is that of the lay-up angle. This is
shown in Fig. 11, which gives the energy-release rate as a
function of the applied load for three different lay-up angles
(transverse shear effecis were not included in this example).
Scales of the same leng:h for the applied load (corresponding
to the different cnitical koad in each case) have been used. The
noteworthy feature is the increase in the slope of the G- P
curves with the higher lay-up angles. This means that growth
could occur earlier and that there will be potentially more
energy absorbed since the energy released per unit applied load
is higher. Indeed, static bend tests of Kevlar/epoxy composite
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Applied Load, P = PLY/(457D,)

Fig. 9 Midpoint deflection of the upper (solid line) and lower
(dashed line) parts from the postbuckling solution for Keviar/epoxy
with 7/H = 6, L /H = 200, and delamination length /H = 60.

7

yH =6t}

021 without transverse

shear effects t/H =60

Energy-Release Rate, & = GL/(E,T®)
0
a

000 T T o
0235 0300 0305 0310 035 0320

Applied Load, P = PL?/(4x?D,)

Fig. 10 Strain emergy release rate vs applied compressive force
during the initial postbuckling stage (Kevilar/epoxy, T/H =6,
L/H = 200).

ax L 1 L 1 1 ) = 45°

s -
0.0+

os | 8=10°

000 T T T T T T 3 o
0304 0306 Q308 030 03V 03 03B 038 8=0

Energy-Release Rate, & = GL'/(E,T%)

0234 02% 0238 020 022 0244 026 08 0= 22°
Applied Load, P = PL?/(4x%D,)

Fig. 11 Effect of Iay-up 2ngle on strain energy-release rate computa-
tions [symmetric (), Kevlar/epoxy, T/H =6, L/H =200,
/H = 60, transverse shear effects not included]. The modulus for
8 = 0 deg Keviar/epoxy has been used in normalizing the load.

beams with O deg, | = 22 deg],, and | + 45 deg], angles that we
performed, showed the higher lay-up angles to be more
energy-absorbent than the rails with lower lay-up angles.

Finally, it should be noted that the fracture toughness may
be affected by the ratio of mode | and mode 11 components of
the energy-release rate; this cannot be captured with the
J-integral method used here.

Conclusions
In summary, an analytical formulation was developed 10
study the compressive stability of delaminated composites.
The analysis was based on a one-dimensional beam-plate
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model. The perturbation method of solution that was used
leads to analytical expressions for the initial postbuckling
deflections. An investigation of the transverse shear effects on
both the buckling load and the postbuckling behavior was also
performed. These effects cause a reduction in the critical load
and an increase in the encrgy-release rate. The phenomenolog-
ical aspects of the problem were investigated over a broad
range of values for the delamination size and thickness. In this
study, both local buckling of the delaminated layer and mixed
(combined local and global) buckling were considered as well
as the possibility that global buckling may precede any other
mode of instability. The posteritical characteristics such as
delamination growth were studied by using the postbuckling
solution to compute the energy-release rate from a J-integral
formulation.

Appendix
The solution for the third order problem is given as follows.
First, the nonlinear terms are included by expanding the
definition for the curvature in the equation.

>+PL\-,'=0; 1 B (AD)

pi[L
. Gl (=

‘dx o

Therefore, the differential equation for the third order
problem can be written:

Dbyt_] t +Pl,0‘.u]’ = _Pi.l-yi,ZI_PtJyl_l

s L DL
=Dy, S v (A2)
As an illustrative example, the third order solution for the
base plate is given by:

Yb.3=Cpa(1 —c0sk, ox) = dyyx sin &, ox

3

2 &3
+ b.1 -2 sosk _S0ikb0 3
S—r——DE‘O Sinkb.oﬂ“ 0sk of; 6 cos? kyox (A3)

_st.x (G + 20k,  cotky ofy _Cglkg.o

d,y= — !
63 8D; 1k o Sin Ky of) 16

+ Po.: (A4)
L
2Dk5 o sin Ky o
The constant ¢,: is found from condition (12). Now the
equilbrium equation (4) for the third order terms is
M

u

A+ M =M =M, =P H/2-P, (T ~H)/2 (AS)

and the geometric compatibility equation (5) for the third
order terms is, in turn.
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2(1 — vyyuy)C H (T-—Il)]
S [, H L, (T - H)

WEH(T — /| P =P (AS)

Notice that the third order moments M,y = — Dy, ,"" at the
interface are given in terms of the already found first order
and the yet undetermined second order forces. Thus, eliminat-
ing the quantity P, ,H /2 — P, (T ~ H)/2 from (AS), (A6) and
taking into account that P,, = P,, + P, gives one equation
for the second order forces P, , and P, ,.

The second cquation needed for finding P, ,, P,. is the
second order equilibrium equation (4) at the interface

P,T —H)/2~P,,H/2=F(P,,, P,)) (A7)

F being the left-hand side of equation (22). The system of
those two linear equations allow finding P,, and P,, and
hence the second order applied force P = P, , + P ;.

References

'Rhodes, M.D., Williams, J.G., and Starnes, J.H. Jr., “‘Effect of
Impact Damage on the Compression Strength of Filamentary
Composite Hat-Stiffened Panels,”” presented at the 23rd SAMPE
National Symposium and Exhibition, Anaheim, CA, May 1978; also,
“‘Selective Application of Materials for Products and Energy,’
SAMPLE, Vol. 23, May 1978, pp. 300-319.

IChai, H., Babcock, C.D., and Knauss, W.G., *‘One Dimensional
Modeiling of Failure in Laminaied Plates by Delamination Buck-
ling,”” [nternational Journal of Solids and Structures, Vol. 17, No.
11, 1981, pp. 1069-1083.

’Simitses, G.J., Sallam, S., and Yin, W.-L_, “Effect of De¢lamina-
tion of Axially-Loaded Homogeneous Laminated Plates.” AIAA
Journal, , Vol. 23, Sept. 1985, pp. 1437-1444.

*Yin, W.-L., Sallam, S.N., and Simitses, G.J., *‘Ultimate Axial
Load Capacity of a Delaminated Beam-Plate,”" AIAA Journal, Vol.
24, Jan. 1986, pp. 123-128.

‘Wang, S.S., Zahlan, N.M., and Suemasu, H., ‘‘Compressive
Stability of Delaminated Random Short-Fiber Composites, Pan
I —Modeling and Methods of Analysis,”” Journal of Composiie
Mauerials, Vol. 19, 1985, pp. 296-316.

*Wang, S.S., Zahlan, N.M., and Suemasu, H., *“‘Compressive
Stability of Delaminated Random Short-Fiber Composites, Part
Il —Experimental and Analytical Results,”” Journal of Composite
Materials, Vol. 19, 1985, pp. 317-333.

“Timoshenko, S.P. and Gere, J.M., Theory of Elastic Staoility .
McGraw-Hill, New York, 1961, pp. 1-3 and 132-135.

!Calcote, L.R., The Analysis of Laminated Composite Structures .
Van Nostrand Reinhold, New York, 1969, pp. 38.

*Nowinski, J.L. and Ismail, [.A., “Application of a Muhi-Parame-
ter Perturbation Method to Elastostatics,”” Developments ir. Theore:-
ical and Applied Mechanics, Vol. 2, 1965, pp. 35-45.

"®Yin, W.-L. and Wang, J.T.S., *“The Energy-Release Rate in the
Growth of a One-Dimensional Delamination,” Journal of Appliec
Mechanics, Vol. §1, 1984, pp. 939-941.

""Budiansky, B. and Rice, J.R., “‘Conservation Laws and Energy-
Release Rates," Journal of Applied Mechanics, Vol. 40, 1973, pp.
201-203.



