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Effect of an Elastic Foundation on the 
Buckling and Post buckling of Delaminated 
Composites Under Compressive Loads 

G. A. Kardomateas ' 

Introduction 

Consider a composite boxed beam filled with a soft elaslic 
medium such as foam or a sandwich beam consisting of IWO 
fiber-reinforced sheets separaled by a low stiffness core. A 
bending load on these structures is equivalent {Q a compressive 
force on one face and a tensile force on the other; further­
more, a delaminalion may be present on the compressively 
loaded composite face. In those cases the composite face resls 
on an elaslic "foundation" which imposes reaclion forces on 
the beam Ihat are proportional to the deflection of the 
"foundation. " 

Studies of the delamination problem have been undertaken 
for the usual case without the elastic foundation (e.g., Chai et 
aI., 1981; Yin et aI., 1986; Sonega and Maewal, 1983). In a re­
cent study by Kardomateas and Schmueser (1987) the pertur­
bation technique was used to obtain an analytical expression 
for the initial post buckling deflections. This solution is ex­
tended here for the case of a beam/plate on an elastic founda­
tion. AnalYlical solulions for the critical load and the initial 
post buckling behavior will be derived. 

Analysis 

The configuration consists of a homogeneous, orthotropic 
beam-plate of thickness T, length L and unit width, containing 
a single delamination of length f= 20 and at depth H from the 
tOp surface of the plate. The plate has a permanently allached 
Winkler-type elastic foundation. Over the delamination 
region, the laminate consists of twO parts, the part above the 
delamination, of thickness H, referred to as the "upper" part, 
and the part below the delamination, of thickness T - H, 
referred to as the" lower" part. The remaining laminate out­
side the delamination interval and of thickness Tis referred to 
as the "base" laminate. Local coordinate systems with the 
origin at the left end of each part are assumed. These parts 
have a common section referred to as the "interface section." 
The corresponding axial and shearing forces and moments at 
this section for the different parts are denoted by P" V" M,. 

Although the differential equation for the deflections of the 
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BRIEF NOTES 

1.1 [1 [1l'r dl'Lllninatl'd IJyer hJl'c the usual form (e.g .. f.:ar­
JOlllall'J\ Jnd SL"iIIllUl'SLT, 19S7), for thl' lOll,," [1Jrl Jild rhe 
hJ\(' plJle there is;ln JJJiliollJllerm dul' 10 th,,'l'la,tic foullda­
tion. In tLTIIlS of the Illodllius of the fouIlJalioll,.3: 

dJI' d 2 1' 
D, -'-' + />/ -'-,' = - (3.\'/. (I)

d.\-' d\'­

where D, =1:'1 t!l112( I - "1.\ ".11)1 arc I he bending sliffnesses (E I 

is the modulus of elasticity in the axial == I direction; v", "11 

arc Poisson's ratio's where 3 is the in-plane transverse direc­
tion and t, is the thickness of the corresponding part). A con­
dition of common denection I at the interface section should 
be satisfied: 

Yu 1..-=o,,=y,'..-=O.'=Ybl..-=,o =t (2) 

Force and moment equilibrium at this section give: 

(3) 

Furthermore, the shortening due to the denections of the up­
per and lower parts should be geometrically compatible, which 
is expressed as: 

PJ 
(I - VI1"JI) --­

. A.E, 

+ _1_f(y;2dx __1_r'y/2dx=TY~1,=0' (4)
2 Jo 2 Jo 

where A., A, are the cross-sectional areas of the upper and 
lower part_ 

Buckling. The deflection and 10Jd quantities at each part 
are developed into ascending perturbation series with respect 
to the angle at the interface section. </>. 

Yi (x) = </>Yi. I (x) + </>'Y,.2 (x) + ... ; P, = Pi. ° 
+ </>P,. 1+ </>' Pi., + . - . (5) 

M,=</>M,.I+</>2M,. 2 + ... ; Vi =¢V,.I+¢21'i.,+· 

By this definition, at the interface section: 

Yi~ I = I; )"'.1 = .1':. J = ... = O. (6) 

SubStituting equations (5) inlO the differenlial equation and 
equating like powers of </> leads to a set of lin,,'ar differential 
equations and boundary conditions for each part. In the first 
approximation the terms in the first pOller of 0 are equated. 
For the resulting equation. assuming a solution of the form 
y=e)"- gives for 'Y either a purely imaginary number or a com­
plex one with a real and an imaginary part, rendering the solu­
tion in terms of trigonometric only or a combination of 
trigonometric and hyperbolic functions depending on the 
magnitude of the modulus of the foundation. 

Define 

k~. 0 = P, ,IllD,; Ai = (3/D,. (7) 

The solution for the lower part for ki. 0 > 4A, is gi\'en as: 

y'.1 = L: c\jcos(-YjO-'YjX); 
10 1.1 

'Y 1,1 = JI( - k1. 0 ± .Jkf;;-":4~)/21. (8) 

For kf. 0 <4A/, the solution to the first order equation is 

y,., =cIICOSh(-Y10-'Y,X)COS('Y20-'Y2 X ) 

+ c 12 sinh('Y I0 - 'YI x)sin(1'2 0 - 12..1'), (9) 

where 'YI Jnd 'Y2 Jre defined as follo\\s 

r,--" ",; O=arccosl- "--;'II/(2r)l; 1'1 = Ircos(O/2); 

1'2 = \lrsin(tll2). (10) 

The constants Clf are found frol11 equations (6) in terms of the 
common denection II from equation (2). The first Order end 
shear can be expressed in the form 

V,. I = - D, Uti + k;. oY/. I) 1.=0 = V,. + 1111, I. (II)I 

and the first order end moment is 

MI. I = -DIY!I 1..-=0 = M,. , + II M{ I' (12) 

where the quantities V'I , Vii' Mil' M11 are given in terms 
of 'Yj' Analogous qua'ntities are 'found' for the base plate 
(subscript b). 

The condition of shear equilibrium (3), written for the first 
order terms, produces an expression for ~I (note that 
Vu . I =0), 

II = (V,. I - 11. ,)/(11{;. I -11, I)' (13) 

Writing the associated moment equilibrium and compatibility 
equations (3), (4), for the terms in </>1, substituting the end 
moments from equation (12) and the quantity ~I from 
equation (13), and eliminating the quantity 
p,.IHI2-p•. ,(T-H)I2, gives an equation for the critical 
load, Po (characteristic equation), as follows 

DJ•. ocotku • 00+ M,. I -M~. 1 

+ (V,. 1- V~.I)(M{ I- M { ,)/(II{;.I- V{ ,)= 

= - TEIH( T-H)/[4a(l- vIJ"J')]' (14) 

Post buckling. When the terms in </>2 are equated, the 
following differential equation for the lower part and the base 
plate is obtained from equation (I): 

( 15) 

For kt. 0 > 4A,. with the definition (8) for 'Yj' the solution for 
the lower part is: 

(- IYclf'Yj 
(16) 

2b~ - 'Yn 

For k10<4"" the solution to equation (15), and wilh the 
definilion (10) for If' is found to be: 

p. ,
 
.1'1.: = C 21 T cosh(-y,o - 1'IX)COS('Y2 G- 1',..1')
 

I 

PI. I . . 
+ c1, -----0- smh('Yl o - '(, X) SIl1(-Y20 - 'Y,x) + 

,. 

PI'. I 

D,. 

b'f 

(,~ - 'Y;)Ic 12 'YJ-f + (- IYclI'Yfl + 21'1'Y11c 1l 'YJ-j + (- 1)'-fcl,'Yfl 

8'Y1'Y,('Y; + 'Yn 

(17) 

The constants C2f can be found from equation (6) in terms of 
12- Furthermore, the second order end shear can be expressed 
as: 

V" 1 = -D,(YI."2 + k;. oY/. 2) 1.• =0 = PI. I Vf 2 + 12 Vi. 2' (18) 

and the second order moment is written in t he form 
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Fig. 1 Critical (buckling) force versus foundallon modulus for a set of 
delamlnalion lenglhs 

MI. 1= - Dlyt1 IXEO =PI. JMf.l + SlMf.l' (19) 

where the quantities JIf, 2. V{ 2' Mf, 2. Mf. 2 are given in terms 
of "tj' Analogous quantities are found for the base plate 
(subscript b). An additional quantity needed to solve the 
problem is the shortening due to the first order denections, 
which apears when equation (4) is written for the terms in 0:, 
5, = 112 i&y; 2I dx, and which is already known since the firST 
order solution has been obtained. 

Now the shear condition (3) allows determining r2 in terms 
of lhe first order (yet unknown) forces (note that V". 2 = p" I) 

as follows: 

r 
2 

= V~, 2 - I 
V{ 2 - V{ 2 

P 
", I 

+ '1.2 ­

VJ. 2 ­

Vi. 2

'1, 1 

PI 
' I • 

(20) 

Wriling the momenr equilibrium equation (3) and the 
geometric compatibility equation (4) for the terms in 4J2, ex­
pressing the second order moments at the interface from equa· 
tion (19), in terms of the (yet undetermined) first order end 
forces, taking into account equation (20), and eliminating the 
quamity P, ,H12 - p" ,( T - H)/2 gives the following equa­
tion for the'first order forces p", I and PI. I: 

[:\f~: -\1);: + v?~~; , (M{ 2 -ML)]p"" 
'. 2 h. _ 

V~. 2 - vr, 2 
+ [Mf : - Mt. 2 + 11.2- 11.2 

The second equation needed for finding p" ,_ P, I is the first 
order moment equilibrium equation at the interface. namely, 

PI. I HI2 - p". , (T - H)I2 = Fo(P•. O. PI, 0), (22) 

where Fo is the left-hand side of equation (14) which depends 
only on the zero order quantities. The above system of linear 
equations allows finding p" I and PI I and hence the first 
order applied end force P; =p". I +i\ ,. The s01ution to 
higher order terms can be obtained in a similar fashion. 

The postcriticaJ characteristics are studied next. For this 
purpose we use the expression derived by Yin and Wang (1984) 
for the energy release rate of a one-dimensional delamination 
in terms of the axial forces and bending moments acting across 
the various cross sections adjacent to the lip of the delamina­
tion (these quanrities are directly determined from the above 
postbuckling solution). 
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Delamination Length, f = i/H 
Fig. 2 Critical load versus delamlnalion lenglh for a sel of foundation 
moduli 

o~ o.~ o.~ o~ o.~ o.~ o.~ o.~ iJ = 10 

~ = I 
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Ap;:>lied Load, P = PU/(4"ZDt ) 

Fig.3 Strain energy release rale versus applied compressive force duro 
ing the initial poslbuckling slage for a delamination length I1H = 40 and 
a sel of loundation moduli. The differenl load scales are of the same 
length and correspond 10 Ihe differenl initial buckling loads. 

Discussion of Resulls 

Numerical examples are presented for the case of a 
clamped-clamped plate with HIT= 1/6, L/H=200. Figure I 
shows the variation of the critical load, normalized with 
respect 10 the Euler load for the delaminated layer, 
Po = POf2 /(471' 2DJ, with the foundation modulus which is nor­
malized as {3=3.1I"/(161j' 4 D b ) (on a logarithmic scale). As 13 
increases, the critical: load increases, the effect being bigger on 
the smaller delaminarions. Notice that there is a small range of 
values for the foundation modulus, for which the critical load 
undergoes a rather significant increase. Two limiting cases are 
the "globa'" buckling, characterized by buckling of the com­
posite beam-plate as a whole. and "local" buckling, 
characterized by deflections of only the delaminated layer. the 
reSI of the plate remaining flat (typical of long and thin 
delaminations). Figure 2 shows the variation of the critical 
load with delamination length for a set of values for 13. As 13 
increases, the curves are shifted to the left, indicating the at­
tainment of loads similar in magnitude to the local buckling 
ones for smaller delamination lengths. 

The variation during the initial postbuclding stage of the 
normalized strain energy release rate, (; = GI (£\ r /L 4), and 
applied load normalized with respect to the Euler load for the 
entire beam with no elastic foundation, P=PL 2 /(4-rr 2 Db ), is 

Transactions of the ASME 

0.00 

0.688 0.691 0.6904 0.697 0.700 0.703 0.706 0.709 
0Jl45-t-~....L...~-'-,........-'r-~-"-~...J.........,.----'~---.J 



BRIEF NOTES 

p101t,'d in Fig . .1 for fhe case of delaminati0n length f/H=40 
anJ fOI it SCI of valul's of Ihe foundation Inl)dulus. Since [he 
critical load changes with 6, diffcrcnt scales (of the same 
Ient'-th) arc used on (he load axis. Thc imronant thing 10 
obscnc i, lhal the curve~ arc Sleeper for a larger (j. This in­
erl'aseJ slope means lhal delamination growth will occur 
sooner and that (here will be potentially morc energy absorbed 
since the energy released per unil applied load is larger. 
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An Approximate Solution of the Axisym­
metric Yon Karman Equations for a Point­
Loaded Circular Plate 

A. T. Dolovich,l G. W. Brodland,' and A. B. Thornton­
Trumpl 

Introduction 

A closed-form solution of the axis:,mmetri..: von Karman 
equations or their equivalent for a point-loaded circular plate 
continues 10 evade researchers. Various kinds of approximate 
solutions now exist. See Chia (1980). The most porular of 
these (Vol'mir, 1956 or Timoshenko and Woino\Vsky-Krieger, 
1959) assumes that the shape of the plate does nOI change 
from that predicted by linear theory even when deflections are 
large. The load required to produce a given deflection, 
however, becomes higher as membrane effects become impor­
tanI_ Various series· form solulions hal'e also been emrloyed, 
including perturbation solutions in terms of load (Stippes and 
Hausrath, 1952; Cherepy, 1960) or central, delleclion (Chien 
and Yeh, 1954; Schmidt. 1968). Frakes and Simmonds (I985) 
used the symbol manipulating program MACSYMA 10 

generate asymplOlic so'lutions, the convergence of which was 
then improved using Aitken-Shanks transformations. Berger 
(1955) proposed a modification to the von Karman equations 
which led 10 numerous nell' plate solutions. The axisymmetric 
point-loaded plale rroblem was solved by Basuli (1961) using 
Berger's approach. A numerical technique developed by 
Brodland (1987) does not rely on the simplifications inherent 
in the von Karman equations, is valid for arbitrarily large 
strains and rOlations, and (hus allows a highl'y accurate 
reference solution to be calculated. Unfortunately, those of 
the above solutions which are for clamped plates have 
drawbacks which limit their usefulness_ Many involve long 
and complicated mathematical expressions, some produce 
spurious results when loads are high, and others require con­
siderable computation_ 
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The approximate solution presented here consists of general 
equal ions wilich arc easy 10 usc and which compare well with 
olher solulions including the 'Previou~ly unpublished 
numerical results of I3rodland. The transverse deflection is 
given by an assumed expression which contains a singl1e 
rarametcr associated wit h rlatc share. This parameter, 13. is 
dClermined by minimizing a shear-related residual. Thus, the 
presenI analysis takes advantage of the ease with which 
assumed-form solutions can be used, while ensuring that the 
shape change which occurs with increasing load can be 
accommodated. 

Analysis 

Consider a thin, clamped plate of radius a and thickness h 
made from an isotropic, linearly elastic material (Young's 
modulus E, Poisson's ratio 1') and subjected to a central point 
load p. When transverse deflections ware of the order of the 
plate thickness, deformation is governed by the Kirchhoff 
nonlinear plate theory as embodied in the two, fourth-order 
von Karman equations. When deformations are axisymmetric, 
it is sometimes convenient to use the mathematically 
equivalent set of three equations given by Way (1934). These 
equations of axial equilibrium, radial equi'librium and com­
patibilty can be wrillen, respectively, in dimensionless form as 

d d ( dW)] P dW[I
dR If dR R ---;;R = 27rR + S':' ---;;R 

d
-(R sm) -sm =0 (I)
dR ' { 

d (dW " R - (S'" + S'" ) + 6( I - ,.") --) = 0 
dR " dR 

where dimensionless radial position, transverse deflection and 
centric load are given by 

r w po" 
(2)R =--;;' W=h' P=----m;-' 

dimensionless radial and circumferenlial (hoop) slresses are 

(3) 

Eh' 
and D=---.,­ (ol)

12( I - ,,") . 

For a clamped plate. the associated boundary conditions 
represcnting zero dimensionless transverse deflection, slope, 
and radial deflection at the clamped edge are 

dW 
W1R=1 =0, ---;;R 11.'=1 =0 and VIR=I =0 (5) 

where 

ua 
V=--,-. (6)

h-

The expression chosen for the transverse deflection is 

W
W(R) =__o_(2RiJ -I3R" + 13- 2) (7)

13-2 
where W o is the center deflection and 13 is a parameter which 
affects the plate shape. A related form was used by Nadai 
(1925) to analyze uniformly-loaded plates. The expression 
given in equation (7) satisfies the boundary conditions (5)1 and 
(5h associated with the transverse deflection W for all values 
of Wo and 13- In addition, it is easy to show using I'Hopital's 
rule that it approaches the well known linear solution as 
13 - 2; i.e., 
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