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Large Deformation Effects in the Postbuckling Behavior
of Composites with Thin Delaminations

G. A. Kardomateas*
General Motors Research Laboratories, Warren, Michigan

The postbuckling deformation of compeosites with thin delaminations is modeled through a procedure that is
based on large deflections of the delaminated layer. The results on the stiffness and strain energy are compared
with an approximate model that does not include those effects (thin film model). The influence of large
deflections on the energy release rate that characterizes delamination growth is also studied. These effects are
found to be significant, leading to a less stiff and more growth-resistant system than the thin film approxima-
tion. Furthermore, the end fixity conditions are found to play an important role in the postbuckling behavior.
Finally, results of experiments that were performed on the postbuckling characteristics of kevlar/epoxy speci-

mens with thin delaminations are discussed.

Nomenclature

= bending stiffnesses
= Young’s modulus in the axial direction, Eq. (1)
= second elliptic integral, end value
= first elliptic integral, end value
= energy release rate
thickness of the delamination
sin(a/2)

P;o/D;
length of the beam/plate
= delamination length
= bending moments
= axial forces
thickness of the beam/plate
strain energy
= distortion parameter
= total shortening (axial displacement)
= angle at the section where delamination starts
vi3,v3; = Poisson’s ratios
L = amplitude
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Subscripts

= upper part

= lower part

= base plate

= in-plane longitudinal direction
= normal (out-of-plane) direction
= in-plane transverse direction
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Introduction

ELAMINATIONS occurring due to initial manufactur-
ing imperfections or in-service loads can significantly
affect the strength and stiffness of laminated composite com-
ponents. These in turn can influence the performance charac-
teristics, such as the energy absorption capacity of a composite
beam system.!
Much work has been done on the subject recently (e.g., see
Refs. 1-3). However, although the buckling point can be fairly
well determined, the postbuckling behavior that ultimately
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governs the performance characteristics of the composite
structure is not well understood yet.

Depending on the relative thickness and length of the de-
laminated layer, the stability problem has been shown (e.g.,
see Ref. 1) to involve ‘‘local’’ buckling of the delaminated
layer or combined local and global (also called ‘“‘mixed’’)
buckling, i.e., transverse deflections for both the delaminated
layer and the base plate. The local mode has also been referred
to as ‘““thin film"’ delamination.’ For the mixed mode, an
analytical solution for the initial postbuckling deflections was
presented by Kardomateas and Schmueser.! The solution was
based on a perturbation expansion as a power series of the
slope at the section where the delamination starts. For the thin
film (local) mode, a postbuckling solution was presented by
Chai, Babcock, and Knauss.? This solution was based on the
underlying assumption that no other part except the delami-
nated layer undergoes out-of-plane deflections.

In the following, the thin film model (typical of long and
thin delaminations) will be considered. Large deformation
effects will be studied by using the large deflection (elastica)
equations for the buckled layer. A correlation will also be
made with test results on kevlar/epoxy unidirectional speci-
mens.

Analysis

Thin film (or local) delamination buckling occurs when the
instability is initiated by the buckling of the delaminated layer.
The delaminated through-the-width film of thickness A and
length ¢ is symmetrically located in a beam-plate of thickness
T and length L. A unit width is assumed. For simplicity
reasons, the properties of the beam-plate are assumed homo-
geneous, linearly elastic, and, at most, orthotropic. Over the
region of the delamination, the beam consists of two parts: the
delaminated layer (upper part) and the part below the delami-
nation (lower part, of thickness 7' — H). Outside the delamina-
tion interval we have the base laminate (or thickness 7).
Denote by D; the bending stiffness of each part, D; = Et}/
[12(1 — »yaw3;)], where £, is the thickness of the corresponding
part and £ the modulus of elasticity along the x = 1 axis.

If instability is initiated by the buckling of the upper delam-
inated layer (at which case the end load on the upper part is the
Euler buckling load), the critical compressive force is!
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Thin Film Model

The theory was developed in Ref. 3, and its essential fea-
tures are recapitulated here for the sake of completeness, It
was based on the assumption that in the postbuckling stages
only the delaminated layer undergoes flexural deflections and
that both the lower part and base plate are in a state of pure
compression (Fig. 1). Assume the postbuckled shape of the
film to be

Yu=A(l + cos2wx/t)/2 (2)

In terms of the strain necessary to cause buckling of the film

w2 H\?
= 3(1 — vizvay) <—f> @

the strain in the base plate ¢, was found from the condition of
compatible shortening of the upper and lower parts (the un-
derlying assumption was that, except for the delaminated
layer, the rest of the plate is uniformly compressed with strain
equal to e):

A
e N 4
O T =) T )
Therefore, the load per unit width was given by
D, 7T | 342
P.=E£0T=—;2H—[?+4J (5)

The associated total axial displacement is that due to the
flexural shortening of the film plus that due to the compres-
sion of the film and the base plate:

. "t/2 1/dy\? ~A21rz o
6_j_:/z§<d-x> dx+e¢,1+e0&,——“ + el + eo(L —£) (6)

The total strain energy of the system consists of the membrane
and bending energy of the film plus the energy of the compres-
sion of the lower part and the base plate:
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and the strain energy release rate G is’
G=2 PO et ®

This model, however, does not satisfy the condition of
equilibrium of forces and moments at the delamination inter-
face. Indeed, the end moment (at x = +¢/2) that arises from
the postbuckled shape Eq. (2) for the delaminated film cannot
be balanced, since the rest of the plate was assumed to un-
dergo only pure compression. Furthermore, since it is known
that the load in the postbuckling stage does not remain con-
stant, the assumption that the membrane stress in the buckled
laminate is the same as the buckling stress is only a first
approximation.

From this discussion, the immediate conclusion is that in
any event, flexural deflections are bound to occur in both the

lower part and the base plate. Therefore, although instability
can be initiated by the local buckling of the delaminated film,
transverse deflections cannot be limited to the postbuckled
shape of the film, and bending deformation necessarily will be
induced to the rest of the plate.

Large Deflection Model

To represent the postbuckling behavior of the delaminated
film, we use the exact theory of plane deformation of a
prismatic bar that is restrained elastically at the ends by means
of concentrated forces and moments. For the rest of the plate,
since the flexural deflections are small, we use the technical
beam theory of cylindrical bending. The conditions of geomet-
rical continuity that will be enforced play an important role in
the realization of the equilibrium states.

Let us first focus on the delaminated layer. In the buckled
form, which is assumed to be symmetrical, denote by P, and
M, the end forces and moments. In the following equations,
the quantities at the right end are used (see Fig. 2). The
moments and angles are assumed to be positive clockwise.
Two variables play an important role: the end-amplitude for
the compressed film @, and the distortion parameter, «,
which is the angle of tangent rotation at the inflection point
from the straight position. These are the generalized coordi-
nates of deformation. In terms of those two quantities, rela-
tions between the end stress resultants P,, M,, as well as other
coordinates of deformation such as end-slope § and total
flexural contraction e,, can be found. The relations require
the use of elliptic integrals. Denote

k = sin(a/2) (9
The first elliptic F(®,k) is defined by

v o
F(®,k) =
(@5 3 g e
and the second elliptic integral by
¢
E(®,k)= SO V1 —k? sin’¢ d¢ (10b)

The values of those integrals at the end F(®,,k), E(®,.k) are
denoted by F,, E,. The following five relations define the
characteristics of the postbuckled delaminated layer®:

Axial force;

P, =4D,F;/¢? (112)
End moments:
M, = 4(D,/0)kF, cosd, (11b)
End rotations:
6 = 2 arcsin(k sin®,) (l1c)
by

4&1 r

Fig. 1 Thin film model,
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Fig. 2 Large displacement model illustrating the details for the geometry of the upper delaminated part at the postbuckling stages.
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Fig. 3 Definition of the geometry for the lower part and the base
plate.

Flexural contraction:
ANo=e,/0=2[1 —(E,/F,)] (11d)
Flexural elastic energy:
U, = 8(D,/0)F,[E, — F, cos¥(a/2)] (1le)

Furthermore, the deflection at the middle, normal to the
central line of thrust (direction of axial forces P,), Y, is
found from

Yum = 2kND,/P,(1 — cosd,) (12a)

It should be noted that each point x there corresponds a value
of the variable & (amplitude for compressive members); the
value at x = /2 is ®,. Furthermore, at the inflection point,
where the slope 6 = «, the value is ® = «/2 and at the middle
x =0, where 6 =0, ® = 0. With these remarks in mind, the
deflections at all other points now are given from

Yu(x) =2k~ D, /P, [cos®(x) — cosP,] (12b)

where ®(x) is found from the implicit relation
F[®(x),k] =2F x/t (12¢)

For the lower part and the base plate, since the induced
bending is moderate, we use the technical theory of cylindrical
bending under applied end moments and axial forces. We
refer to the coordinate systems defined in Fig. 3. The differen-
tial equation to be satisfied for a beam under combined ap-
plied moments and compressive forces can be found in Ref. 6.
For the lower part, the deflections satisfying the condition of
end slope @ are given by

[/ kit k¢
Y= [m] {COS[(—:{) = k,X:I = C05|t<7>:|} (133)

where

k? = P,/D; (13b)

The end moment is expressed by

M/ = —D,y7|x=o=D,k/0 co[(k,f/2) (13C)

The flexural shortening is

e 62(tk; — sink, £)
1 1 i et — SRR R) 13d
“4=3 .\,oy = Sk, v2) (13d)
and the flexural energy is
D, [ D,6% (%, + sink,)
U, =— ”2 T e Tl
1= Ly’ I === ok D) (13¢)

For the base plate (Fig. 3), the deflections satisfying the
condition of end slope 6 are given by

_ o (I = coskpx)
Yo =, sinkyb (143)
where
k} = P/D, (14b)

The end moment is given by

My = —Dpy |-t = —Dpkyb cothyly (14c)
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The flexural shortening for both parts of the base plate is

"o, 22 2, :
o Yo - 0 (2&)’([, - SIHZIQ,&))
™ zjo 2 U= 4k, siwtkoly L
and the flexural energy is
b Dy 32 D, 6% i
W b 07k (2ok s + sin2k, )
= " 14
Vp=2 L g 4 sin’kolo We)

For the case of simply-supported ends, the deflections of the
base plate are

sinkzx

g ky, cosk, by Lo

where k; is given by Eq. (14b). In this case the end moment is
expressed by

My = —Dpy§ |-, = Dpky0 tank,ty (15b)

and the flexural shortening for both parts of the base plate is

('t 52 2 &
B Y _ 024k, + sin2k,b)
L 2]0 2 ¥4k, cos?k by W
The flexural energy is, in turn,
b , w2 1
Dy § Dy, 0%k, (26K, — sin2k, &)
“ 250 2 4 cosk,ly (3

The following conditions of force and moment equilibrium
at the interface section should be fulfilled:

P=P,+ P (16a)
M, + M, —M, =P(T —H)2-PH/2 (16b)

Moreover, a condition of compatible shortening for the upper
and lower parts reads

Py
e, + (1 —wipap) E‘uﬁ -]

Py

ET—H) T|8] (17)

= (1 —wav3)

The total shortening of the beam is

_ (I = mars)Pg
b= ey + 2 ————ET + &
(l K ”13"!1)1):1! - =
+ EH |8|(T — H) (18)

where e,, e, are given by Eqs. (11d), (14d), or (15c).
The total strain energy of the system is that due to both
bending and compression of the different parts

.

2z
U = Uy + % + Uy
P}t P,
. S L 19
YuET-m T Yt Er (19

where U, U, U, are given by Egs. (11e), (13e), (14e), or (15d).
Let us now consider delamination growth. It is assumed that
whether further delamination occurs depends on the magni-
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tude of the fracture energy, defined as the energy required to
produce a unit of new delamination. To this extend, a
Griffith-type fracture criterion is employed, and the postbuck-
ling solution that has been obtained above can be used to
calculate the energy-release rate as a function of applied axial
displacement. This quantity is the differential of the total
potential energy with respect to the delamination length. This
method was used to calculate G in the thin film approxima-
tion. Alternatively, the path-independent J-integral concept
(e.g., see Ref. 7) may be used to derive the energy release rate
from the current stress and displacement distribution, This
method was applied for a one-dimensional delamination® and
resulted in an algebraic expression for the energy release rate
in terms of the axial forces and bending moments acting across
the various cross sections adjacent to the tip of the delamina-
tion. Since the end moments and forces are a direct output of
the solution, the formula in Ref. 8 can be conveniently used in
our formulation. The fact that large displacements are consid-
ered for the upper part does not affect the formula as long as
the underlying assumptions are still valid, i.e., as long as we
assume linearly elastic material, the bending stress to be lin-
early distributed through the thickness and the out-of-plane
strain to be zero. In terms of the quantities

P* = (D,/TYkPH — 4D,/ TYF2/¢3(T — H) (20a)
M* = 4D, /OkF, cosd, (20b)
M** =P*T/2—M* (20¢)

the energy release rate per unit width is expressed as

G = 84 —rry) P*2 4+ \2(M*/H)
B E H
P*2 4 12[M** /(T — H)?
+ oy @n

Solution Procedure

For a given end rotation angle @, we obtain the following
system of equations in « (the tangent rotation at the inflection
peint on the delaminated film) and k; (end load variable for
the lower part), by substituting Egs. (11), (13), and (14) or
Egs. (15) into (16) and (17):

4(D,/0)F, cosd, sin(a/2) + D0k, cot(k,&/2)

+ Dy, 0k, cotk, by — 2(D, /¢2) (T — H)F?

+(Dy/2HK} =0 (22)
A 0*(tk) — sink;€)

”(l F,,) ak, sy trz) T A0 )

DFE Dikit i
XE?H “—"'3"3')5—(7*TF)"T|0| =0 (23)

where
&, = arcsin[sin(#/2)/sin(c«/2)] (24a)
8, s
“ 7 Jo VT =sin¥a/2) sin’e (24b)
.Qll

E, = L V1 —sin*(a/2) sin’¢ d¢ (240)
ky =~NAD,/Dy)(F,/0)* + (D,/Dy)ki’ (24d)

Thus, for a given end rotation angle # the equilibrium state is
found by numerically solving Egs. (22) and (23). Notice that
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the angle #<0 in Fig. 2. Moreover, in solving the system, the
angle « is varying between 6 and =/2, and the load P, between
zero and the buckling load for the lower part. (In fact it is
found to be a small fraction of that buckling level.) Notice
that the end amplitude ®, is * = ®, < 37/2, Thus, the equi-
librium states are found by determining the values of « and 4,
(or, equivalently, P;) that satisfy the compatibility condition
[Eq. (17)] and the equilibrium condition [Eq. (16)] at the
delamination interface.

Results and Discussion

The postbuckling behavior predicted by the above analysis,
which includes the effects of large deflections, is illustrated in
the following. Consider a delaminated beam/plate with L/
T = 16, delaminated layer thickness A /T = 1/15, and delam-
ination length &/L = 1/2. For this case, the characteristic
equation for the critical load (e.g., see Ref. 1) has no solution
less than the local buckling load, i.e., buckling is initiated by
the local buckling of the delaminated layer at a load Py, given
by Egq. (1). Figure 4a shows the load vs axial displacement
curves, The Euler buckling load for the undelaminated com-
posite with clamped-clamped ends is Py,:

4n2ET?

12(1 — py3v3))L2 @)

Pglo=

The load values are normalized with respect to the Euler
buckling load of the thin delaminated layer; C-C represents
the case of clamped-clamped and S-S the case of simply sup-
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Fig. 42 Load vs displacement curves for a delaminated beam/plate
with L/T =16, H/T = 1/15, I/L = 1/2; Py, is the Euler buckling
load for the undelaminated composite and Py is the local buckling
load. The load is normalized with respect to the Euler buckling load
of the thin delaminated layer. C-C represents the case of clamped-
clamped and S-S the case of simply supported ends. The dashed curve
represents the thin film approximation.
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Fig. 4b Load carried by the upper delaminated layer vs displace-

ment, corresponding to the curves of Fig. 4a. The load is normalized
with respect to the Euler buckling load of the thin delaminated layer.
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ported ends. The thin film approximation is represented by the
dashed curve. Notice that this approximation does not take
into account the end fixity and thus cannot, distinguish be-
tween the clamped-clamped and simply-supported cases. An
immediate observation is that the thin film approximation
would predict a stiffer postbuckled configuration. More im-
portant, however, is the leveling out of the P — § curve, which
represents a significant loss of stiffness for the system. The
load level at which this leveling out occurs is largely affected
by the end fixity.

At the point of local buckling Py, there is not any signifi-
cant loss of the load carrying capacity of the whole system;
however, this is not the case for the delaminated layer that
essentially suffers a substantial loss of load carrying capacity.
Figure 4b shows the corresponding to Fig. 4a curves for the
load carried by the upper delaminated layer P,. It is obvious
that the applied load beyond the local buckling point is carried
by the rest of the system.

Figure 5 shows the variation of the strain energy of the
system with the axial displacement. Both the cases of clamped-
clamped (C-C) and of simply-supported (S-S) ends are shown.
Again, the end fixity plays a significant role in the stored
energy. The thin film approximation predicts a larger amount
of energy. It also gives a continuously much steeper curve. On
the contrary, the large displacement analysis gives curves that
eventually have an almost constant slope. Notice that the
energy per unit applied displacement is larger for the clamped-
clamped case.

Growth of the delamination can be studied by calculating
the strain energy release rate. Figure 6 illustrates the variation
of the energy release rate with applied axial displacement.
Again, the end fixity influences the magnitude of G, the
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Fig. 5 Energy vs axial displacement curves for a delaminated beam/

plate with H/T = 1/15, I/L =1/2, Both the cases of clamped-

clamped (C-C) and of simply supported (S-S) ends are shown. The
dashed curve represents the thin film approximation.
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Fig. 6 Strain energy release rate vs axial displacement curves for a
delaminated begm/plate with H/T = 1/15, I/L = 1/2. The cases of
both clamped-clamped (C-C) and simply supported (5-8) ends are
shown. The dashed curve represents the thin film approximation.
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simply-supported case giving much smaller values. The signif-
icant observation is, however, that the G — é curves eventually
level out. This means that growth, if it should occur, would
take place in the initial postbuckling phase. The thin film
approximation predicts a higher value of the energy release
rate and, most important, gives a curve of continuously in-
creasing slope. This would predict that growth would almost
certainly occur if the applied displacement is increased suffi-
ciently. Test results that will be described later do not support
this notion.

To study the effect of the location of the delamination
through the thickness, load vs axial displacement curves for a
delaminated beam/plate with clamped-clamped ends are
shown in Fig. 7 for the cases of H/T = 1/15 and 1/30. The
load is normalized with respect to the buckling load for the
undelaminated beam/plate P,,. A constant delamination
length ¢/L = 1/2 is assumed. The load for the case of the
delamination closer to the surface (H /T = 1/30) is somewhat
higher. Notice that the thin film model (dashed curve) gives
almost identical P — § curves for the two cases. In a similar
fashion, the strain energy for the case of the delamination
closer to the surface (H/T = 1/30) is somewhat higher (Fig.
8). On the contrary, the energy release rate for the case of
H/T = 1/30 is substantially lower (Fig. 9). Thus, growth is
less likely to occur in delaminations closer to the surface. This
same effect is also predicted by the thin film approximation.

As was said previously, the thin filin approximation neglects
any bending deformation in the base plate and assumes the
slope at the interface section equal to # = 0. An indication of
the amount of the induced bending is obtained by plotting the
angle 6 with the applied axial displacement (Fig. 10). The
effects of the location of the delamination through the thick-
ness and the end fixity conditions are also illustrated. A con-
stant delamination length ¢/ L = 1/2 is assumed. The angle ¢ is
increasing at a much faster rate after the point at which the
load is leveling out. Somewhat lower values of 8 occur for a
delamination closer to the outer surface.

As was mentioned in the beginning, this paper is concerned
with the case of local buckling only, i.e., when buckling is
initiated by the local buckling of the upper delaminated layer.
Therefore, it was natural to compare with the predictions of
the thin film model, which is also focusing on the characteris-
tics of this mode of instability. Other investigators'?* have
considered more refined approaches, focusing on other impor-
tant issues. (For example, Ref. 4 focuses on the bending-
stretching effects.)

Specifically, Refs. 2 and 4 do consider the effect of includ-
ing the induced bending in the base and lower parts, but they
are based on representing the deflections of the upper part
from the solution of the corresponding differential equation
of the linearized theory of elasticity. To show the effect of the
nonlinearities, a comparison was made with the predictions of
Ref. 2. Figure 11a shows the load carried by the upper delam-
inated layer P, vs applied displacement for the case H/T =2/
15, and it is seen that a higher value of the load is predicted if
the nonlinearities are included. The relevant calculations also
showed that neglecting the nonlinearities would give much
lower values of the strain for the delaminated layer at large
applied displacements.

Fig. 11b shows the energy release rate vs applied displace-
ment, and it is seen that likewise higher values for the energy
release rate are predicted due to the effect of nonlinearities.
The trends are similar with the slope of the curves diminishing
in both cases. At higher H/T ratios it also was found that
including the large deformation effects results in the slope of
the energy release rate curves decreasing at a much higher rate
with applied deformation.

Test Results

Tests were conducted on delaminated specimens. The speci-
mens were made of 15 plies of unidirectional (0 deg angle ply)
prepreg kevlar 49 of the following specifications: commercial
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Fig. 7 Load vs axial displacement curves for a delaminated beam/
plate with clamped-clamped ends illustrating the effect of the location
of the delamination through the thickness. A constant delamination
length //L = 1/2 is assumed, Notice that the thin film model (dashed
curve) gives almost identical P — 5 curves for the two cases.
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Fig. 8 Energy vs axial displacement curves for a delaminated beam/
plate with clamped-clamped ends, illustrating the effect of the loca-
tion of the delamination through the thickness. A constant delamina-

tion length //L = 1/2 is assumed. The dashed curves represent the
thin film approximation.
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Fig. 9 Energy release rate vs axial displacement curves for a delami-
nated beam/plate with clamped-clamped ends, illustrating the effect
of the location of the delamination through the thickness. A constant
delamination length //L = 1/2 is assumed. The dashed curves repre-
sent the thin film approximation.

type SP-328, nominal thickness per ply 0.20 mm (0.008 in.),
nominal stiffness £ = E; = 75.8 GN/m? (11 x 10 psi), E, =
5.5 GN/m? (0.8 x 10¢ psi), G, = 2.1 GN/m? (0.3 x 10% psi),
Poisson’s ratio »;; = 0.34. A delamination of length = 50.8
mm (2 in.) was introduced by a 0.025 mm (0.001 in.) thick
Teflon strip placed in the middle of the length between first
and second ply and through the width. The length between the
grips for the specimens was L = 101.6 mm (4 in.). A width of
12.7 mm (0.5 in.) was used to keep the load level small and
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Fig. 10 Angle ¢ at the interface section vs axial displacement curves
for a delaminated beam/plate illustrating the effect of the location of
the delamination through the thickness and the end fixity conditions
(clamped-clamped vs simply supported). A constant delamination
length {/L = 1/2 is assumed. Notice that the thin film approximation
assumes a slope of ¢ = 0 during postbuckling.

B, = P2 /(47*Dy)

R = T 1
0.00 oo 0.02 0.03 0.04 0.05
Axial Displacement, 6 = 6/L

Fig. 11a Load carried by the upper delaminated layer vs displace-
ment for a delaminated beam/plate with clamped-clamped ends and
H/T =2/15, I/L = 1/2, as predicted from the present formulation
(solid line) and from Ref, 2 (dashed line). The load is normalized with
respect to the Eunler buckling load of the thin delaminated layer.
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Fig. 11b  Energy release rate vs axial displacement curves for the case

of Fig. 11a, as predicted from the present formulation (solid line) and
from Ref. 2 (dashed line).

prevent any possible bending of the grips. Since the curing
process affects the final dimensions, the exact thickness for
each specimen was measured (with a micrometer) after curing.
The specimens were found to have a length over thickness
ratio L /T = 24. In addition, the exact modulus also was mea-
sured after curing, from a simple tension test on strain gauged
coupons, and it was found to be E = 68.2 GN/m? (9.9 x 10°
psi). The tests were conducted in a 20-kip MTS servohydraulic
machine, They were carried out on stroke control with a rate
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Fig. 12 Load vs axial displacement curve as obtained from compres-
sion tests on clamped-clamped delaminated specimens with 7 = 4.19
mm (0.165 in.), L = 101.6 mm (4 in.), H/T = 1/15, I/L = 1/2 (solid
line) and as predicted from the large deformation analysis (dashed
line). The buckling load levels for the undelaminated specimen Py, as
obtained from tests, and the analysis also are shown.

Fig. 13 The shape of the postbuckled configuration for the test
specimens at the point of applied displacement a) 6/L = 0,062 and b)
8/L = 0.125. No growth of the delamination was observed.

of about 0.8 mm per minute. The specimen was clamped at the
upper grip and a special fixture at the lower grip. The latter
one was designed so that the specimen slides into it, and
therefore no bending is introduced by tightening the end. To
be able to compare with any theoretical model, the compliance
of the testing machine also is needed. It was measured from a
simple compression test (without a specimen) and was found
to be 0.685 x 10~* mm/N (0.12 x 10~* in./Ib).

Four specimens were tested, and the response curves were
almost identical. A load vs axial displacement curve from the
tests is shown in Fig. 12, together with the curve that is
predicted from the analysis (large displacement model). The
specimen for these curves had a thickness of 7= 4.19 mm
(0.165 in.). In deriving the theoretical curve, the compliance of
the testing machine was added. Furthermore, specimens with-
out delaminations were tested in order to obtain the buckling
load for the undelaminated case (global buckling load) Py,
This load level is also shown in Fig. 12, together with the
theoretical value,

There are two things worth mentioning in the context of this
work. First, there is qualitative similarity between the theoret-
ical and experimental curves with the load peaking out at a
point below the global buckling point. Although the displace-
ment levels are basically comparable, the experimental load
level is less than the theoretical one by about a factor of two.
This is true for the undelaminated specimens as well and is not
surprising in experimenting with buckling® because of the
inherent difficulties in fulfilling accurately the theoretical as-
sumptions, Specifically, various kinds of imperfections, such
as some unavoidable initial curvature of the specimens, possi-
ble eccentricity in application of the load, or nonhomogeneity
of the material results in lower load levels. To mention an-
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other influence, lower load results due to the effect of trans-
verse shearing forces' as well. Furthermore, all the tests
showed a slowly dropping load after peak load. This load drop
could be partly due to local cracking of fibers or matrix. At
further stages of applied deformation, this was verified by the
sound of the cracking fibers.

Second and more important, no growth was ever observed
in these tests. Figure 13 shows the shape of the postbuckled
configuration for the test specimen of Fig. 12, at the point of
applied displacement 6/L = 0.062 and 0.125 (which are far
beyond the peak load). No growth.is seen. The experiment was
continued up to the displacement level of 6/L = 0.250, and
even at that point no growth was seen; instead, fiber cracking
on the lower part took place. As predicted by the present
formulation, this behavior is in agreement with the leveling
out of the energy release rate curves in Fig. 6. (which means
that growth, if it had not taken place initially, is not expected
to occur with continuing applied displacement).

Conclusions

A one-dimensional model was developed for studying the
postbuckling behavior of composites with thin film delamina-
tions. The analysis includes large deformation effects for the
delaminated layer, and the results are compared with a rele-
vant simplified model (thin film model). In particular, the
results of this work can be summarized as follows:

1) Bending deformation is necessarily induced in both the
lower part and the base plate. Therefore, although instability
is initiated by the local buckling of the delaminated film,
transverse deflections cannot be limited to that postbuckled
shape of the film only.

2) A reduced stiffness (as compared to the thin film analysis
that neglects the effects of large displacements) is predicted,
with the P — § curve leveling out.

3) The end fixity (clamped-clamped vs simply supported}
conditions significantly affect the postbuckling behavior.

4) The energy release rate vs axial displacement (G —39)
curves level out. This means that delamination growth, unless
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it occurs in the initial postbuckling phase, is not expected to
occur with continuing deformation.

5) Tests were conducted on delaminated specimens of
unidirectional prepreg kevlar 49. There is qualitative similarity
of the load-displacement curves from tests with the curves of
the theory with the load peaking out and the displacement
levels being comparable. The experimental load levels for both
the delaminated and the undelaminated specimens are uni-
formly lower than the theoretical ones by a factor of about
two (which is not unusual in experimenting with buckling),
due to initial imperfections. More important, no growth of the
delamination was ever observed in these tests, which agrees
with the leveling out of the energy release rate curves, as
predicted by the present formulation.

References

'Kardomateas, G. A. and Schmueser, D. W, “‘Buckling and Post-
buckling of Delaminated Composites Under Compressive Loads In-
cluding Transverse Shear Effects,” AIAA Journal, Vol. 26, March
1988, pp. 337-343.

%Yin, W.-L., Sallam, S. N., and Simitses, G. J., “Ultimate Axial
Load Capacity of a Delaminated Beam-Plate,”” AIAA Journal, Vol.
24, 1986, pp. 123-128.

3Chai, H., Babcock, C, D., and Knauss, W. G., “‘One Dimensional
Modelling of Failure in Laminated Plates by Delamination Buck-
ling,"" International Journal of Solids and Structures, Vol. 17, 1981,
pp. 1069-1083.

*Yin, W.-L., Cylindrical Buckling of Laminated and Delaminated
Plates, Proceedings of the 27th SDM AIAA/ASME/ASCE/AHS
Conference, AIAA, New York, May 1986, pp. 165-179.

SBritvek, S. 1. The Stability of Elastic Systems, Pergamon, New
York, 1973.

“Timoshenko, S. P. and Gere, J. M., Theory of Elastic Stability,
McGraw-Hill, New York, 1961, pp. 1-3 and 132-135.

7Budiansky, B. and Rice, 1. R., “Conservation Laws and Energy-
Release Rates,”” Journal of Applied Mechanics, Vol. 40, 1973, pp.
201-203.

8Yin, W.-L. and Wang, J. T. S., ““The Energy-Release Rate in the
Growth of a One-Dimensional Delamination,” Journal of Applied
Mechanics, Vol. 51, 1984, pp. 939-941,



