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Abstract-The problem of torsion of rods produced by filament winding on an eUiptical mandrel and 
possessing variable moduli of elasticity through the thickness (for example, because of a varying lay
up angle) is formulated. The material possesses curvilinear anisotropy. referred to the coordinate 
system that is inherent to the geometry of the filament wound body. It is further assumed that there 
are planes of elastic symmetry perpendicular to the shaft allis. Results on the stress and displacement 
distribution are provided and discussed. Moreover, a study of the influence of a compound bar 
construction, i.e. a composite bar with an external or internal reinforcement on the maximum 
interlaminar shear stress, is performed. 

NOTATION 

± c foci of the elliptical section of the mandrel
 
e, major semiaxis of the elliptical section of the mandrel (= ccosh a)
 
e, minor semiaxis of the elliptical section of the mandrel (= csinh a)
 
~ thicknesswise direction (normal to the layers)
 
" direction tangent to the periphery
 
z direction along the body axis
 

u, displacement components (i =~, '1. z)
 
va' rigid body translation (i = x, y, z)
 
w, rigid body rotation (i = x, y, z)
 
if a constant (scaling the twisting moment)
 
T thickness of the body
 

a'j anisotropic elastic constants
 
\!'(~, ,,) stress function
 

M, twisting moment
 
W warping displacement (equation 7c)
 

h cjsinh'a + sin'" (equation 4) 

c'sinh2a
 
q h + ~ (equation 5)
 

2h'
 

INTRODUCTION 

Torsion in anisotropic elasticity has been considered for the cases of prismatic or cylindrical 
bars possessing either rectilinear or cylindrical anisotropy [1]. For the first case, all 
directions parallel to an orthogonal Cartesian coordinate system are equivalent with respect 
to the elastic properties. or the second case the same is true for the directions of a polar 
coordinate system (r, e, z). 

Consider a body produced by filament winding on a mandrel of elliptical cross-section. 
Such filament wound bars could be used in automotive structural components. For this 
geometry, the equivalent directions with respect to the elastic properties are the ({, ~, i) (Fig. 
I), where [is the direction normal to the layers (thicknesswise direction), ~ is the tangent to 
the periphery and zis along the body axis. Hence, this body possesses curvilinear anisotropy 
referred to the ({, ~, i) system. For this system of curvilinear coordinates, the infinitesimaJ 
elements isolated by the three pairs of coordinate planes have the same elastic properties. 

·Present address: School of Aerospace Engineering. Georgia Institute of Technology, Atlanta, GA JOJJ2-D150, 
U.S.A 

459 



460 G. A. KARDOMATEAS 

Note that in Fig. 1, ~ = 0 is the inner boundary, ~ = T is the outer boundary, '1 = 0 or 2n is 
the positive major semiaxis and '1 = n is the negative major semiaxis. 

A formulation dealing with the theory of ela ticity of such bodies that are produced by 
filament winding on an elliptical mandrel was developed in Ref. [2]. The type of curvilinear 
anisotropy inherent to the geometry of the filament wound body, as described above, was 
named 'elliptical anisotropy'. Moreover, the solution was presented for the special case of 
torsion of an orthotropic body. This case orresponds in practice, for example, to filament 
winding of an orthotropic composite sheet at a constant 90° angle. Therefore, that analysis 
cannot be applied to the case oflaying-up this sheet at a different angle, since orthotropy is 
not preserved under a coordinate axis rotation. In addition, there may be a case of hybrid 
construction (layers of different material) that we may wish to analyze. 

In this paper, th theory of torsion of bodies produced by filament winding on a 
cylindrical mandrel of elliptical cross-section i' generalized to the case of rods with variable 
moduli of elasticity through the thickness. This work will also be an extension to the solution 
for the case of a shaft of circular cross-section [I]. In the following, we assume that the 
stresses do not vary along the generator and that there are no body for es. 

THEORY 

Consider a mandrel of elliptical cro s-section with semiaxes ccosh a and c sinh a (foci at 
± c) (Fig. 1). Since the body produced by filament winding on this mandrel has constant 
thickness, the outer bounding surface is not a true ellipse, unlike tbe internal one (in the limit 
of infinite thickness the outer contour is a circle). This feature, as well as the fact that the 
anisotropy is defined in a curvilinear coordinate system, makes the present problem unique. 
Now, for the body produced by filament winding on that mandrel the moduli of elasticity 
are assumed to depend on the co rdinate ~ and, consequently, the coefficients of deforma
tion aij' where i,j = 1,6 are functions of ~. Furthermore, it is assumed that at each point 
there is one plane of elastic symmetry perpendicular to the z xis (axis of the body). Hence, 
the constants a 14 , a24 , a34 , a46 , a 15' a 2 5' 035' a56 are equal to zero. Therefore, the equations 
of the generalized Hooke's law ( tre s-strain relations) have the form: 

(la) 

(lb) 

(I c) 

., 

I, = c COslla 

FiG. 1. Cross-section of the filament wound elliptic cylinder. 
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u~.~=o, 

(Id) 

(Ie) 

(If) 

The equations of equilibrium in the system of curvilinear coordinates (~~ ~, z) and the 
strain-displacement equati ns are given in Ref. [2]. We seek a solution for pure torsion (the 
forces being distributed over the ends and reducing at either of them to a twisting moment 
M,) by setting 

(2) 

which leaves only the equation 

(qt~Z>.~ + r~z.~ = 0, (3) 

with the definitions [2]: 

h = her,) = cJsinh2 a + in 2 r" (4) 

2=[(ax)2 (Oy)2Jl/2 = c sinh2a 
q a" + 0/7 h + ~ 2h 2 . 

(5) 

These definitions arise in accordance with the curvilinear coordinate system being used; for 
example, for a polar coordinate system (r, ()), we would have r in place of q in equation (3). 

Combining equations (2) and (1) gives the strain-displacement equations as follows: 

(6a) 

(6b) 

(6c) 

(6d) 

The first four equation, (6a) and (6b), are satisfied identically if we set 

-oh c . . iJh 
u~ = z(} -iJ +-/ (vox smh a cos r, + V Oy cosh a SID ,,)+wz -, (7a)

/1 I 0" 

u~ = ze( ~ +h oq )+~ (- vox cosh a sin r, +VOy sinh a cos r,) +Wz ( ~ + h :~ ), (7b) 

U z= Wee, r,) +CWx in" ( sinh a + ~ cosh a ) - CWy cos r, ( cosh a +~ sinh a ) + VO z, (7c) 

where eis a constant that turns out to depend on the magnitude of the twisting moment, and
Wee r,) is the warping displacement. In the above expressions, the displacements have been 
defined within a rigid body translation and rotation expressed in the Cartesian coordinate 
system by (vox, VOy , vO z ) and (wx ' wy, w z ) respectively. 

By substituting the above expressions for u~ u~ into equations (6c), (6d), the following 
equations are produced for W 

oW -oh 
a45't~z +a55't~z -ar= (}-;], (8a) 

loW ( Oq) (8b)o44r~Z+a45r~Z-qa;;-=e ~+h oe . 
Notice that the elastic constants 0ij' i,j=4, 5 depend on ~,i.e. aij=a ij (~). 

M.S .H:b-O 
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We can satisfy the equation of equilibrium (3) by introducing the stress function '1'((, '1): 

I 
T~z=-'P.~; T~z= -'P.~. (9) 

q 

Using equation (9) and eliminating W from {8a), (8b) yields
 

2 2

0 '11 I 0 '11 (Oq , ) 0'1' 

qa44 0(2 +qa55 0'1 2 + '0~a44+qa44 a[ 

1 oq ') 0'11 D2 'P _- ( qr 0'1 a55 +a45 811- 2a45 0(0'1 = - 2()q, (10) 

where the prime on the elastic constants denotes the derivative with respect to (. 
This equation is solved in conjunction with the boundary conditions of T~z =0 on the inner 

and outer bounding surface, which translates into the conditions of constant values, C j , of the 
stress function on the boundary: 

'I'=C j at (=0 and (=T. 

One of those two constants, for example on the outer boundary, can be chosen arbitrarily to 
be zero, hence we let C2 =O. 

The other constant, Cl' is found from the condition of single valued displacement u" 
expressed by the vanishing of the c nlour integral around the periphery of the inner 
boundary; furthermore, by using equation (7c), 

2"(DU\ f2"(OW)_z d'1= - d'1=O (11)fo '1 ) ~ = 0 0 0'1 ~ = 0 . 

Substituting equation (8b) for aWl0'1, we obtajn 

J:" [h(a44T~z)~=o-(Jc2 si~ 2a ] dt1=O. (12) 

Now let us consider the conditions at the ends of a body of fillite length. Since {Jzz = 0, the 
resultant axial force P and bending moments about the x, y axes are zero and the onlyz 

loading is the twisting moment M" given by [2] 

ff[ ((+h :~) T~z+ ~~ T~z ] qd~drl = MI' (13) 

This equation will serve to determine the arbitrary constant (J, which is a scaling factor for 
the end loading. To eliminate this constant from equation (10), we set 

(14) 

and substitute in equations (10) and (12). Then we hav to solve the following system for the 
stress function t/J: 

-differential equation 

qa44t/J.~~ +~ a55t/J,~~ + (~~ a44 + qa~4 ) t/J.~ 

1 oq ') (15)- ( qr 0'1 a55 +a45 t/J.~-2a45t/J.~~= -2q, 

--boundary conditions 

t/J=O at (=T, (16) 

2J:" h(a44 t/J ,~)~ = 0 drl = - c n sinh 2a. (17) 
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Subsequently, the constant (f is found from the end condition, equation (13), to be 

(f=M,jCR, (18) 
where 

I ~=2n I{=T [( Oq) ah ] (19)CR = ~=o ~=o - ~ +ho~ ql/J.~ + O'1l/J.~ d~ d'1. 

Once the stress function and hence the stresses have been determined, the warping (out-of
plane) displacement W can be found by numerically integrating equation (8a). Notice that 
the in-plane displacements have been found in equations (7a, b). 

A limiting case of the problem being considered is the case of a filament wound circular 
cylinder. The solution for the stresses for a circular section has been obtained in Ref. [I]. The 
limiting case of the curvilinear anisotropy referred to the ([, ~, z) system considered here is 
cylindrical anisotropy (i.e. anisotropy referred to the r, e, z system). For N layers, with the k 
layer interfaces at radii rh, rh+ 1 (so that the inner radius of the cylinder is r 1 = a and the outer 
rN + 1 = b), the solution for the stresses in a circular cylinder under torsion is given by 

(20a) 

In the above equation, Ct is the torsional rigidity, given by 

I
I> 3 N 4 4 

C =2 _r_ d =~ " rk+l- rh 
I n r L. k . (20b) 

a a44(r) 2 h= 1 a44 

SO, for a circular cylinder the stress co: within layer is proportional to the shear modulus of 
the material G~: = l/a~4 and varies linearly with respect to the distance r. 

For this limiting case, the displacements are in turn (neglecting any rigid body translation 
and assuming rotation only about the z axis) 

U, = 0, Uo = (Jrz +w:r, (21a) 

W = (f Ia45(r) r dr. (21 b) 
a44(r) 

For a cylinder of N layers, with k being the layer number, the displacements at each layer are: 

(22a) 

k> 1. (22b) 

From equation (21 b) it is seen that the cross-sections of a circular cylinder subjected to 
torsion remain planar only if a45 =0. This is not true for the case of the cylindrical body of 
elliptical cross-section. 

RESULTS AND DISCUSSION 

An example of a rod with variable moduli of elasticity is a shaft produced by filament 
winding of several layers at different lay-up angles on a mandrel of elliptical cross-section. 
Naturally, each of the layers possesses 'elliptical' anisotropy as described in the introduction, 
with the axis of anisotropy coinciding with the axis of the shaft, so that there are planes of 
elastic symmetry normal to the axis of the shaft. Moreover, we assume that there are no 
initial stresses on the rod (the latter can appear in the manufacturing process) and that the 
layers are perfectly bonded along their contact surfaces (so that the displacements remain 
continuous across layer interfaces). 

To obtain the stress distribution, the finite difference method was used to solve equations 
(15) and (17), together with the condition l/JI{= T =O. In this context, the structure of equation 
(15) shows that the domain can be reduced by symmetry conditions to one half of the 
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elliptical cross-section, i.e. for 0 ~ '1 ~ n. Then, the values of the function !/J for n ~ 11 ~ 2n are 
given by !/J(~, rr)=!/J(~, rr-n). In addition, owing to the local nature of the finite difference 
operators, the coefficient matrix is highJy banded. By storing only those terms of the 
coefficient matrix that fall within the bandwidth, a simple Gauss elimination scheme can be 
used to solve large numbers of equations with maximum economy. Let us assume that 
we have M h points on the half ellipse. Since, by the symmetry discussed above, for j = I, 
!/Ji.i-I = !/Ji.M" -I' and for j = Mh, !/Ji.i+ 1 = !/J;.2, central differences [3J for both with respect to 
~ and with respect to '1 for j = 1, 3, ... , Mh can used. Concerning equation (17), forward 
difference formulas are used to obtain !/J.{ at ~=O. The semibandwidth of the resulting 
coefficient matrix is equal to 2Mh +3. 

Let us first look at the effect of the stacking sequence on the state of stress. Consider as an 
example a four-ply construction with ply thickness tp and mandrel dimensions e I/t p = 35/3, 
e2/t p = 20/3 (e 1.2 are the major and minor semiaxes respectively). The material used is glass
fiber unidirectional, with the following typical constants [I]: £ 1= 57 G N m - 2, £2 
= 14 GN m - 2 = £3; G l2 = 5.7 GN m - 2 = G31 , G23 = 5 GN m- 2

; vl2 =0.277, V 2 3 =0.400, V31 

= 0.068. Notice that for a 90° lay-up, I == '1,2 == Z, 3 ==~. The elastic constants for a particular 
lay-up angle are determined by a transformation of those elastic constants under the 
corresponding rotation of the coordinate system [1]. Figure 2 shows the through-the
thickness variation of the stress r~= for two stacking sequences (from inside towards outside 
surface): [90° +45° - 45° 900 J and [- 45° 90° 90° +45°J and in compa:rison with a 
[90° 90° 90° 900 J lay-up. A transition to a lower lay-up angle results in a drop in the stress 
r~z, while a transition to a higher lay-up angle is accompanied by an increas . Since 1:~z 

increases through the thickness, it could b desirable to place the lower lay-up angle on the 
outside. 

In the following we will consider as an example case the lay-up sequence [ -45° 90° 90° 
+45°]. The solution for a circular cylinder is known [IJ and i given by equation (20). To 
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FIG. 2. Thicknesswise distribution (along~) of the shear stress '., at the minor axis site ¢=90". 
illustrating the effects of the different stacking sequences. 
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FIG. 3. Shear stress, '." at ¢=90°, vs thickness, <; curves for a decreasing major to minor mandrel 
axis ratio. Stacking sequence: [ - 45° 90° 90° + 45"]' The dashed curve is the solution for a circular 

cross-section. 
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FIG. 4. Angular distribution of the shear stress r., at cert in distances ~ through the thickness. 
Stacking sequence: [ -450 90° 900 +45°]. 

compare with the present on for the eUiptical cross-section, Fig. 3 gives the !~z versus 
thickness ~ curves for diminishing major/minor axis ratios (the minor axis dimension is kept 
constant). The solution is seen to approach the one for the circular section as the 
major/minor axis ratio tends to become unity. 

Figure 4 shows the angular distribution of the shearing stress Tq: at certain distances ~ 

through the thickness. The distribution is of the same type as for the orthotropic case [2]. 
For a distance ~ below a particular value, the shear stress has its maximum at the major axis 
and its minimum at the minor one. The exact opposite bappens for layers that are above this 
threshold value. The variation of !~z with the thicknesswise distance ~ is shown in Fig. 5. The 
stress !~z undergoes little change through the thickness near the major axi , whereas near the 
minor axis the stress increases markedly with distance. Furthermore, the curves have a 
common intersection point at about ~/T=0.47, where there is practically no angular 
variation (see also Fig. 4). 

The distribution of the stress !~z with respect to both the polar angle ¢ and the thickness ~ 

is shown in Fig. 6. It is seen that thi component of stress, which is two orders of magnitude 
less than the stress !~Z, follows the same pattern as for the orthotropic case. The maximum 
value i shifted outwards for points closer to the minor axis. Notice that now !~z is not zero 
on the minor or major axis, unlike in the orthotropic case. 
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FIG. 5. Thicknesswise distribution (along ~) of the shear stress '., at certain angular locations.
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FIG. 6. Angular (a) and thicknesswise (b) distribution of the shear stress '~,. Stacking sequence: 
( _ 45° 90° 90° +45°]. 

It is interesting to examine the displacements and in particular the warping of the cross
section. The displacement W can be obtained by numerically integrating equation (17a). 
Assume zero displacement at the inner edge: WI~=o =0. Figure 7 illustrates the angular 
variation of W. Figure 8 shows the thicknesswise distribution of the warping displacement. 
Near the major and minor axis the displacement is controlled by the elastic constant a45 and 
thus it increases or decreases depending on the sign of a45 • or is constant if a4 5 =0, as in the 
center (900 lay-up) section. However, away from the major or minor axes, it varies 
monotonically since it is controlled by the other elastic constants (which have the same sign 

';' 6.0 

:i__ 4.0 

h. 
0:: 

0.0 +-~-r-~-r-~-r-~-r-~ 

(b) 
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FIG. 7. Angular variation of the warping displacement W at certain distances through the thickness. 
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FIG. 8. Thicknesswlsc distribution (along ~) of the warping displacement W at certain angular 
positions. Stacking sequence: [ -45" 90" 90" +45~. 

for either the ± 45° or 90° lay-up angles). For an orthotropic material, the displacement W is 
zero at the major and minor axes (see also Fig. 7). As the major/minor axis ratio tends to 
unity, the displacement W tcnds to the limiting case of a circular cylinder (Fig. 9). For this 
last limiting case, the cross-sections remain planar if a4S =0, and non-zero warping 
displacements occur only if a 4S # 0. For the elliptical cross-section, however, warping occurs 
even in the orthotropic case (Fig. 7). 

Compound bars 
In certain applications it is desirable that a section or the bar has a compound 

construction, in the form of an external sleeve, made of different material, which is placed 
over the filament wound bar or an internal filler (which could also be hollow) placed inside 
the composite bar. The analysis developed in the previous sections can be used to study such 



---

468 G. A. KARDOMATEAS 

'I'~ 2..0 

h 

S o.D 

.,"
<: 
III 

S 
III 
u -2.0 

0.'" 35/20'" is .'--------.fJT--- 25/20 
bll
 
<:
 -"'0 

...........................................~22/20
'0. ... 
co 20/20 (circle)

i3: 
~.O 

0	 0.2 0." 0.6 0.11 

Distance, efT 
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FIG. 10. Maximum interlaminar shear stress (at the outermost layer interface) as a function of the 
reinforcement tbiclrne ,iUustrating the effect of the type of compound construction system (i.e. 
internal or external) and the modulus of the reinforcing element. A stacking sequence of 

[90° 90° 90° 90°] (i.e. orlhotropic material) is assumed. 

a compound bar since the whole construction can be considered as a shaft composed of 
different materiaJs through the thickne . This i , however, a two-dimen ional anaJysis and, 
therefore, when studying the effect of a compound bar construction on the interlaminar 
shear stre se , it should be kept in mind that the results could be influenced locally by end 
constraints. 

In the following we hall refer to the external leeve or internaJ filler as the 'reinforcement', 
aJthough the specific application may not be a reinforcing element. As an example we 
con ider 13 layers of glass-fiber (of thickness tp) that are wound at 90° lay-up angle on an 
ellipticaJ mandrel with major semiaxis el/tp = 35 and minor semiaxis ez/t p = 20. Let us 
consider as materials for the reinforcement a low modulus SMC R-50 with G~: = G~z 

=2.5 GN m- 2 and a high modulus steel with G~z=G~z=79 GNm- 2
• Figur 10 shows the 

maximum interlaminar shear stress (which ceur at the interface between the 12th and 13th 
layers) as a function of the reinforcement thickness (SMC R-50 reinforcement) for an internal 
and an externaJ type construction. It is seen that placing the reinforcing bar xternally 
reduces the maximum interlaminar hear tress by a larger amount. Figure 10 also compares 
th rf rmance of the low versus high modulu reinforcement materi I in reducing the 
interlaminar stre's in an external type ystem. The high modulus is seen to be superior (of 
cour e. in this particular case the weight penalty snould aJso be considered). 
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FI ,. 11. Angular distribution or the shear stress To, (at the outermost layer interrace) in an external 
construction system. illustrating the combined effect or the modulus of the reinforcement material 
and thickne on the angular stress distribution. Stacking sequence or the bar: [90° 90° 90° 90°] 

(orthotropic). 

The reinforcing bar can also change the angular distribution of stress. Figure 11 shows the 
angular distribution of r~z at the outmost layer interface (between the 12th and 13th layers) 
for a set of reinforcement thicknesses and for the two materials considered in an external 
construction system. Although for the SMC reinforcement the maximum stress always 
occurs at the minor axis, for the steel one the maximum stress is found to be at the major axis 
for anc or thi kne es beyond about t,lt p = 6. 

CO eLUSIONS 

An ela tic olution for the torsion of filament wound cylinder of elliptical cross-section 
with variable moduJi of elasticity through the thickness (for example, owing to a varying lay
up angle) was presented. The material possesses curvilinear anisotropy, referred to the 
c ordinate system that is defined by the geometry of the filament wound body, and it is 
assumed that there are planes of elastic symmetry perpendicular to the axis of the body. The 
differential equation and boundary conditions that govern the stress function were derived 
and solved via a finite-difference technique. Specific results on the thicknesswise and angular 
distribution of stresses and di placement, and the efli ts of the stacking sequence, were 
present d. The analysis wa also applied to studying the effects of a compound bar 
construction (composite bar with an external or internal reinforcement), and it was found 
that an ext mal reinforcement reduces the maximum interlaminar shear stress by a larger 
amount. 
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