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Effect of an Elastic Foundation on the
Buckling and Postbuckling of Delaminated
Composites Under Compressive Loads

G. A. Kardomateas'

Introduction

Consider a composite boxed beam filled with a soft elastic
medium such as foam or a sandwich beam consisting of two
fiber-reinforced sheets separated by a low stiffness core. A
bending load on these structures is equivalent to a compressive
force on one face and a tensile force on the other; further-
more, a delamination may be present on the compressively
loaded composite face. In those cases the composite tace rests
on an elastic ‘“‘foundation’’ which imposes reaction forces on
the beam that are proportional to the deflection of the
*‘foundation.”’

Studies of the delamination problem have been undertaken
for the usual case without the elastic foundation (e.g., Chai et
al., 1981; Yin et al., 1986; Bottega and Maewal, 1983). In a re-
cent study by Kardomateas and Schmueser (1987) the pertur-
bation technique was used to obtain an analytical expression
for the initial postbuckling deflections. This solution is ex-
tended here for the case of a beam/plate on an elastic founda-
tion. Analytical solutions for the critical load and the initial
postbuckling behavior will be derived.

Analysis

The configuration consists of a homogeneous, orthotropic
beam-plate of thickness 7, length L and unit width, containing
a single delamination of length ¢= 24 and at depth H from the
top surface of the plate. The plate has a permanently attached
Winkler-type elastic foundauon. Over the delamination
region, the laminate consists of two parts, the part above the
delamination, of thickness H, referred to as the ‘‘upper’’ part,
and the part below the delamination, of thickness 7—H,
referred to as the *‘lower’’ part. The remaining laminate out-
side the delamination interval and of thickness 7 is referred to
as the “‘base’ laminate. Local coordinate systems with the
origin at the left end of each part are assumed. These parts
have a common section referred to as the “‘interface section.”’
The corresponding axial and shearing forces and moments at
this section for the different parts are denoted by P,, V,, M,.

Although the differential equation for the deflections of the
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upper delaminated layer have the usual form (e.g., Kar-
domatcas and Schmueser, 1987), for the lower part and the
basc plate there is an additional term due to the elastic founda-

tion. In terms of the modulus of the foundation, .3:
d'y day
D, —L + P — = -8y, 1
"dy? Cody? Ar, th

where D, = E,¢}/[12(1 — v(yry,)] are the bending stiffnesses (£,
is the modulus of elasticity in the axial =1 direction; »;, »y,
are Poisson’s ratio’s where 3 is the in-plane transverse direc-
tion and ¢, is the thickness of the corresponding part). A con-
dition of common deflection ¢ at the interface section should
be satisfied:

Yu |‘=o_1=)’/l;=o‘r=)'o‘x=rozf- ()
Force and moment equilibrium at this section give:

T-H
PoAP=Py=P; V4 Vi=Vyi M, +M,+ P, ()

H
-P, (—) =M,. 3)
2
Furthermore, the shortening due to the deflections of the up-

per and lower parts should be geometrically compatible, which
is expressed as:

“_V””}')—Put’ "(1"”53”31)*—“{
AuEl AIEI
1 f ’2 I ! ) ,
+ —z—goyu dx— ——Z—SOy, dx=Ty. . o, (4)

where A, A, are the cross-sectional areas of the upper and
lower part.

Buckling. The deflection and load quantities at each part
are developed into ascending perturbation series with respect
to the angle at the interface section, ¢.
=¢y; (x) +¢2)’.,2(X) +...; P=P,

+¢P,  + PP+ L ®)

»i(x)

M =¢M, | +&'M, ;+. .. ; V=6V, +¢°V, , +
By this definition, at the interface section:
Yig=hoyig=y,=... =0 (6)

Subsututing equations (5) into the differential equation and
equating like powers of ¢ leads to a set of lincar differenual
equations and boundary conditions for each part. In the first
approximation the terms in the first power of o are equated.
For the resulting equation, assuming a solution of the form
y=e" gives for v either a purely imaginary number or a com-
plex onc with a real and an imaginary part, rendering the solu-
tion in terms of trigonometric only or a combination of
trigonometric and hyperbolic functions depending on the
magnitude of the modulus of the foundation.
Define

klo=P, /D; \;=B/D,. o)

The solution for the lower part for &} >4\, is given as:

Yia= 2 €;c08(y;a —v,x);
1=1,2

ylvzz\/f(—kfloim‘—,_;z}:)/?_l. ®)

For k} 4 <4X\,, the solution to the first order equation is
Y11 =€ cosh(y,a—v,x)cos(y,a — vy, X)
+¢)ysinh(y,a — v, x)sin(y,a—v,x), V)
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where v, and v, are defined as follows
ki o/@2n); vy, =Vreos(0/2);
vs = Vrsin(6/2). (10)

The constants ¢;, are found from equations (6) in terms of the
common deflection {, (rom equation (2). Thc first order end
shear can be expressed in the form

= )x 0 =arccos| -

Vm:"Dz()’l,1+l"l,oyl.a)|x=o=Vl(.|+(|V{| (1)
and the [irst order end moment is
M/,1=‘Dl)’/’,'llx:o:Mf.x+§|M{,n (12)

where the quantities V§ |, V] |, M; |, M}, are given in terms
of v;. Analogous quantities are found for the base plate
(subscript b).

The condition of shear equilibrium (3), written for the first
order terms, produces an expression for {, (note that
Vu, 1 =O),

§'|=(V7_|“V1r>.|)/(vj|“‘y'/{,|)- (13)
Writing the associated moment equilibrium and compatibility
equations (3), (4), for the terms in ¢!, substituting the end
moments from equation (12) and the quantity ¢{, from
equation (13), and eliminating the quantity
P, \H/2-P, (T—H)/2, gives an equation for the critical
load, P, (characteristic equation), as follows

Dk, ocotk, oa+M;  —M;
(VS -V XML —M, )/ (V] =V )=

= —TE,H(T—H)/[4a(1 — v,3v3,)]. (14)

Postbuckling. When the terms in ¢? are equated, the
following differential equation for the lower part and the base
plate is obtained from equation (1):

Dy + P,y 4By, = =P,y (15)

For &} >4\, with the definition (8) for v;, the solution for
the lower part is:

1

E Cy cos(yja Y, X) + by ——
J=12 !

(x

(— 1Yy
2033i-71)
For Ak} ,<4\,, the solution to equation (15), and with the

definition (10) for ,. is found to be:

—a)sin(y,a—vy,x); by = (16)

P
¥iao= 0y — ! cosh(y;a—vy,x)cos(y,u—y,x)

+ Cp sinh(y,a — v, x)sin(y,a —y,x) +
A
+ by 51 (x—a)cosh(y,a—v,X)sin(y,a—y-x)
A
P ] )
+ by D (x—a)sinh(y,a —y,x)cos(y.a —v.\),
¢
by, =
("15‘7%)[5'1271-/+(—l)JCn‘Y,]+27172[Cu’n-/+(—1)':_’0»:7,]
8y, 72y +73) -
(17)

The constants ¢,, can be found from equation (6) in terms of
{». Furthermore, the second order end shear can be expressed
as:

=D,y + Koy )], 0o=P Vi + 0V (18)

and the second order moment is written in the form

I2_
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Fig. 1 Crtical (buckling) force versus foundation modulus for a set of
delamination lengths

M, ,=-Dyy ) 0=P, 1Mfz+fz 1.2 (19)

where the quantities V§ ,, V] ,, M§ ,, M, are given in terms
of v;. Analogous quantities are found for the base plate
(subscript b). An additional quantity needed to solve the
problem is the shortening due to the first order deflections,
which apears when equation (4) is written for the terms in ¢,
S,=172 1§ y,3dx, and which is already known since the first
order solution has been obtained.

Now the shear condition (3) allows determining ¢, in terms
of the first order (yet unknown) forces (note that V, , =P, )
as follows:

Mozl p o, Aa W
N ik A~ P

Writing the moment equilibrium equation (3) and the
geometric compatibility equation (4) for the terms in ¢?, ex-
pressing the second order moments at the interface from equa-
tion (19), in terms of the (yet undetermined) first order end
forces, taking into account equation (20), and eliminating the
quantity P, ,H/2—P, ,(T—H)/2 gives the following equa-
tion for the first order forces P, | and P, ,:

Vg',—l
Vi, -V

(20)

H= P .

[j-’”ﬁ.:““fv.: Gl (M/.’_M{zz)]P

VE - Vi
+ | ME L~ M} +-—‘———;(Mf3—Mfz)]P =
[ g e Via— Vi - > A
2k —sin 2k EH(T-H
:( uw 0@ _sx:l u, 09 —S/) 1H( ) Q1
4k, osin“k, qa 4a(l = v yvy)

The second equation needed for finding P, , P, , is the first
order moment equilibrium equation at the interface, namely,

P \H2-P, ((T—-H)/2=F4(P, o, Pi o) (22)

where Fj is the left-hand side of equation (14) which depends
only on the zero order quantities. The above system of linear
equations allows finding P, , and P, , and hence the first
order applied end force P,=P, ,+P,,. The solution to
higher order terms can be obtained in a similar fashion.

The postcritical characteristics are studied next. For this
purpose we use the expression derived by Yin and Wang (1984)
for the energy release rate of a one-dimensional delamination
in terms of the axial forces and bending moments acting across
the various cross sections adjacent to the tip of the delamina-
tion (these quantities are directly determined from the above
postbuckling solution).
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Fig. 2 Critical load versus delamination length for a set of foundation
moduli
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Fig.3 Strain energy release rate versus applied compressive force dur-
ing the initial postbuckling stage for a delamination length ¥H = 40 and
a set of foundation moduli. The different load scales are of the same
length and correspond to the different initial buckling loads.

Discussion of Results

Numerical examples are presented for the case of a
clamped-clamped plate with H/T=1/6, L/H=200. Figure |
shows the variation of the critical load, normalized with
respect to the Euler load for the delaminated layer,
Py =Py /(47*D,), with the foundation modulus which is nor-
malized as 8=233¢/(167*D,) (on a logarithmic scale). As
increases, the critical load increases, the effect being bigger on
the smaller delaminations. Notice that there is a small range of
values for the foundation modulus, for which the critical load
undergoes a rather significant increase. Two limiting cases are
the ‘‘global’’ buckling, characterized by buckling of the com-
posite beam-plate as a whole, and “‘local’’ buckling,
characterized by deflections of only the delaminated layer, the
rest of the plate remaining flat (typical of long and thin
delaminations). Figure 2 shows the variation of the critical
load with delamination length for a set of values for 3. As 3
increases, the curves are shifted to the left, indicating the at-
tainment of loads similar in magnitude to the local buckling
ones for smaller delamination lengths.

The variation during the initial postbuckling stage of the
normalized strain energy release rate, C=G/(E, 73/L%), and
applied load normalized with respect to the Euler load for the
entire beam with no elastic foundation, P=PL2/(472D,), is
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plotted in Fig. 3 for the case of delaniination length (/H =40
and for a set of values of the foundation modulus. Since the
critical load changes with 3, different scales (of the same
length) are used on the load axis. The important thing to
observe is that the curves are steeper for a larger 8. This in-
creased slope means that delamination growth will occur
sooner and that there will be potentially more energy absorbed
since the energy released per unit applied load is larger.
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An Approximate Solution of the Axisym-
metric von Karman Equations for a Point-
Loaded Circular Plate

A. T. Dolovich,'! G. W. Brodland,' and A. B. Thornton-
Trump?

Introduction

A closed-form solution of the axisymmetric von Karman
equations or their equivalent for a point-loaded circular plate
continues to evade researchers. Various kinds of approximate
solutions now exist. See Chia (1980). The most popular of
these (Vol'mir, 1956 or Timoshenko and Woinowsky-Krieger,
1959) assumes that the shape of the plate does not change
from that predicted by linear theory even when deflections are
large. The load required to produce a given deflection,
however, becomes higher as membrane effects become impor-
tant. Various series-form solutions have also been employed,
including perturbation solutions in terms of load (Stippes and
Hausrath, 1952; Cherepy, 1960) or central deflection (Chien
and Yeh, 1954; Schmidt, 1968). Frakes and Simmonds (1985)
used the symbol manipulating program MACSYMA (o
generate asymptotic solutions, the convergence of which was
then improved using Aitken-Shanks transformations. Berger
(1955) proposed a modification to the von Karman equations
which led to numerous new plate solutions. The axisymmetric
point-loaded plate problem was solved by Basuli (1961) using
Berger's approach. A numerical technique developed by
Brodland (1987) does not rely on the simplifications inherent
in the von Karman equations, is valid for arbitrarily large
strains and rotations, and thus allows a highly accurate
reference solution to be calculated. Unfortunately, those of
the above solutions which are for clamped plates have
drawbacks which limit their usefulness. Many involve long
and complicated mathematical expressions, some produce
spurious results when loads are high, and others require con-
siderable computation.
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The approximate solution presented here consists of general
equations which are casy to use and which compare well with
other solutions including the previously unpublished
numerical results of Brodland. The transverse deflection is
given by an assumed expression which contains a single
parameter associated with plate shape. This parameter, 8, is
determined by minimizing a shear-related residual. Thus, the
present analysis takes advantage of the ease with which
assumed-form solutions can pe used, while ensuring that the
shape change which occurs with increasing load can be
accommodated.

Analysis

Consider a thin, clamped plate of radius a and thickness A
made from an isotropic, linearly elastic material (Young’s
modulus E, Poisson’s ratio ») and subjected to a central point
load p. When transverse deflections w are of the order of the
plate thickness, deformation is governed by the Kirchhoff
nonlinear plate theory as embodied in the two, fourth-order
von Karman equations. When deformations are axisymmetric,
it is sometimes convenient to use the mathematically
equivalent set of three equations given by Way (1934). These
equations of axial equilibrium, radial equilibrium and com-
patibilty can be written, respectively, in dimensionless form as

d[l d( dW)]_P+Sm aw
dRLUR dR\" d4rR /) 2xR """ dR
d
(R S")y—S8S™"= 1
g (RSI=Sr=0 (1)
R4 (snrsmy 460 2)( dw)2 -0
dr "> T NPT I

where dimensionless radial position, transverse deflection and
centric load are given by

R, Wi PP @)

“a' k"7 Dh’
dimensionless radial and circumferential (hoop) stresses are

07'0:’{ ma:h
S sl (3)
D D
ER?
and D=——r. 4)
12(1 —v7)

For a clamped plate, the associated boundary conditions
representing zero dimensionless transverse deflection, slope,
and radial deflection at the clamped edge are

W,Rﬂ:O,ﬂm:I:Oand Ui, =0 (5)
dR _
where
ua
Usem ©6)

The expression chosen for the transverse deflection is
W, ,
W(R)=ﬁ_(2R”—BR-+B—2) (7)

where W, is the center deflection and f§ is a parameter which
affects the plate shape. A related form was used by Nadai
(1925) to analyze uniformly-loaded plates. The expression
given in equation (7) satisfies the boundary conditions (5), and
(5), associated with the transverse deflection W for all values
of W, and B. In addition, it is easy to show using I'Hopital’s
rule that it approaches the well known linear solution as
B8 — 2;1.e.,
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