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Tr sient T erma Stresses i 
Cyli rica Iy Or ho r pic Composit

G. A. Kardomate3s1 

Engineering Mechanics Department, T bes 
General Motors Research Laboratories, 

Warren, Mich. 48090-9055 A solution is given for the stresses and displacements in an orthotropic, hollow cir­
cular cylinder, due to an imposed constant temperafUre on the olle surface and heat 
cOf/veetion into a medium ofa different constant temperature at the other surface. 
Temperature-independent material properties are assumed and a displacement ap­
proach is used. Results for the variation of stresses with time and through the 
thickness are presented. 

Introduction 

An understanding of thermally-induced stresses in 
anisotropic bodies is ssential for a comprehensive study of 
their response due to an exposure to a temperalure field, 
which may in turn occur in service or during the manufactur­
ing stages. For example., during the curing st ges of filament 
wound bodies, thermal stresses may be in uced from the heilt 
buildup and cooling process. The I eJ of these stresses may 
well exceed the ultimate strength. 

Composite tubes, which can be produced by filament 
winding on a cylindrical mandrel, have useful applications in 
such part as automotive suspension components, landing 
gears, and launch tubes. Considerable work has been done on 
the stress field due to mechanical loading (e.g., Lehknitskii, 
1963; Sherrer, 1967; Pagano, 1972). Less literature is d v t d 
to studies of thermall -induced stresses. To this extent, for­
mulations and solution for the thermal stresses in orthotropic 
cylinders have been presented, for example, by Kalam and 
Tauchert (1978) due to a steady-state plane temperature 
distribution, and Hyer and Cooper (1986) due to a steady-state 
circumferential temperature gradient. The plane thermal­
stress problem of a thin circular dis of orthotropic material 
was considered by Parida and Das (1972). Thermal effects on 
the microstructure level were analyzed by Av ry and 
Herakovich (1986), by considering an orthotropic fiber in an 
isotropic matrix under a uniform temperature chang. 

In thi work the problem of transient (time-dependent) ther­
mal stre'ses in a hollow orthotropic circular cylinder is 
treated. II is assumed that one surface of the cylinder is at a 
constant temperature To, and at the other there is heat convec­
tion into a medium at the reference temperature. The insight 
provided by this analysis may prove helpful in such instances 
as choosing curing cycle conditions. The material properties 
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are assumed temperature-independent and a displacement ap­
proach is used. It is also assumed that the stresses act on the 
planes normal to the cylinder axis and do not vary along the 
generator and that there re no body fore . Numerical results 
are presented for the variation of the stresses and 
displacements with time and through the thickness. 

Malhemalical Formulalion 

Consider a hollow cylinder of inner and outer radius r l and 
r 2 , respectively. We denote by r the radial, e the circumferen­
tial, and z the axial coordinate (Fig. J). The cylinder is as­
sumed to have zero initial temperature. For t>O, the boun­
dary r=r l is kept at temperature To and at r=r2 there is con­
vection into a medium at the reference (zero) temperature. 
Although the reference temperature is taken as zero, the 
analysis would be valid for any nonzero value (this is discussed 
further in the re ults section). 

The thermal problem consists of the heat conduction 
equation 

K( a2T(r,t) 1 fJT(r,/») aT(r,t)
--'--2-+- --- =---(r, <r<r2 ,t>0), 

ar r a,. at 

(la) 

and the initial and boundary conditions 

T(r,I=O)=O at r\ :5J~oJ2' (I b) 

(Ie) 

aT(r,t) I --- +hT(r2 ,t)=0(t>0), (Jd) 
ar r=r2 

where K is the thermal diffusivity of the composite in the r 
direction, and h is the ratio of the convective heat-transfer 
coefficient of the composite tube and the surrounding 
medium, and the thermal conductivity of the composite in the 
r direction. The temperature distribution T(r,t) can be found 
in Carslaw and Jaeger (1959) in terms of the Bessel functions 
of the first and second kind in and Y" (note that as the range r 
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Fig. 1 Definition of the geometry 

does not extend to the origin, Bessel functions of the second 
kind are not excluded, as opposed to the solid cylinder case). It 
is given in the form 

(2) 

where ±an are the roots (all real and imple) of: 

[xl', (r2x) - h YO(r2x) ]Jo(r,x) - [xl, (r2x) - hlo(r2x)] YO(rIX) = o. 

(3) 

The constants d, are given in Appendix I. Since there is only 
radial dependence of the temperature field, the hoop 
displacements are zero and the stresses and strains are in­
dependent of 8. Therefore, for the orthotropic body, the ther­
moelastic stress-strain relations are 

o o 
o o 
o o 

C44 o 
o C55 o o 

(4) 

where C ij are the elastic constants and ai the thermal expan­
sion coefficients (we have used the notation I '=r, 2'=8, 3,=z). 

Since the temperature does not depend on the axial coor­
dinate, we can assume that the stresses are independent of z. 
In addition to the constitutive equations (4), the elastic 
response of the cylinder must satisfy the equilibrium 
equations: 
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(5a) 

(5b) 

For the problem without the thermal effects the expressions 
for the displacement field were derived by Lehknitskii (1963). 
A similar procedure was followed and lead to the general solu­
tion for the displacements in this thermoelastic problem (see 
also Hyer and Cooper, 1986). Due to the symmetry of the 
problem, only rigid body transbtion and rotation contribute 
to the 0 component of the displacement field and the strains 
and stresses do not depend on O. Furthermore, there are no 
twisting strains. Therefore, the displacements have the form: 

u, =U(r,/) + Z (wycosO - wxsinO) + VOx cosO + voysinO, (6a) 

u~=zC(I)+wxrsin8-w/cosO+Vo~. (6c) 

In the above expressions, the function U(r,/) represents the 
radial displacements accompanied by deformation, and the 
constants vox, vOY' vo" W X ' wy, W z characterize the r,igid body 
translation and rotation about the cartesian coordinate 
system. The parameter C is time-dependent and is found from 
the boundary conditions, as discussed later. 

The strains are now expressed in terms of the displacement 
U: 

aU(r,t) U(r,t) 
E,,= a ; Eeo=---; Eu=C(I). (7a) 

r r 

(7b) 

Substituting (4) and (7) into (5a) yields the following differen­
tial equation for the displacement field U(r,t): 

a2 U(r,/) I aU( r,l») CnC II ( 2 +- --2-U(r,t) 
ar r ar r 

aT( r,t) T(r,t) CU)
=ql-a--+q2--+ (C23 - C I1)--, (8) 

r r r 

where 

(9a) 

q2 = (CII - C 12 )a, + (C12 - Cu)ao + (C\3 - C23 )az· (9b) 

The parameter CU) is now written in the form 
'" . 2 
~ -I<a" ,C (I) =co+ L..J cne . (10) 
n=1 

To solve equation (8), set 
():) ,,_ 2 

'""'" -!\u"lU(r,t) = Uo(r) + L..J e R n (r). (II) 
n=! 

Substituting (2), (10), and (II) in (8) gives the following equa­
tions for Ua and R,,: 

n Uo'(r)) Cu
CII ( Ua (r) + r -----;'lUo (r) 

q,d2+q2 d l + (C23 -CIJ)co In(r/r2) 
___-=----'---_-=-_..c..::..:--:. + q2d --....:.....­

2 (12) 
r r 

" R,,'(r)) C22 
CII ( R n (r) + r -----;'lR" (r) 

Ya (ra,,) 
n = I, ... ,00, (14)+d5n [ r 
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The solution to these equations is the sum of the solution of 
the homogeneous equation and a particular solution. The 
solution of the homogeneous equation (8) is 

(15a) 

In a similar fashion to the parameter C(t), set G, (t) in the 
form: 

00 , 

Ka 1 
G;(t)=G,o+ EGllle- ,7 ; i=I,2. (l5b) 

11 ..... 0 

Since the constants cj and Gij are yet unknown, we shall in­
dicate the places where they enter in the expressions that 
follow (these constants are found later from the boundary 
conditions). For CII ;;c ell the solution of (12) for Vo(r) is 

(l6b) 

For CII = Cn the corresponding solution of (12) is 

To solve (14), we use the series expansions of tbe Bessel func­
tions to obtain a series expansion of the right-hand side (see 
Appendix II). In the following, "I stands for the Euler's con­
stant (=0.577215 ... ). 

For Cli ;;CC22 ' the solution of (14) for R,P fl= I, ... 00, is 

(18a) 

(l8b) 

where 

Bon=d4n+(2hr)(QI+'Y)ds" 4CII d sII (18c) 
CII -C22 7r(CII -C22 )2' 

The coefficients in the sum over k are given in terms of 

I)] 2d5/lQI+---"1 [I +2ql(k+ 1)]+--,
k + I 7r 

8d)(I 

as follows: 

B 
_ 2dsn (-I)Hl a,;k 2(1 +2ql(k+ I)] 

Ink- 7r22k~2[(k+ 1)!j2[Cll (2k+3)2_C22 ]' 
(18e) 

B = 
211k 

( _I)k+l a lk+2 
/l 

22k;2[(k+ 1)!]"[CII (2k+3)2'-Cd 

(4CII hr)(2k + 3)d
5n2

[1 + 2Ql (k + I)]]. 

CII (2 k + 3) - Cll 

(18/) 

In the (unlikely) event that for a certain k, C 11 (2k+3)2 = 22, 
the term in the sum for this k is replaced by the one in Appen­
dix III. 

For Cli =C22 the solution of (14) for R n is 

G2/l C23 - C\3 • 
RII(r) =G1nr+--+ c"rln(r/r2)+R/l (r), (19a) 

r 2CII 

• _ dSn 2
R" (r) -BOllrIn(ra/l/2) +---rIn (ra ll l2)

27rCII 
00 

+ E Blnkr2k'r3ln(ran/2)+B2I1kr2k+3, (19b) 
k~O 

where 

(l9c) 

It should be noted that although the sum over the roots an is 
extended from fl = 1 to 00, only the first few terms ar domi­
nant and it usually suffices to include a mall number of roots. 
This issue is discussed in detail in the esults section. 

Next, turn to the boundary conditions. We assume that no 
external tractions exist. Then the conditions on the comour 
bounding the cross-section (at r=r l and r=r2) can be written 
in the following form: 

i= 1,2. (20) 

Only the condition for the stress (Jrr is not satisfied identically 
and it is written in terms of the displacement field: 

V(r"/)
CII V r (r"/) + C I2---+ C 13 C(t) -Q[ T(r;,/)=O; i = 1,2. , r 

(21) 

By substituting (2), (10), and (II) in (21) and the expres ions 
(17) for Vo(r), gives, in turn, the following two linear equa­
tions in G IO , G 20 , co: 

"1-1 "2- 1 
(CIIAI+CI2)r, GIO+(CIIA2+CI2)r, G20 +Aoco 

(22a) 

where 

Ao = 

(22b) 

In a similar fashion, by substituting the expressions (18) for 
Rn (r), there correspond tw linear equations for Gin' G 2n , en 
for each fl, 11= 1, ... 00, as foilows, 

+dslI Yo(r/a/l)1; i= 1,2. 

(23) 

Now, let us con ider the conditions of resultant forces and 
moments. Since the stresses do not depend on z, these condi­
tions exist in any cro -section. It can be pr ved (e.g., 
Lehknitskii, 1963, although thermal effects are not included), 
that the conditions of zero-resultant forces along the x- and y-
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Table 1 Convergence of the series solution. Values of the nth term (at , ='2) of the temperature, 
di 'plac ment, and stress quantities. 

n=1 
o"(m_- I

)	 87.1 
1=0.25 

T(O ) -0.743xI02 

U(m) -0.91Ox 10- 5 

aee(MN/m2i 0.297 X 102 

azz (IYtN/m ) 0.818 X 10 1 

1;:0.5 
T(0C) - 0.457 X 102 

U(m) -0.560x 10- 5 

aee(MN/m2) 0.183x102 

azz(MN/m 2) 0.503 X 10' 

axes are satisfied identically. The conditions of zero-resultant 
moment along x- and y-axes (and that of zero twisting mo­
ment) are also satisfied by the symmetry of the problem. 
Therefore, it remains only a condition of zero resultant-axial 
force, p.: 

j.'2 
a<;; (r,I)2'rrrdr=P: (I) =0. (24) 

" 
This give the last set of equations that are needed to deter­
mine the constants G j), cj • In terms of 

(25) 

= 
q, [r} ­ rr ? ]

-EO(rl,r2)+2 --2-(2dl -d2)+d2rjln(r2 /r,) , (26) 

andforn=I, ... oo, 

( 
c;l-CIJ) X1+l X"I 

C Il + A1+I (r2 2-rl )Gln+AIG2"+A2C,, 

= - En (r l ,'2) + (q,/a,,) E (- l)i[d4"r;l1 (rja,,) 
[-;;;} 

+d5n r j YI (ria,,)], (27) 

(28a) 

r} - rr ( C13 - C1, )A 2 = --- C +_...c:...._-'-'_n2 ., CII -C22 

(ri-rn 2 
c [4CllCII -(C2l -ell) I (28b)

8 II 

C'l2J - C1, 2
+	 r,ln(r2/r l ) for CII =Cn . 

4CII 

Therefore the constants Cj, Gli and, hence, the displacement 
U, can be found by solving (2J), (26) and (22), (27). fter ob­
taining the displacement field, the stre es can be found by 
sub tituting in (7) and (4). 

Re ulls and Discussjon 

Before presenting specific re ult w -h II address everal 
issues that were previously raised. First, in the aforementioned 
formulation, the re erence temperature was a sumed to be 
zero. Since, however, thermal tresses are produced by 
temperature differential, the analysis remains the same for 
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n=2	 n=3 
291.0	 488. 

0.144xlO°	 -0.426x 10- 5 

0.142x 10­	 0.687 x 10- 11 

-0.870xlO- 1 0.133x 10- 4 

-O.I04xlOo 0.948 x 10- 6 

O. 35 x 10- 1	 -0.976x 10- 12 

0.629 X 10- 10 0.157x 10- 17
 

-0.:J85x IO- l 0.305x 10- 11
 

-0.460x IO- l O.217x 10- 12
 

any initial temperature other than zero, at which the body is 
assum d to be stress free. In this case., To is the applied 
temperatur above this initial value. 

Second, in producing numerical results, the series expansion 
for the Bessel's functions (se Appendix II) cannot be used for 
large arguments. This means that there i a limit to the number 
of roots an f the characteristic equation (3), over which the 
summation in (11) is performed. Except for v I' small values 
of the time I, this does not limit the accuracy of the results. 
This i because only the first few terms of the ries over n are 
dominant and there is rapid canv rg nee as can be seen from 
Table I, which shows the nth term of some quantities for the 
example ea e that was considered (th specifics of th e ample 
case rc described in detail next), and for time values 
t=KtI(r2-rl)2=0.25 and 0.5. In view of the almost-zero 
values for the third term, there is no need to consider more 
than the first three roots. For very small values of time it 
becomes, however, nece ary to include more terms. 

As an illustrati e example, the di tribution of thermal 
stresse was determined for a gJa /epaxy circular cylinder of 
inner radius r l = 20 mm and oUler radius r2 = 36 mm. It is sup­
posed to b made, for example, by filament winding, with the 
fibers oriented around the circumference. The moduli in 
GN/m! and Pois on's ratio for thi material are listed next, 
where 1 is the radial (r), 2 is the circumferential (8), and 3 the 
axial (z) direction: 

E I = 13.7. E2 = 55.9, E = 13.7, G 12 =5.6, G23 =5.6, 

G31 = 4.9, 1'12 = 0.068, 1'23 = 0.277, jill = 0.4. 

The th rmal expansion coefficients are: Ci,=40X 1O-6;oC, 
O'e=IOxlO-6;oC, Ci.=40xlO-o/"C. For this material, the 
thermal diffu ivity in the radial direction is K = 
0.112 X 1O-i m2/s. Let us assume t.hat the ratio of the convec­
tive heat-Iran fer coefficient between the composite tub and 
the surrounding medium at r= r2 and the thermal conductivity 
of the tube in the radial direction is h =0.1 5 m -I (which is a 
typical value for hea convection to the air). A temperature of 
To = 100°C above the reference one is applied at r= rl' 

To illu trate th re ult , the nondimensional radial distance 
(through the thickness) r= (r-r l )/(r2 -r,) i used. Figure 2 
shows the temperature and Fig. 3 the di placement distribu­
tio for time alues t=0.25, 0.5, 1.0, and 10 (the last one is a 
nearly (eady, constant temperature state). The corresponding 
distribution of stresses (I", aou, and au are shown in Fig. 4, 5, 
and 6. The biggest of those is the hoop stress aee and its value 
at the outer surface r= 1 is seen to be larger for t=0.25 than 
the steady-state alue (for t= 10) by a factor of about 1.5. At 
the inner surface r=O, the steady-state (t= 10) stress is com­
pressive and it becomes smaller in magnitude (tending to be 
tensile) for smaller time values. The radial stress arr' is initially 
mo tly tensile and becomes compressive at the final teady 
state. The axial stress a... is compres ive clo er to the inner sur­
face (small values of 1) but tensile doser to the outer surface; 
its maximum absolule value is about eight time: higher at 
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t=O.25 than at t= 10. It should be pointed out that, although 
the axial and radial stresses are smaller than the hoop, they 
may be more critical because the material is weaker in the 
directions normal to the fibers (typically the ultimate strength 
of glass/epoxy in the directions normal to the fibers may be 
less than that in the direction of the fibers by a factor ranging 
from seven to ten). These results are specific for the example 
we consider and trends may be different, depending on the 
mechanical and thermal constants of the material. They show. 
however, that transient thermal stre ses may be of con­
siderable magnitude, the level of which can be determined 
from the above solution. 

SummaI')' 

In summary, we have presented a solution for the thermal 
stresses of a homogeneous, orthotropic hollow cylinder sub­
jected to a constant temperature on the one surface and heat 
convection into a medium of a different constant temperature 
at the other surface. Temperature-independent material pro­
perties were assumed and a series solution for the displace­
ment was found. Numerical examples were presented for the 
distribution of th transient thermal stresses, which turned out 
to be of significant magnitude. 
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APPENDIX I 

The constants d j in the expression for the temperature (3) 
are given in terms of 

F(a,,) = (a; + h 2)lJ(r la,,) - [a,JI (r2a,,) - hlo(r2an)F, (A I) 

as follows: 

To 
(A2) 

1+ r2h1n(r2/rl) 
d t =------­

(A3a) 

(A3b) 

APPENDIX II 

The Bessel functions of first- and second-kind of order zero 
and one have a series of expansion of the form (see e.g., 
Wylie, 1975) 

I 00 ( _ I )k X 2h 
I ( I )

--- 2 k+1 ---- (A5b) 
1r t:u 22k • I (k!)(k+I)! >/t( ) k+1 . 

In the above expressions ,,/=0.577215 is the Euler's con­
stant and >/t(k) is defined as 

I I 
>/t(k)=I+ T +· '+T' (A 6) 

The above series expansions can be used to calculate the 
Besse'l's functions up to a value of the argument of about 
X= 18. They are rapidly convergent, especially for small values 
of the argument (adopting a smallest number limit of 10 x -71 

would require, at most, 72 terms at x = 18). 
Using the series expansion, we obtain the following equa­

tion in place of (14): 

r 

+ 2d, In(ranl2) + 2ds t
 
7f r 7f k=O
 

(_I)k~la2k+2r2k+lln(ra 12)
 
22k : 2[(k+ 1)!j2 n [I +2q,(k+ 1»)
 

(A7) 

wherefkn is defined in (18d). 

APPENDIX III 

In the event that for a certain k, C II (2k + 3)2 = Cn , the term 
in the sum in (18b) and (l9b) for this k is 

BI"kr2k+)ln2(ranI2)+B2nkr2k; 3In(ra,,/2), (A8) 

where now 

2dsn(-l)k+l a;k.2[1 +2q,(k+ I») 
BI"k = (A9a)

7f22k +2[(k+ 1)!)24CII (2k+3) 

B = (-l)*+l a;kT2 r 2dsn [I+2q l (k+I»)]. 
2nk 22k.2[(k+ 1)!j22CII (2k+3) lfk" 21l'(2k+3) 

(A9b) 

A P PEN D I X IV 

For C, t ~ Cn , the expression for Eo in (26), is: 

q2r~d2 (rf - r~) 
Eo(r l h) = 2( CII _ C ) (C2l + C Il )ln(r2/ r l) + 4 (C - C )

n II n 

2C Il Q2 d2 JI, 
CII-Cn J 

(A lOa) 

and the expressions for E", n= I, ... 00, in (27), are 

(ri-rr)[
En (r l ,r2) = 2 (C23 + CIl)BOn 

(A lOb) 

00 2 . r2k+41n(r.a /2)
5 = E E (-I)' ' ,n B 1"d(C2l +(2k+3)CIl ]n 

k=O ;=1 2k+4 

00 2 

k~U ;=1 
+ E E (-I)' 

(All) 

For C il = C22 , the expression for Eo is 
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(A 12b) 

In the event that C II (2k + 3)2 = C2l ' the corresponding k 
term in the sum Sn in equation (A II) is 

~ i r/k + 
4 In 2 (r i G"I2)

LJ (-I) [C23 +(2k+3)CI31Blnk
;~I 2k+4 

(A 12G) 
~ . r/h41n(riG"I2) [ and the expressions for En' n = I, ... 00, are +	 LJ (-I)' [C23 
;=1 2k+4 

2	 2 
~ d S" . 2 0	 . r,u+4 ( 2B I"k 

+ LJ -C-(C13 + C23 )( -I)'ri tn-(ri G"I2) + E	 -1' C -C (AI3)
;=1 ( ) (2k+4)2 (23 13) 2k+4;= 1 411" 11 
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