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Transient Thermal Stresses in

G. A. Kardomateas'

Engineering Mechanics Department,
General Motors Research Laboratories,
Warren, Mich. 48090-9055

Tubes

Cylindrically Orthotropic Composite

A solution is given for the stresses and displacements in an orthotropic, hollow cir-

cular cylinder, due to an imposed constant temperature on the one surface and heat
convection into a medium of a different constant temperature at the other surface.
Temperature-independent material properties are assumed and a displacemen! ap-
proach is used. Results for the variation of stresses with time and through the
thickness are presented.

Introduction

An understanding of thermally-induced stresses in
anisotropic bodies is essential for a comprehensive study of
their response due to an exposure to a temperature field,
which may in turn occur in service or during the manufactur-
ing stages. For example, during the curing stages of filament
wound bodies, thermal stresses may be induced from the heat
buildup and cooling process. The level of these stresses may
well exceed the ultimate strength.

Composite tubes, which can be produced by filament
winding on a cylindrical mandrel, have useful applications in
such parts as automotive suspension components, landing
gears, and launch tubes. Considerable work has been done on
the stress field due to mechanical loading (e.g., Lehknitskii,
1963; Sherrer, 1967; Pagano, 1972). Less literature is devoted
to studies of thermally-induced stresses. To this extent, for-
mulations and solutions for the thermal stresses in orthotropic
cylinders have been presented, for example, by Kalam and
Tauchert (1978) due to a steady-state plane temperature
distribution, and Hyer and Cooper (1986) due to a steady-state
circumferential temperature gradient. The plane thermal-
stress problem of a thin circular disc of orthotropic material
was considered by Parida and Das (1972). Thermal effects on
the microstructure level were analyzed by Avery and
Herakovich (1986), by considering an orthotropic fiber in an
isotropic matrix under a uniform temperature change.

In this work the problem of transient (time-dependent) ther-
mal stresses in a hollow orthotropic circular cylinder is
treated. It is assumed that one surface of the cylinder is at a
constant temperature 7, and at the other there is heat convec-
tion into a medium at the reference temperature. The insight
provided by this analysis may prove helpful in such instances
as choosing curing cycle conditions. The material properties
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are assumed temperature-independent and a displacement ap-
proach is used. It is also assumed that the stresses act on the
planes normal to the cylinder axis and do not vary along the
generator and that there are no body forces. Numerical results
are presented for the variation of the stresses and
displacements with time and through the thickness.

Mathematical Formulation

Consider a hollow cylinder of inner and outer radius , and
ry, respectively. We denote by r the radial, 6 the circumferen-
tial, and z the axial coordinate (Fig. 1). The cylinder is as-
sumed to have zero initial temperature. For >0, the boun-
dary r=r, is kept at temperature 7, and at r=r, there is con-
vection into a medium at the reference (zero) temperature.
Although the reference temperature is taken as zero, the
analysis would be valid for any nonzero value (this is discussed
further in the results section).

The thermal problem consists of the heat conduction
equation

K(&"T(r,t) +L aT(r,l)) . aT(r,t)

(ry<r<ry,t>0),

ar? r or ot
(la)
and the initial and boundary conditions
T(ry=0)=0 at r =r=<r,, (18)
T(r,t) =T(>0), (lc)
AT (r,0)
0 +hT(ry,t)=0(>0), (1d)

f=f2

where K is the thermal diffusivity of the composite in the r
direction, and A is the ratio of the convective heat-transfer
coefficient of the composite tube and the surrounding
medium, and the thermal conductivity of the composite in the
r direction. The temperature distribution 7'(r,¢) can be found
in Carslaw and Jaeger (1959) in terms of the Bessel functions
of the first and second kind J, and Y, (note that as the range »
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Fig. 1 Definition of the geometry

does not extend to the origin, Bessel functions of the second
kind are not excluded, as opposed to the solid cylinder case). It
is given in the form

T(r,y=d,+d,In(r/r,)

o0 2
—Ku
+ Y e dyadolra,) +ds, Yolra,)), )

n=1

where *a, are the roots (all real and simple) of:
Y (ryx) — hY(ryx)1Jo(r %) — [xXJ, (r2x) — o (ryx)] Yo (ry x) = 0.

3)

The constants d; are given in Appendix [. Since there is only
radial dependence of the temperature field, the hoop
displacements are zero and the stresses and strains are in-
dependent of 0. Therefore, for the orthotropic body, the ther-
moelastic stress-strain relations are

O Chy Ch Cy 0 0 O € —a; AT
Ogg ChCpy G 0 0 0 g9 — AT
0, | = | Czs Cn C;3 0 0 O €.~ AT |,
The 0 0 0 Cy 0 0 Yoz

Trz 0 0 O 0 CSS 0 ’ Yrz

Tog 0 0 0 0 0 Cg L Y

4

where C;; are the elastic constants and «; the thermal expan-
sion coefficients (we have used the notation 1=r, 2=, 3=z).

Since the temperature does not depend on the axial coor-
dinate, we can assume that the stresses are independent of z.
In addition to the constitutive equations (4), the elastic
response of the cylinder must satisfy the equilibrium
equations:
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Orrr + (Urr — Uy ) /r=0, (50)

(5b)

For the problem without the thermal effects the expressions
for the displacement field were derived by Lehknitskii (1963).
A similar procedure was followed and lead to the general solu-
tion for the displacements in this thermoelastic problem (see
also Hyer and Cooper, 1986). Due to the symmetry of the
problem, only rigid body translation and rotation contribute
to the § component of the displacement field and the strains
and stresses do not depend on 6. Furthermore, there are no
twisting strains. Therefore, the displacements have the form:

T, +27,4/r=0; r~Y(rr.), =0.

u,=U(r,0)+z(w,cos0 — w,sind) + v,,cosb + vy, sind, (6a)
Uy = —z(w,rcost + w,rsinf) — vy, Sinf + vy, co86 + w,r,  (6b)
u, =zC (1) +w,rsind —w,rcost + vy,. (6¢)

In the above expressions, the function U(r,f) represents the
radial displacements accompanied by deformation, and the
constants vy, Vo,, Vgz» Wy, @, w, characterize the rigid body
translation and rotation about the cartesian coordinate
system. The parameter C is time-dependent and is found from
the boundary conditions, as discussed later.
The strains are now expressed in terms of the displacement
U:
au(r,0)

U(r,n
€rr oF €00 = )

; €. =C(1). (7a)

(70)

Substituting (4) and (7) into (54) yields the following differen-
tial equation for the displacement field U(r,¢):

'YH:::’Yr:{=ﬂ/r6:O

a*UuU(r,ty 1 aU(rD sy
C ( — )— ~U(r,t
7 T I ar rt ()
oT(r,b) T(r,t) C(1)
=4 ar T4 r +(Cy3 — C3) > 7 (8)
where
g, =Cya,+Cprop+Cpaa,, (%a)
G, =(Cy; —Cpa, + (C; — Cyp)ay +(Cy3 — Cyy)a,. (9b)
The parameter C(¢) is now written in the form
(==} L 'uz
Clty=co+ Y, ce ', (10)
n=1
To solve equation (8), set
B ol
Ur=Uy(r)+ Y e "R, (r). (1n

n=1
Substituting (2), (10), and (11) in (8) gives the following equa-
tions for U, and R,,:

Uy’ c
£y (Uo”(r)+%m> ——2(r)

2
d,+q,d, +(Cy; — C In(r/.
_ 919 T 4,4, r( 23 '3)60+q2d2 n(r ’2)’ (12)
v R, (r) Cy,
Cu (R, (0 +2=) - Z2R, ()
r r
Cyr-C J
= ( = IJ)C’T +d4n|: O(ran)_QIanJI(ran):I
r r
YO(rau)
+ds, [—r——qlanY,(ra,,)] n=1,... , 00, (14)
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The solution to these equations is the sum of the solution of
the homogeneous equation and a particular solution. The
solution of the homogeneous equation (8) is
A A e
U, r =G (Or' +G,(1)r?2; N,=+VCy/Cy. (15a)
In a similar fashion to the parameter C(f), set G,(¢) in the
form:
G,(£)=Gp+ Y, Ge "' i=1,2.
n=0

(I5b)

Since the constants ¢; and G are yet unknown, we shall in-
dicate the places where they enter in the expressions that
follow (these constants are found later from the boundary
conditions). For C,; #C,, the solution of (12) for U, (r) is

Cyn—C
Up(r)= Gmr +G,0r)\2+—ucor+ Ug(r), (16a)
7 Cll =3 C’.’Z
¥ q>
U (ry=—————d,rin(r/r,)
Cll_ 2
+[ g1d+qxd, 2'(“11(12dz2 N (165)
Cn—-Cyn (€ —Cy)
For C,; = C,, the corresponding solution of (12) is
G Cu-C
Uy(r)= Gl(,r+i (+C—U—)C(,rln(r/r2)+uo“(r), (17a)
1Y
2q, — @-)d, +2q-,d
Ug (r) ==L, inp(r/y) + LU DB 200,
11 4C:Il
(17b)

To solve (14), we use the series expansions of the Bessel func-
tions to obtain a series expansion of the right-hand side (see
Appendix II). In the following, v stands for the Euler’s con-
stant (=0.577215 . . .).

For C,, #C,,, the solution of (14) for R,, n=1, ... oo, is
R (1) =G+ Gy +—27C8 ¢ i Re(r),  (180)
n Lo n Cl,—Cﬂ~
R} (r)=Bg,r+— L rin(ra, /2)
r}= nl n
! ‘ (Cp—Ca)
+ Y0 B30 (ra, /2) + By r* 3, (18b)
where
4
B0":d4n+(2/7r)((71+7)d5n_ Cy\ds, oy (18¢)
C—Cxn w(Cpy — Cy)*
The coefficients in the sum over k are given in terms of
2ds, 1
Sin = [d4,,— : <1+—+ e
2
1 2ds,
+ )][1+2q,(k+ nj+2m9 (184)
k+1 T
as follows:
2, (— 1)F* a2 21 +2g,(k + 1)]
By =—s ,) \[ ks : (18¢)
a2 2 (k+ DIPIC (2k +3) = Cy)
— [)k+ig2ke2
B’n/\': k12 ( 7) S )
= 2% 2k + DIP[C 2k + 3)* — Ca]
/)2 +2q,(k+1
sz”_ (4C),/m)2k + 3)ds, [1 + 2g,( )]} (18))
C”(ZA +3) -Cvz
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In the (unlikely) event that for a certain k, C,,(2k+3)> =C»,,
the term in the sum for this k is replaced by the one in Appen-
dix III.

For C;, = C,, the solution of (14) for R, is

G Cy —Cpx
R,(1) =G r+—24+ =8 B¢ dn(r/ry))+ R:(r), (192)
T
) ds,
R} (r)=Bg,rin(ra,/2) + —=—rin?(ra,/2)
2rCyy
E X3 In(ra, /2) + By, r¥ 3, (196)
where
2 2y—1
Bg,,= 7rd4n+d5n( QI 2 Y ) (19C)

27C;

It should be noted that although the sum over the roots a,, is
extended from n=1 to oo, only the first few terms are domi-
nant and it usually suffices to include a small number of roots.
This issue is discussed in detail in the Results section.

Next, turn to the boundary conditions. We assume that no
external tractions exist. Then the conditions on the contour
bounding the cross-section (at r=r, and r=r,) can be written
in the following form:

0, (ri) =19 (ri,H)=7,(r;,1)=0, i=1,2, (20)
Only the condition for the stress o,, is not satisfied identically

and it is written in terms of the displacement field:

”) i=1,2

(2D

By substituting (2), (10), and (11) in (21) and the expressions
(17) for Uy (r), gives, in turn, the following two linear equa-
tions in G g, Gy, Cy:

CIlU,r(ri1[)+Cl2 +C1~‘C([)—(]1T(r,,t) 0

Ny =1 Ay =1
(CiM+C)r ' G+ (Cy\ +Cia)ri 2 Gy + Ay
L/‘ ; .
=-C,Us " (r)—C» U(rl)+q1[dl+dzln(r;/"2)] i=1,2,
rl
(22a)
where
Ci +ECys
Ay = 11— (Cp—Cp)+Cy; for € #Cy
C—-Cyp
% (22b)
_S=Corn oo .
= T[Cn+((-n+(-|z)n(’i/’2)]+ 13
for C =Cyp.

In a similar fashion, by substituting the expressions (18) for
R, (r), there correspond two linear equations for G,,, G,,, ¢,
for each n, n=1, . o, as foilows,

 E - T
G+ (Cpyh+Cp)ri* Gy, +Age,

1 (r;)

(Ci\ +C12)ri)\]_

=_Cll n (I') CIZ

+ q, [(14".10("1-(1,, )

I

+ds, Yo(ria,)): i=1,2.

(23)

Now, let us consider the conditions of resultant forces and
moments. Since the stresses do not depend on z, these condi-
tions exist in any cross-section. It can be proved (e.g.,
Lehknitskii, 1963, although thermal effects are not included),
that the condmons of zero-resultant forces along the x- and y-
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Table 1 Convergence of the series solution. Values of the nth term (at »=r,) of the temperature,

displacement, and stress quantities.

n=1

a,(m-") 87.1

(=0.25
T(°C) ~0.743 x 10°
U(m) —-0.910x 1073
a(,o(MN/mZQ 0.297 x 10
04, (MN/m?) 0.818x 10!

1=0.5 .
T(°C) ~0.457 x 10?
U(m) -0.560x 10~*
age(MN/m?) 0.183 x 10
0,,(MN/m?) 0.503 x 10!

axes are satisfied identically. The conditions of zero-resultant
moment along x- and y-axes (and that of zero twisting mo-
ment) are also satisfied by the symmetry of the problem.
Therefore, it remains only a condition of zero resultant-axial
force, P.:
vry
3 0. (r,t)2mrdr=P_ (1) =0.
)
This gives the last set of equations that are needed to deter-

mine the constants G, ¢;. In terms of

(24)

Q3=C13a, +C‘23QQ+C31QZ, (25)

(24) gives

s Lo " "
(C,,+———2‘ ')(r;‘ LTS A & A0
A+

ri—r
2

=~ B+ 2| B 2d - d) + dyrtingrarry | 26

and for n=1, .. .0,

C,,—-C 4 4
(Cl3+”—'i)(r§‘ =16y, + A, Gyy + Ase,
A+l 5
= —En(rlvr2)+(‘]3/an) E (_ l)[[datnri‘]l(rian)
i=1

+ dSnri Yl (rl'an)]v (27)

where Ey(r,,r,) and E, (r,, r,) are given in Appendix [V. The
coefficients 4,, 4, are defined as:

C,, —C
Ay = (C,3+%l—”>(r;2+l—r?2+l) for €y #Cy
) (28a)
= Cy3 +(Cyy = Cpy)In(ry/ry) for C =Cy
’22*’12( Ch— 213)
A, = Gt for C, #C,
2 2 B~ Cp or L=l
(r22—r12) 2
= ——4CyC| —(Cy3 — C13)’] (28b)
8C,,
Gl -

CZI] 2

—4—0“——1l In(ry/ry) for Cyy = Cy,.

Therefore the constants ¢;, G; and, hence, the displacement
U, can be found by solving (21), (26) and (22), (27). After ob-
taining the displacement field, the stresses can be found by
substituting in (7) and (4).

Results and Discussion

Before presenting specific results we shall address several
issues that were previously raised. First, in the aforementioned
formulation, the reference temperature was assumed to be
zero. Since, however, thermal stresses are produced by
temperature differentials, the analysis remains the same for

414/ Vol. 56, JUNE 1989

n=2 n=3

291.0 488.8
0.144x10° —0.426 X 1075
0.142x 1077 0.687x 10!
~0.870x 107! 0.133x 1074
—~0.104 x 10° 0.948 x 10~6
0.635x% 103 -0.976x 10°12
0.629% 1010 0.157x 1017
—0.385% 1073 0.305% 10!
—0.460% 1073 0.217x 10" 12

any initial temperature other than zero, at which the body is
assumed to be stress free. In this case, 7T, is the applied
temperature above this initial value.

Second, in producing numerical results, the series expansion
for the Bessel’s functions (see Appendix 11) cannot be used for
large arguments. This means that there is a limit to the number
of roots a, of the characteristic equation (3), over which the
summation in (11) is performed. Except for very small values
of the time ¢, this does not limit the accuracy of the results.
This is because only the first few terms of the series over # are
dominant and there is rapid convergence as can be seen from
Table 1, which shows the nth term of some quantities for the
example case that was considered (the specifics of the example
case are described in detail next), and for time values
t=Kt/(r,—r;)>=0.25 and 0.5. In view of the almost-zero
values for the third term, there is no need to consider more
than the first three roots. For very small values of time it
becomes, however, necessary to include more terms.

As an illustrative example, the distribution of thermal
stresses was determined for a glass/epoxy circular cylinder of
inner radius 7, = 20 mm and outer radjus r, =36 mm. It is sup-
posed to be made, for example, by filament winding, with the
fibers oriented around the circumference. The moduli in
GN/m? and Poisson’s ratio for this material are listed next,
where 1 is the radial (r), 2 is the circumferential (8), and 3 the
axial (z) direction:

E,=13.7, E;=55.9, E;=13.7, G\, =5.6, G5, =5.6,

Gy =4.9, v, =0.068, ry; =0.277, v5, =0.4.

The thermal expansion coefficients are: o, =40%10-¢/°C,
ay=10x107¢/°C, o, =40x 10-°/°C. For this material, the
thermal diffusivity in the radial direction is K=
0.112x 10~*m?/s. Let us assume that the ratio of the convec-
tive heat-transfer coefficient between the composite tube and
the surrounding medium at r=r, and the thermal conductivity
of the tube in the radial direction is #=0.15 m~! (which is a
typical value for heat convection to the air). A temperature of
T, =100 °C above the reference one is applied at r=r,.

To illustrate the results, the nondimensional radial distance
(through the thickness) 7= (r—r,)/(r, —r,) is used. Figure 2
shows the temperature and Fig. 3 the displacement distribu-
tion for time values 7=0.25, 0.5, 1.0, and 10 (the last one is a
nearly steady, constant temperature state). The corresponding
distribution of stresses o,,, 0y, and o, are shown in Figs. 4, 5,
and 6. The biggest of those is the hoop stress gy and its value
at the outer surface 7=1 is seen to be larger for 1=0.25 than
the steady-state value (for 7= 10) by a factor of about 1.5. At
the inner surface 7=0, the steady-state (/= 10) stress is com-
pressive and it becomes smaller in magnitude (tending to be
tensile) for smaller time values. The radial stress o,,, is initially
mostly tensile and becomes compressive at the final steady
state. The axial stress o, is compressive closer to the inner sur-
face (small values of 7) but tensile closer to the outer surface;
its maximum absolute value is about eight times higher at

Transactions of the ASME



(&
o
"
i
be:
< h
-
o 40
fo %
E \
20—
"J%—r— — T 7 — T 1
0 0.2 0.4 0.6 0.8 1
Normalized radial distance, 7

Fig. 2 Radial disiribution of the temperature T a} different times. The
nondimensional time is defined by t=Kt/(r, —rq )2. The dashed line is
the nearly steady, constant temperature state.

o
'

Q 70 1
6.0
5.0 -
4.0

3.0

2.0

Displacement U, m

1.0

0.0 t——— T T T
0 0.2 0.4 0.6 0.8 1

Normalized radial distance, 7

T T T
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£=0.25 than at £ = 10. It should be pointed out that, although
the axial and radial stresses are smaller than the hoop, they
may be more critical because the material is weaker in the
directions normal to the fibers (typically the ultimate strength
of glass/epoxy in the directions normal to the fibers may be
less than that in the direction of the fibers by a factor ranging
from seven to ten). These results are specific for the example
we consider and trends may be different, depending on the
mechanical and thermal constants of the material. They show,
however, that transient thermal stresses may be of con-
siderable magnitude, the level of which can be determined
from the above solution.

Summary

In summary, we have presented a solution for the thermal
stresses of a homogeneous, orthotropic hollow cylinder sub-
jected to a constant temperature on the one surface and heat
convection into a medium of a different constant temperature
at the other surface. Temperature-independent material pro-
perties were assumed and a series solution for the displace-
ment was found. Numerical examples were presented for the
distribution of the transient thermal stresses, which turned out
to be of significant magnitude.
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APPENDIX I

The constants d; in the expression for the temperature (3)
are given in terms of

Fl(a,) = (a}+h»)J}(ra,) —[a,J\(ra,) —hJo(ra,)]?, (A1)
as follows:
S N L1 L PP
1+ ryhln(r,/r,) 1+ryhlnry/ry)
T,Y,
da, :W—O—M[a,,JI (rya,)— hJy(rya,)?, (A3a)
F(a,)
wToJo(r a,)
dSn = —W[an‘]l (rZGn)_h‘lo(rza")]Z’ (A3b)

APPENDIX II

The Bessel functions of first- and second-kind of order zero
and one have a series of expansion of the form (see e.g.,
Wylie, 1975)

(_l)kX2k 3 bl (_I)A'x2k+l
Jo(x) = g 22"(k')” J](X)—/(Z::Om‘ (A4)
2 2 (__l)k 2k
Yo(x)——<lnf+'y>J0 kg EryrnemdOr
(ASa)
2 X 2 1
e e e
e (= Dkx! 1
-y - e ] AS
= ,g)zzk*‘(k!)(kﬂ)! (2‘1’“‘“) k+l> )

In the above expressions v=0.577215 . . . is the Euler’s con-

stant and (k) is defined as

1
—

k
The above series expansions can be used to calculate the
Bessel’s functions up to a value of the argument of about
x=18. They are rapidly convergent, especially for small values
of the argument (adopting a smallest number limit of 10x ~7!
would require, at most, 72 terms at x = 18),

Using the series expansion, we obtain the following equa-

tion in place of (14):

¢(k):1+%+.. (A6)
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Rn’(’) CZZ
=) R

Cy (R,, “(r)+

_ d4,, + (Z/W)(ql +'Y)d5,, + (CZJ ol CI])Cn

r

2ds In(ra,/2) 2ds <

+ — —+ -

(_l)k+1a3k+2r2k+lln(ran/2)
2% 2[(k+ )]

[I+2g,(k+1)]

_1)A+1a2Af2 2k +1
(A7)

(
AEO PTGk DI

where f;, is defined in (18d).

APPENDIX III

In the event that for a certain &, C,,(2k +3)*=
in the sum in (185) and (19b) for this & is

C,,, the term

B\ r¥**3In¥(ra,/2) + By, r¥  *ln(ra, /2), (A8)
where now
2d, (— 1) a2k +2[1 4+ 2g. (k+ 1
e = 5"(7,‘. ’) an ’[ (Il( )], (/49[7)
w2H(k+ 1D1AC, 2k + 3)
5 o O R L
2k = 242k + 1)122C,, 2k + 3) b 272k + 3)

(A9b)

APPENDIX IV
For C,, #C,,, the expression for E, in (26), is:
garidy (ri—rf)

Ey(r),ry)=—""——"—(Cyy + Cy)In(ry/ry) +
)= e e e CMe e e
2C,q,d,
X [(C13—C23)q2d2+2(cl3+C23) qldz"‘%dl‘_—‘c C )
1n—Cxn
(A10a)

and the expressions for E,, n=1, .o, 1n (27), are

3
E,(rir) =~ L[ (G + C)By,

1 ds
b (Cy - C)|
T (€ =Cp) W 3
1 ds; (Ciy +Cyy) e
LR N (—1Yrin(ra,/2)+ S,  (A10b)
& (Cy—Cp) ; f
where
oy r2+4In(r,a,/2)
——-—B J(Cyy + 2k +3)C
kEOI—E]( 2k +4 il (Ca +( )Ci5]

o 2 %k+4 g
.
+ E E (_l)lm{Blnk[C23+(2k+3)clJ]

k=0 i=1

(A1)

C,-GC,
“"Bm/c_———l3 B }

2k+4
For C,, = C,,, the expression for Ej is
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—qyrid,

Eo(ry,ry) = 8C
11

(Cyy+ C\y)In%(ry/r))

In(ry/ry)

8C [rtdy(Cy3 — Cy)q, +ri(Ciy + Cy)(2q, — q,)d,
I

+2q,d\]} + (Cy = Ciy)l(g,—q1)d, — q,d,],

(A12a)

and the expressions for £,, n=1, . .. o, are

BOII>
I

+ Z 47rC“ ——2(Cp3 + Cy)(— 1)ir2Ini(r,a, /2)

(r}
E,,(r,,rz)=ZT) (Cy— 13)(
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;i [ds,,(c,g—cm

X (=1)r2in(ra,/2)+S,.

i=)

24C,, +(Cpy+ Czs)Bo,,]

i=1

(A12b)

In the event that C|,(2k +3)*=C,,, the corresponding k

term in the sum S, in equation (A11) is

r#+4n(r.a,/2)
Z T[Cu +(2k +3)C11B
ZZ: o r2+4In(r,a,/2) {[C
po 2k+4 B
2B,
+ 2k +3)C 1By + (Cs — cz,)ﬁ—}
2 2k+4 ZB, i
. n _B )
L g (Ca = Co (G =B (A1)
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