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ABSTRACT

A study of the effects of end fixity (clamped—clamped vs simply-supported) on
the buckling and post-buckling of delaminated composites is performed. The
study includes the case of a delaminated composite beam-plate on an elastic
foundation. First, the analytical solution for the post-buckling behatvior of
delaminated composites with simply-supported ends, derived via the
perturbation technique, is presented. For high values of the foundation
modulus the end fixity has litile effect on the instability point. For the low
values the simp!v-supported case requires less load for instability. Similarly,
the end fixity has little effect on the slope of the energy release rate vs applied
load curces for high values of the foundation modulus. For the low values the
simply-supported case results in less steep curves, which suggests that the
configuration can withstand more load bevond the critical point in the initial
post-buckling stage before delamination growth takes place.

1 INTRODUCTION

Problems of delamination growth in composites have received considerable
attention in recent years. Analvtical models have been developed that deal
with the basic premises of the problem.!”* An ability to understand the
mechanics of this damage mechanism is useful. not only because
delaminations can lead to an undesirable strength or stiffness degradation
but also because they may have a desirable energy absorption capacity as a
result of the relatively large deflections involved.?
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In a previous article,® an explicit quantitative description of the post-
buckling behavior was obtained for a one-dimensional delamination in a
compressively loaded laminate. In another related study,* the buckling and
post-buckling behavior was investigated for the case of a laminate on an
clastic foundation. This would simulate the compressive face of a composite
boxed beam filled with a soft elastic medium such as foam or a sandwich
becam consisting of two thin fiber-reinforced sheets separated by a low
stiffness core, which are subjected to a bending load. In those studies the case
of a clamped—clamped beam-plate was treated. End fixity can influence both
the critical and the post-critical charactceristics. In this article we shall first
present the analytical post-buckling solutions for the case of a simply-
supported becam-plate. The results will then be contrasted to those for a
clamped—clamped beam. Both the usual configuration and the case of a
beam-plate on an elastic foundation will be treated. Our method of solution
is based on the asymptotic analysis of post-buckling behavior as a
perturbation series with respect to the slope of the section at the
delamination interface.

2 ANALYTICAL FORMULATION
2.1 Instability modes and governing equations

The geometry of the problem is defined in Fig. 1. A homogeneous,
orthotropic beam-plate of thickness 7, length L, and unit width, containing a
strip delamination at a depth H (H < 7/2) from the top surface of the plate, is
subjected to an axial compressive force, P, at the ends. The plate is simply
supported. In the general case there may be a Winkler-type elastic founda-
tion attached. The delamination extends over the interval 0 <x</=2a.
Over this region the laminate consists of two parts. the part above the
delamination (‘upper’ part, of thickness H) and the part below the
delamination (‘lower’ part, of thickness 7— H). The remaining laminate
outside the delamination interval and of thickness T is referred to as the
"base’ laminate. The coordinate svstems for the separate parts are shown in
Fig. 2. For each part we denote by D; its bending stiffness:

B Ei}
AL — viaea)
Ebeing the modulus of elasticity along the x axis and 7; being the thickness of
the corresponding part; i = u (upper). ] (lower) or b (base) parts. Although we

assume one value for the modulus throughout the composite. different
values for the different parts could be considered.
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Fig. 1. Definition of the delamination buckling geometry. The system may include an clastic
foundation.

Three possible modes of instability can take place,® depending on the
geometric configuration. Global buckling of the whole beam may occur
before any other deflection pattern takes place, typically for small
delaminations. The critical load for this limiting mode can be found from an
energy formulation.® In terms of an integer, m, that is specified so as to
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render the load ¢ minimum, the global instability load for the simply-
supported case that assumes a mode shape, y = a, sin(mnx/L), 1s

])
L? minD,

glo
where ff is the modulus of the foundation. For example, for fiL*/(n*D,) < 4
thenm =1 ford < ffL*/(n*D,) < 36 then m = 2, ctc. The second limiting case
occurs typically for relatively large and thin delaminations and involves only
local buckling of the delaminated upper layer, the lower part and the base
plate remaining flat. Thus an upper bound to the critical load is expressed
from the critical Euler load for the upper segment by

P,..=(T/H)n*DJI? (2)

In the general, mixed case (to be considered next), transverse deflections for
both the upper and lower parts as well as the base plate may occur.

The differential equations for the deflections of the lower (i=1) and base
(i =b) parts of the delaminated plate can be written*
d*y; dz}’i

idx4+Piax_2'='—ﬁyi (3)

D

For the upper part (i=u) we should set f=0. This equation is solved in
conjunction with the following conditions:

(1) a condition of common deflection, {, and of equal slope at the
interface section (where the delamination starts) (Fig. 2):

."ulx=0.l=)'l|x=0,l=}'blx=lo = C (43}
Var=0=Vilx=0= )';,\x =l (4b)

{2) the end fixity condition for the base plate:
Volx=0 = ¥glz=0=0 (3)

(3) axial and shearing force and moment equilibrium at this section:

P+P=P,=P +n=y"v (6a)
M, +M +P(T-H)2—-PH2=M, (6b)
(4) a condition of compatible shortening of the upper and lower parts:
Pl .. . Pl
A=y gy — U= "13"31)E(T—L1;

(N

1 (! | L.
- ;J’ viidy—< J‘ vimdv =Ty,
u 3
=Jo < Jo

x=0Q
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2.2 Solution procedure and buckling load

The perturbation method is used to solve the problem defined above. The
pre-buckling state of stress is a state of pure compression:

Vo=0 M.,=0 Vio=0
P,,=rur P ,=P(T—H)T Poo=P,
Let the angle at the interface of the delaminated and base plate be denoted
by ¢ (Fig. 1). The deflection and load quantities at each part, y(x), P, V;, M,,
arc developed into ascending perturbation series with respect to ¢:
Yy =y () + @Tyia(x)+ - Pi=Pio+¢Pi+ Py + - (8a)
Mi=¢Mi‘l+¢2Mi.2+“' V.'=¢Vd,l+¢2yi.2+'“ (8b)

By the definition of the series, at this interface
Yir=1l  ¥ia=Via=--=0 9

Substituting eqns (8) into the differential equation (3) and equating like
powers of ¢ leads to a set of linear differential equations and boundary
conditions for each part.

In the first approximation the terms in the first power of ¢ are equated.
The solution of the first-order equation for the upper and lower part can be
found in Refs 3 and 4. In the following we give the solution for the base plate.
The corresponding equation is

d*y d>y
Dy~ i+ Po—g 5+ Broa =0 (10a)
Define
ké_o - Pb_o Db ;’b = B.‘/.Db (IOb)

The solution can be expressed in terms of trigonometric functions only or a
combination of trigonometric and hyperbolic functions depending on the
magnitude of the modulus of the foundation.

For ki, >4/, the solution to the first-order problem equation (10a)
satistving the end fixity conditions of eqn (3) is given by

_l'b_1= S“ CUSin(SJ\' ‘\ll)
=
Jj=1.2

where 0; are defined by

Oy 3 =\"[(—kiot  kio—44,)2 (12)
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In terms of
Q= Z (—1Yé,sind,_ I, cosél, (13a)
2
the constants C,,, C,, arc found from eqns (4a) and (9) to be
Cyy=(- 1Y(sin 6, _ o —§165-,c088,_,1,)/Q (13b)
The first-order end shear can be expressed in the form
Vou = —Dyyes + ki oYolx=1,= Ve, + LV (14)
where
j=1.2
Vi =(D,JQ)d,6,(8% — 83)cos b,l,cosd,l, (15b)

The first-order moment at the delamination section can be similarly
expressed as

M, =—Dyy, i o= =M, +{M (16)
where
M¢ | =(D,/Q)6% — 8%)sin 8,1, sin 8,1, (17a)
j=1.2

For ki , <4/, the solution for the first-order equation (10a) is found in
terms of 6, and 4, defined as

r=ry 6 = arccos [ —kZ o/(2r)] (18a)
8, =Jrcos(6/2)  &,=./rsin(6/2) (18b)
to be
Jp1=C,;sinhd,;xcosd,x + C,,coshd,xsind,x (19)
By setting
Q = (8,sinh 28,1, — &, sin 28,1,)/2 (20a)

the constants C,; are obtained from eqns (4a) and (9) as follows:
C,,=[{1(d,coshd,lycosd,ly+ &, sinh b,/ysin b.l,)
—coshd,lysind,l,] Q (20b)
C,>=[c4(0,sinhd,/,sind,l, — d, coshd,l,cos b,/,)
+ sinh d,/,cos 3,/,] O (20¢)
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The terms defining the first-order shear in egn (14) are given in this case by

Viey = — D87 + 83)b, sin 20,0, 4 0, sinh 28,1,)/(2Q) (21a)
Vi = (D JONSE 4 63)28,8,(sinh? 8,1, + cos? 8,1, (21b)

and the terms for the first-order ¢end moment in ¢qn (16) are given by

M = —(D,/Q)28,6,(sinh? 5,1, + sin? 8,1,) (22a)
M! , = D (67 + 6346, sinh 26,1, + &, sin 26,1,)/(2Q) (22b)

2.2.1 Charuacteristic equation
The condition of shear equilibrium (6a), written for the first-order terms,
produces an expression for {, (note that V, , =0):

L=V = V)V, = Vi) (23)

The associated equilibrium and compatibility equations (6b) and (7) up to
the order ¢ are given in terms of the moments at the interface:

Mu.l+M1.1—Mb.1ZPI.IH/z_Pu.I(T—H)/Z (24)

EH(T—- H)
Al —vyavag) wi(T—H)2— P, (H/2 (25)
The end moments, M, , = — D,y ,, are given from eqns (16) and (22) in terms
of the zero subscript quantities and the quantity {, which was found in egn
(23). Substituting these expressions into the above two equations, and
eliminating the quantity P, \H 2— P, (T— H)/2, gives an equation for the
critical buckling load, P, as follows:

Dk, qcotk,ga+ MP — Mg +(V5, — V(M| 4 — M{;.l)"( Vou—¥i)
= —TEH(T— H) [4a(l — v 43v4,)] (26)

where the quantities V,. Ff,. Af¢, and M,, i=1.b. in the above equation
aregivenineqns(15).(21).(17)and (22). This is the characteristic equation for
the critical instability load.

2.2.2 Case of no elastic foundation
The solution to the first-order equation (10a) for f=0is

sink, oX
N R 27:
Feil Ky.o COSKy ol (274}
Eo=P; D, ly=(L-1)2 (27b)

The charactenistic equation is again derived by eliminating the quantity
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W 12— P, (T—11)/2 in eqns (24) and (25), and is founc to be (see also
Ref. 3)

1%k, ycotlk, ol/2) + (T — 11)*k, o col(k, 4l/2)
- Tskh_() lankh'(’lo+6TII(T_ II)/lz() (28)

2.3 Post-buckling solution and delamination growth characteristics

When the terms in ¢? are equated, the second-order diflerential equations
arc obtained. The solution for the upper and lower parts can be found in
Refs 3 and 4. The solution for the base plate, which is simply supported, will
be developed in the following. The differential equation is expressed as

Dby{f% + Poyo2t Byo2=—Puvo (29)

The solution to the above equation is a superposition of the general solution
and a particular solution.

For k¢ , >4/, the solution to the second-order equation (29) satis{ying the
end fixity conditions (5), with é; defined in eqn (12), is found to be

P P
Vo2 = Z Czj-B‘—sméjx+szD—’xcoséjx (30a)
b b
Jj=1.2

_ (——l)jcljéj

The constants C,; are determined from the conditions (4a) and (9). In terms
of Q defined by eqn (13a) and

j=1.2
A,= Z B, 4140, s1n 3,1y — c0s d;l,) (31b)
= bl

these constants are given by

Cljz Q_l[;:(Db/Pl](ss_jCOS 53_"/0 = '4163"JCOS 53—J/0+ .4: Sin (33_11()]
(31lo)
The second-order end shear can be wntten in the form
Vo2 =—Dy3p2 + kg.o."ﬁ;.z)l =P Ve, + s (32)

x=lg
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where
Vi, = —(A,/B)8,0,(87 + 83)cos &1, cos b,
+ z (A,/Q)5]) sin by . L, cos b1,
J=1.2
+ B,,6](3cos 8,1y — 16, sin §,15) (33a)
Vi, =(D,]0)8,8,(8% + 83)cos 8,1, cos 8,1, (33b)
The second-order end moment can also be written in the form
My 2=—=Dyyy alx=1o= PiM§, + MY, (34)
where

Mg, =(A,/Q)6} + 63)sind,/ysin b,/

+ Z B,042sindl, + 1,6;c0s 6,1,)

j=1.2

—(A,/Q)8}65 _ jsin §;l,cos 65 _ i1, (35a)

b2 = Z (Db/B)5f53_jsin51-1060553_1/0 (35b)
j=1.2

For ko, <4/, the second-order solution satisfying eqns (29) and (5) is
found to be

P P i
¥ =65, D—lsmh d,xc0s0,x+ C,, D—’coshé,xsm d,x
b b

P . . P C e .o

+ B,,—> xcoshé,xcosd,x + B;, — xsinhd,xsind,x  (36a)
D, Dy

B,;= _[Cnda—,.""(—WCx:éj]f'(géléz) (36b)

where 9, are defined in eqns (18). The constants C,, and C;, are found from
eqns (4a) and (9). In terms of Q defined by eqn (20a) and
4, =Byl coshd,lyco8d,l, + B,,lysinhd,/,sind,/, (37a)
A, =B, ,coshd,/,c08d,ly +(B,,0, + B,,6,)lysinh d,/,cosd,/,
+(B..0, — B,,3,)qcoshd,lysind,ly + B,,sinhd,/ysind,l, (37b)
these constants are given as follows:
C,,=Q "1 A,coshd lysindsly + [{oADy/P) — A4,]
x (&, sinh d,/ysind.ly + &, cosh &/, cos 8,1,)} (37¢)
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Coy=Q "GDP) ~ A NS, sinh 8,1, sin 8,0, — 8, coshd, [, cos ,1,)
-~ Aysinh 8,4, cos d,1,} (37d)

The second-order end shear is expressed by egn (32) with the definitions

Vi, =Q '[A(87 4 82)8, sin 26,1, + &, 5inh 28,1,)/2
— A (82 4 62)26,8,(sinh? 8,1, + cos? 8,1,)]
4 | By (83— 83) - 6B,,6,8,] cosh 8,1, cos 8,1,
+ | By,(83 — 63) + 6B,,8,58,] sinh 8,1, sin 8,1,
— (61 + 83, [(B,,6, — B;,6,)sinh 8,1, cos 8,1,
—(By,6,+ B,,8,)coshé,l,sin d,l,] (38a)

V!, = D\(6? + 62)26,6,(sinh? 8,1, + cos? 6,1,)/Q (38b)

Likewise, the second-order end moment is given by eqn (34) with the
definitions

MS , = Q '[A4,28,8,(sinh? 8,1, + sin? 8,1,)
— A,(8% + 82)(8, sin 26,41y + &, sinh 26,1,)/2]
+ [B;,(63 — 62)— 2B,,6,6,]l,cosh &,1,cosé,l,
+ [B,,(63 — 1) + 2B,,6,8,]1/,sinh 8,1, 5in 8,1,
—2(B,,6, + B,,0,)sinh 4,/,cosd,l,
+2(B,,8, — B,,0,)cosh & 1, sin 8,1, (39a)

M ;= D (87 + 6308, sin 28,1, + 8, sinh 28 ,1,)/(2Q) (39b)

2.3.1 Solution
The shear condition (6a) allows determining , in terms of the first-order (yet
unknown) forces (note that ¥, , =P, ;) as follows:

Ve, —1 Ve, — Ve,
- = .- «= . 40)
¥ T Vi,— v, :

The moment equilibrium equation (6b) for the second-order terms is
-Uu.z + 'Vl.z - -Ub.z = PI.ZH'Z - Pu‘Z(T—- H)/2 (41)

while the geometric compatibility equation (7) for the second-order terms is
given by

1 (" 1[” 2(1 — vy vy, )
S| oaidyv—s | widy= "= 2L [P LH2 - P ,(T— H)2) (42
2 J‘O.‘u.l \ 2 .0.‘I.l X EH(T—H) [ I.-H/ u.Z( H)/ ] ( )
Notice that the second-order moments. M, . = — D,/ ,. at the interface are
given from eqns (34). (35) and (39) in terms of the (vet undetermined) first-
order end forces. Thus eliminating the quanuty P, ,H/2—P,,(T—H)2
fromeqns(41) and (42). and taking into account eqn (40). gives the following
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equation for the first-order forces P, , and P, ;:

(M= M2 A (VEy—INM| = MV = VEDDP,
+ Ml = M2+ (W = VEXM| = MV — VS P,
(2K, 0a—sin2k,oa \ EH(T-11)
'( 4k, ,sin?k, gu _"') da(l — v, 4vy,)

The second equation needed for finding P, , and P, , is the first-order
equilibrium cquation (24) at the interface, namely

P12 —P, (T—H)2=FyP,q, Po) (44)

where F; is the left-hand side of eqn (26) which depends only on the zero-
order quantities. In the above equations V8,, V/,, M#, and M/,,i=1,b, take
the values given in eqns (33), (38), (35) and (39) depending on the relative
magnitude of the foundation modulus; S, is the shortening of the lower part
due to first-order deflections and is given in Refs 3 and 4. The above system
of linear equations allows finding P, ; and P, ;, and hence the first-order
applied end force P, =P, , + P, ,.

(43)

2.3.2 Case of no elastic foundation
The case of f=0 admits as a solution to the second-order equation:
Pb.l
2Dyk; 0 cOs Ky olo

Yo.2 = Cp.2SINK, oX + xcosk, ox (45)

and, from eqns (9),
¢ — Pb.l
272D k3 o cos? (ky olo)
Again, eliminating the quantity P, ,H/2— P, ,(T— H)/2 from eqns (41)
and (42) gives the following equation for the first-order forces P, , and P, ,:

[ cos (k, ol 2) lcos?(k, ol 2) 1

(lok .0 Sinky olo — cOsky, olo) (46)

P

u.l

2k, osin(k, ol 2) 4sin?(k, o/2) 4

sink, olo losin®kyoly 1o
2k, ocosky ol 2cost kol 2
L P cos(k, ol 2) lcos?(k,oli2) 1
M2k, osintk, of2)  4sin?(k, ol/2) 4
sinkyole  losinkyolo lo
2k, 0cosk, olo  2c0s?ky ol 2
[sintkoh) — kol sintk,ol) =k, ol | EH\T—H)
B kiosin®(k, ol2) kyo sin? (k, of/2) | 811 — v 3vy,)

(47)
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The second equation needed for finding P, and P, is the first-order
cquilibrium cquittion (24) at the interface, namely

\ Py Py tank, of,

u.)

kl,,‘, tun (/\'".,,//2) 1 k. u]n(k,—;/_/-f) B Ky o

P2 P (T = )2 =
(48)

The above system of linear equations allows the finding of P, ; and P, ;, and
hence of the first-order applied force P, =P, , + P, ,.

2.3.3 Growth characteristics

The post-buckling solution that has been obtained can be used to study the
post-critical state of deformation. In addition, the initiation of delamination
growth can now be analyzed on the basis of a Griffith-type fracture criterion.
Predicting whether the delamination will grow requires an evaluation of the
energy release rate. This quantity, which is the differential of the total
potential energy with respect to the delamination length, can be easily
calculated by using the path-independent J-integral expression in terms of
the axial forces and bending moments acting across the various cross-
sections adjacent to the tip of the delamination.® In terms of the quantities

P*=PH/T)-P, M*=M M** =P*T2—M*  (49)

u

the energy release rate per unit width is expressed as

21— vy gvyy) [P+ 12(M H)2+P*2+12[M**(T—H)]2 (50)
B 2F H T—H

G

The J-integral method that is used here does not distinguish between the
Mode I and Il components. It should be noted that future work should
consider this question, since there may be a dependence of the fracture
toughness on the ratio of those two components.

3 DISCUSSION OF NUMERICAL RESULTS

Numerical examples are presented for the case of 7 H=6. L. H=200. The
characteristic equation (26} is solved for the cnitical load P, . If P, <
(P10 Proc)- with P, and P, given by egns (1) and (2). then combined ‘mixed’
buckling involving out-of-plane detlections for both the delaminated laver
and the base plate takes place. Otherwise the critical load is the minimum of
the above. corresponding to global buckling (tvpical of very short
delaminations) or local buckling (tvpical of veryv large delaminations). As
the above analysis shows. the conditions of end attachment. by affecting the
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Fig. 3. Buckling load vs delamination length for T/H =6, L/H=200 and a sct of
foundation moduli, for both the simply-supported (solid line) and clampced—clamped (dashed
line) cases. The usual case without an elastic foundation corresponds to f=0.

equations that describe the deformation of the base plate, influence the per-
formance of the whole system. To illustrate the effect of end fixity, the
variation of the critical load, normalized with respect to the Euler load for
the delaminated layer, B, = P,/2/(4n*D,), vs delamination length, /= //H, for
both the simply-supported and clamped—clamped cases, is given in Fig. 3
for a set of values for §. The foundation modulus is normalized as f =
3B1*/(16n*D,). It can be concluded that for high values of the foundation
modulus £ the end fixity has a small effect on the instability point. This is
because in these cases the instability i1s mostly controlled by the local
buckling mode as opposed to the global one that is more pronounced for low
values of f. Notice that in both cases, as B increases, the curves are shifted to
the left, indicating the attainment of loads similar in magnitude to the local
buckling ones for smaller delamination lengths.

The combined eflect of the location of the delamination through the
thickness for different foundation moduli and the end fixity is indicated in
Table 1, which gives the values of the delamination length, /L. for which the
charactenstic equation has no roots less than the local buckling load given
by eqn (2) (the "local buckling threshold delamination lengths’). As the
delaminated layer becomes thinner. local buckling 1s reached at smaller
lengths, and an increase in the foundation modulus reduces this ‘threshold
length’ more effectively. For example, for H'T=1/15 and f>10* local
buckling occurs for practically all delamination lengths. In addition. local
buckling occurs in general at smaller delamination lengths in the clamped-
clamped case than in the simplv-supported one. It should also be noted that.
for even smaller lengths than the ones given in Table 1, the solution of the
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TABLE 1
Values of Delammation Length, //1., beyond which the Characteristic Bguation has no Roots
less than the Local Buckhng Load (‘Local Buckling Threshold')

"t I/
0 I { 10? 10° n

16 (C () 0-966 0963 0961 0951 0816 0511

(S-s) 1-000 1-0(%) 1000 1-000 ()-444 0512
19 (C-C) 0943 0936 0921 0759 0516 0-291

(S-s) 1-000 1-000 1000 0-784 0-516 0-291
1/12(C C) 0-603 0471 0279 0161 0-089 0051

(S-s) 1-000 0475 (288 0161 0089 0-051
1/15(C-C) 0451 0277 0166 0-096 0-054 0031

(S-s) 1-000 0-279 0169 0-096 0054 0-031
“C-C: Clamped—Clamped; S-s: Simply-supported.

3=10,8-S, C-C

0313 03% GIM™ 0322 0325
L 1 | )

e 031t 034 C37 0320 0323 3=0.0.1, CC
1 - S J

":

=

- -

< 3= 01

i

RS

- c—< .

.;-: S-S

5

£ 3=0

g

= o000~ s y %058
0245 0248 0251 0254 €257 0260 0263 2 = V.3

T T T ! 1 -
0.302 0305 0308 031 034 o037 o320 J3=015-8

Applied Load. P = PL? (4z2D,)

Fig. 4. Strain energy release rate vs appliec compressive force during the initial post-

buckling stage for both the simply-supported (solid line) and clamped—clamped (dashed line)

cases(7 H=6. L H=200.and delamination length / H = 60). The different load scales are of
the same length and correspond to the different initial buckling loads.
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characleristic equation is very close (o (by less than 1% smaller than) the
local buckling load, as also is evident rom Fig. 3.

To illustrate the eflfect of end lixity on the post-critical characteristics, the
variation during the initial post-buckling stage of the normalized strain
cnergy release rate, G = GAET?/L*), vs the applied load normalized with
respect to the Euler load for the entire beam with no elastic foundation, P =
PL? /(472 D,),is plotted in Fig. 4 for the example case of T/H = 6, L/H = 200,
and dclamination length //H{ = 60, for a sct of values of the foundation
modulus. Both the simply-supported and clamped—clamped cases arc
considered. Since the critical load changes with /7, different scales (of the
samc length) are used on the load axis. As for the critical load, the end fixity
docs not much affect the slope of the G-P curves for the high values of the
foundation modulus, . For the low values of ff the simply-supported case
results in less steep curves. This decreased slope means that (1) the laminate
can withstand more load beyond the critical point in the initial post-
buckling stage before delamination growth takes place, and (2) there could
be less energy absorbed since growth would not be promoted as much.
Notice also that for both cases the curves are steeper for a larger f.

4 CONCLUSIONS

The effects of end fixity (clamped—clamped vs siimplyv-supported) on the
buckling and post-buckling of delaminated composites under compressive
loads are investigated. First, the perturbation technique is used to derive the
analyvtical solution for the post-buckling behavior of delaminated
composites with simplyv-supported ends. The results are compared with the
characteristics of the clamped—clamped case. Both the usual case and that of
a delaminated composite beam-plate on an elastic foundation are treated.
End fixity effects are found to be more pronounced for lower values of the
foundation modulus.
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