
BENDING OF A CYLINDRICALLY
 
ORTHOTROPIC CURVED BEAM
 
WITH LINEARLY DISTRIBUTED
 

ELASTIC CONSTANTS
 

By G. A. KARDOMATEASt 

(Engineering Mechanics Department, General Motors Research 
Laboratories, Warren, Michigan 48090-9055, USA) 

[Received 2 December 1988. Revise 26 June 1989] 

UMMARY 

We develop the analytical solution for the state of stress in pure bending of a 
cylindrically orthotropic curved beam with the elastic constants being linear 
functions of the radial distance r. The solution is found in a series form. An 
illustrative example shows the distortion of the stress distribution from the usual 
constant-modulus case. As a related problem, we also consider the case of a ring 
with linearly varying elastic constants through the thickness under internal and/or 
external pressure. 

1. Introduction 

THE problem of bending of anisotropic curved beams has been considered in 
the literature, for example by Lekhnitskii (1), and solutions are known for 
the case of a homogeneous beam (constant moduli and Poisson's rati 
throughout). In engineering applications of composite parts in the form f 
curved beams there is often a gradient in th el stic constants through the 
thickness. The stress distribution in tills case of variable elastic constants is 
more complicated and a solution is known only when the constants change 
along the radius according to a power law, and can be found in (2). Such a 
case does not, however, reflect the actual distribution of the moduli in 
practice; instead, practical applications are closely represented by a linear 
variation (with two non-zero coefficients) of the elastic constants through 
the thickness. In this paper we present the solution to the latter problem. 
We consider a plane curved rod under the action of bending moments. For 
simplicity we assume that the body is orthotropic and that there are no body 
forces. After deriving the governing equations, the solution is produced by a 
series expansion. Results of the analysis for an illustrated example are 
discussed. We also discuss the results for the related problem of a ring 
under internal and/or external pressure in which the elastic constants vary 
linearly through the thickness. 
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2.	 FonnuJation 
Let there be a plane rod of uniform thickness h and of unit width having 

cylindrical orthotropy and bounded by two cone ntric circles of radii a and b 
and two radial segments forming an arbitrary angle less than 2n. The beam 
is loaded at both ends by opposite moments M. Figure 1 shows a 
ros -section of the beam at the middle plane. The g neralized Hooke's law 

is written 

Err = all arr + al2 a ee, } 
E()(): a 12arr + a22 a()(),	 (1) 

Yr8 - a66 Tr(), 

where now aij = ai/r). As in the case of constant aij' the stresses and strains 
depend only on the radial distance rand T r 8 = O. Assuming that 

fo(r) 
Orr =--, a()() =f~(r),	 (2) 

r 

the only remaining equilibrium equation 

(3) 

is sati tied. The compatibility equation ne ds to be satisfied and is written 

a2(rEe8) aCrr 
ar2 - ---a;:- = O. (4) 

Now the elastic constants are assumed to be linear functi ns of r: 

(5) 

Using (1), (2), (3), the compatibility equation integrates to 

(a 22c + a22gr)r2f~(r) + (a22c + 2a22gr)rfh(r) - [a lle + (a llg - a J2g)r]fo(r) = Cr, 

(6) 

C being the constant of integration to be determined from the boundary 
conditions. 

Next, we shall solve equation (6). First we shall obtain the solution to the 
homogeneous equation. Let us represent it in a series expansion as 

kFo(r) = L ckrS 
+ . (7) 

k a 

The equation becomes 

""L Ck{[ane(S + k)2 - aue] 
k=O 

+ r[a22g(s + k)(s + k + 1) - (a llg - aI2g)j}rS 
+ 

k = O. (8) 
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We now equate the coefficient of each power of r to zero. The coefficient of 
the lowest power or r, which is ,s', gives the indicial equation 

(9) 

Thus s1,2 = ±(a I1 clazzJ1. 
From the coefficient of ,s+k we obtain 

ck[azzAs + k)Z - aile] + ck-l[aZZg(s + k -1)(s + k) - (a llg - aI28)] = O. (10) 

This recurrence relation determines successively the coefficients CI> C2,'" 
in terms of Co. Since we have two solutions corresponding to s\, S2 we 
shall denote the corresponding coefficients by Ci •1 , Ci.Z' For the root 
Sl = (a ll cla22e )4 of the indicial equation we find for example that 

_ (a llg - aUg) - a Z2gs J (sl + 1) 
Cl,I-CO,1 2 ' (1Ia)

azzAsl + 1) - aile 

and in general 

k _ n [(allg - a 1Zg ) - a ZZ8 (sl + m - :<)(Sl + m)]
Ck.l - cO. I Z (llb) 

m=1 [azzAsl + m) - alle] 

We can arbitrarily set CO,I = CO,Z = 1. 
Let us denote the two series solutions corresponding to S1,2 by Fl,z(r, ail)' 

Then the general solution of the homogeneous equation is any linear 
combination of those two independent solutions, namely 

(12) 

Before proceeding to the particular solution, let us discuss the conver
gence of the series (7). We shall us the Gauss test that requires taking the 
ratio of two consecutive terms 

Ck,..,+k I [a22e(s+k+1)z-a l le] 1 

ICk+I,..,+k+1 = [a22g(s + k)(s + k + 1) - (a 11g - aI2g)] ~ 

~ {a 22o + a= Z20 ~ + O(~)} (13)
Irl azzg a ZZ8 k e' 

From the Gauss test we conclude that the series (11) is absolutely 
convergent if la220 1> la228rl; if this condition is not satisfied, a series 
expansion in descending powers of r is needed. 

Now we shall find a particular solution. We use the relevant theory and 
obtain the general solution of (6) using both solutions Fi and Fz of the 
corresponding homogeneous equation by the method of variation of 
parameters (3). A convenient expression can be obtained as follows. The 
differential equation can be written in the form 

j"(r) + P(r)f'(r) + Q(r)f(r) = R(r), (14a) 
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where 

g	 CP(r) =	 ~ + __a-=22:2..._ R(r) = -,---- (14b) 
r a22c + a22gr ' (a22c + a22g r )r 

The particular solution is 

f2(r)R(r)	 f F1(r)R(r)
F (r) = F;(r)	 I dr - f2(r) , , dr. 

p f F1 

I 

(r)f2(r) - F1(r)F2(r) F J(r)f2(r) - Ft(r)Fz(r) 

(15) 

It can be proved by successively substituting F1,2(r) in (14a) and eliminating 
the Q(r)f(r) term that 

F;(r)f2(r) - F;(r)F~(r) = C* exp { - fp(p) dp} = ( C* r (16) 
r a22c + a22gr 

The constant C* can be found from the definition of the power series and 
the above equation for r = 1: 

00 00 

C* = (a22c + a22g ) L L {Ck.l(SI + k)CI,2 - Ck,lC1.2(S2 + l)}. (17)
k=O 1=0 

Therefore, the particular solution is 

F,,(r) = [F;(r) f F2(p)R(p) exp (fP(x) dx) dp 

- F2(r) f Ft(p )R(p) exp (fP(x) dx) dp ]/C*, (18a) 

which becomes 

Integrating gives 

F,,(r) = ~ i: i: { Ck.ICI.2 - Ck,2CI, I }r.+S1+k+I+1 = CF;(r). (18c) 
C k=O 1 0 S2 + l + 1 SI + l + 1 

So the general solution of (6) is obtained' namely 

fo(r) =	 CF;(r) + A1F1(r) + A 2F2(r), (19) 

and the stresses can now be found from (2). 
Th constants C, A 1 and A 2 are found from the traction-free boundary 

conditions of 

(20a) 
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and the condition that the stresses reduce to the pure moment M per unit 
width: rGee(r)rdr = -M, fGee(r) dr = O. (20b) 

a 

Equation (20bh is automatically satisfied once the traction-free conditions 
(20a) are. Therefore, we end up with the following system of equations: 

CF;(a) + A,F;(a) + AzFz(a) = 0, CF;(b) + A,F,(b) + AzFz(b) = O,} 
C[G;(b) - G;(a)] + A,[G,(b) - G,(a)] + Az[GzCb) - Gz(a)] = M, 

(21) 

where we define 

G, z(r) = f ck,("zls"z + k) r 12 + k+' 

, k=O (S1,2 + k + 1) , 

G*(r) =~ f f { Ck"CI,Z _ Ck,ZCI,' } (22) 
P C* k =0 1=0 Sz + I + 1 s, + k + 1 

X s, + Sz + k + I + 1 r,+S2+ k + I+ Z•
 

S, + Sz + k + I + 2
 

The above system of linear equations provides the constants C, A" Az 
and finally we obtain expressions for the stresses as follows: 

= = 
+ A "c r 1+ k - 1 + A ~ C r'2+ k - 1 

'LJ k,' z LJ k,Z , 
k=O k=O 

Gee = ~ f f { Ck"CI,Z _ Ck,ZCI" } (23)
C* k~O 1=0 Sz + l + 1 Sj + k + 1
 
X (Sl + Sz + k + l + 1)rl'I+S2+k+1
 

= 

+ A, L ck,i(s, + k)r 1+ 
k-' + Az L Ck,Z(SZ + k)r2+ 

k-', 
k=O k=O 

Concerning the displacement field we use the strain-displacement rela
tions and equations (1): 

aUr 1 aUe Ur 1 aUr aUe Ue
a;=Crr(r), ;a7i+--;=cee (r), --+---=Yre=O. (24)

r af) ar r 

Integrating (4) we obtain 

(25) 
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C being the constant that has been determined already in the above 
solution. 

Now integrate (24)) and (25) by taking into account that both eee and err Iare functions of r only, and then substitute the resulting expressions into 3 

(24h to obtain 

Ue = Cr(J - JA«(J) d(J +Mr). (26) 

Substituting in (24h gives differential equations for fl( (J) and fz(r) which 
result finally in the following expressions for the displacements: 

Ur = J erlr) dr + d} cos (J + d2 sin (J, 

(27) 

The constants db d2 , d3 correspond to a rigid-body displacement which is 
undetermined in this stress boundary-value problem; they can be found 
once the conditions of constraint are specified. Considering, for instance, 
the centroid of the cross-section from which (J is measured (Fig. 1), and also 
an element of the radius at this point, as rigidly fixed, the conditions of 
constraint 

Ur = Ue = aUe/ ar = 0 at (J = 0 and r = ro = !(a + b) 

give d2 = d3 = 0 and d) = - f err(r) drlr=ro' Thus the displacement field can be 
determined. From (27h we see that the displacement Ue consists of a 
translatory part -d) sin (J, and a rotation of the cross-section by the angle 
C(J about the centre of curvature; that is, cross-sections remain planar. 

x 

o y 

FIG. 1. Definition of the geometry and the problem 
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3. Results and discussion 

As an illustrative example consider a curved beam made of graphite
epoxy with variable elastic constants through the thickness of inside radius 
a = 1 m and b/a = 1·5. Assume that the moduli at the outer radius r = bare 
as follows in giga-pascals (notice that 1 corresponds to the radial (r) 
direction and 2 corresponds to the tangential (8) direction); 

E 1b = 8·0, E 2b = 293·0, GI2b = 3·1, V12b = 0·247. 

The corresponding compliance constants are 

allb = I/E 1b , a l2b = -VI2b/E lb' a22b = I/E2b , a66b = I/G J2b . 

Let us assume that the elastic constants vary according to (5) and the 
steepness in variations is expressed by the parameter m as follows: 

(28) 

As an example we assume that m = -0·50 which would give a ratio of 
compliance constants at the outside/inside edges equal to ~. 

First the convergence of the series solution is illustrated in Table 1, which 
shows the kth term of the series expansion of the functions FJ(r) and F2 (r) at 
r = b. The series seems to be rapidly converging in a satisfactory manner. 

Figures 2, 3 show the distribution of the normalized stresses oeeh/M and 
orrh/M through the thickness. The curves are compared with the stresses for 
constant moduJi (d shed curve), given by Lekhnitskii (1): 

k 1 k 1 
_ M [ l_c + (r)k-l l-C - k+l(b)k+l] }o - --- 1- - - c

C2krr 2b2hg 1 - C2k b 1 - a ' 
(29a)k k 

__ ~ [ _ 1- C +
1 (!.-)k-l 1- C -

1 k+l (~)k+l] 
°ee - 2b2hg 1 1 _ C2k k b + 1 _ C2k C k a ' 

where 

(29b) 

The most interesting one is 0ge(r). Due to the gradient in the elastic 
constants the stress is by absolute value 27 per cent higher at the outer 
surface (r = b) and 23 per cent lower at the inner surface (r = a) relative to 
the homogeneous c . e. The distribution does not follow a linear (as in the 

TABLE 1. Convergence of the series solution. Values of the kth term (at r = b) 
of the functions F1(r) and fi(r) (in N/m) 

k =0 k = 10k = 25 k = 50 k = 100 
0·117 X 102 -0.854 X 10-2 -0·413 X 10-4 -0'148 X 10-7 -00409 X 10- 14 

0·858 X 10- 1 0·735 X 10- 1 -0.350 X 10-3 -0·813 X 10-7 -0'191 X 10- 13 
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FIG. 2. Distribution of the stress 06R at the cross-section in a curved beam 
of thickness h for the example case c nsidered. The broken line repre ents 
the case of a homogeneous beam with non-varying elastic con tants 

throughout 
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FIG. 3. Stress distribution 0,.,. through the thickness in a curved beam of 
thjckness h for the example case considered. Th broken line represents the 
case of a homogeneous beam with Don-varying elastic constants throughout 
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straight-bar case) or hyperb lic (as in the isotropic elementary strength-of
materials case) law. The other component of stress Orr is of much smaller 
magnitude and follows the same pattern; relative to the homogeneous case 
the curve is shifted s that the stress i increas d at points closer to the 
outside edge (r = b) and reduced t wards th inside edge (r = a). This 
component of stre s is neglect d in the elementary strength-of-m terials 
theory. Figure 4 shows the variation of the normalized hoop stress ueeh/M 
at the outside (solid line) and inside (dashed line) fibres as a function of the 
steepness parameter m in (28). The resulting curve is nonlinear with a 
higher slope at the larger values of m, which means that there is more stress 
reduction or increase per unit change in moduli at the large differential 
between elastic con tants on the inside and outside edges. 

Table 2 shows the values for the Dormaliz d hoop stress uer/l/ M at the 
fibres on the outside and inside edge r = b and r = a, respectively. The 
range of the steepness parameter m in (28) is from 0 to -0·5, which in tum 
makes the ratio of the moduli at the inner and outer fibres between 1·0 and O· 5. 
The values of uer/l/M for the outer/inner fibres range from -10·56/ +13·84 
for m = 0·0, that is constant moduli throughout, to -13.64/+11.25 
for m = -0.5; that is, moduli on the inside edge being half that on the 
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Steepness parameter m 

FIG. 4. Stress at the outside edge Gee I'-b (solid line) and at the inside edge
 
Gee Ir-o (dashed line) plotted against the steepnes parameter m
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TABLE 2. Comparison of outside/inside fibre stresses in a curved beam under
 
pure moment M 

Inside/outside 
Steepness parameter moduli 

m,m- l ratio (aaa Ir~bh/M)/(a88Ir~ah/M) 

1·0 -11,82/ + 14·81 (homogeneous case) 
0·9 -12·22/ +14·19 
0·8 -12·70/ + 13·54 
0·7 -13·29/ + 12·85 
0·6 -14·05/ + 12·11 
0·5 -15·05/ + 11-32 

outside. The maximum value of the radial stress arrh/M showed a small 
variation, ranging from 1·23 for m = 0·0 to 1·19 for m = -0·5. 

A related case is the stress distribution in a ring with linearly varying 
elastic constants through the thickness under internal and/or external 
pressure. In this case Uo = 0 due to symmetry and C = 0 in (6). The solution 
follows the same pattern but now only two constants, A I and A 2 in 
expressions (19), need to be determined from the boundary conditions of 
internal (p) and external (q) pressures: 

arrCa) = -p, 

Results for the case of a ring loaded only on the inner contour (q = 0) and 
for material and radii data as in the previous curved-beam example are 
shown in Fig. 5 for the distribution of arr!p and in Fig. 6 for that of aoo/p. 
In these figures the re ults are compard with the homogeneous case 
(dashed line) which is given by Le hnitskii (2): 

=~ [(!-)k-l _(~)k+l] =pCk+1k [(!-)k-l (~)k+l] 
a rr 1 -c2k b ' a oo 1 - 2k b + r ,r c 

where c and k are given by (29b)I,2' It is seen that the radial (compre sive) 
stress arr is smaller in the case of variable moduli at all points through ut 
the thickness, whereas the hoop stress aoo at the outer edge (r = b) is twice 
that of the homogeneous case and about 25 per cent smaller at the inside 
edge (r = a). The effect of the steepness parameter m is illustrated in Table 
3 which shows the values for the normalized hoop stress aoo/p at the fibres 
on the outside and inside edges of the ring r = band r = a, respectively. The 
values of aoo/p for the outer/inner fibres range from +0·70/+6·15 for 
m = 0·0, that is, constant moduli througbout, to + 1-41/ +4·65 for m = -0·5, 
that i , moduli on the inside edge being half that on the outside. 

As for the displacements, for a ring under pressure, due to the rotational 
symmetry we have C = 0 and Uo = 0 and the displacement U r has radial 
dependence only. From (27)11 using the series solution (23) for the 
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TABLE 3. Comparison of outside/inside fibre stresses in a ring under internal 
pressure p 

Insid /outside 
Steepness parameter moduli 

m, m- I ratio (aee I'~b/p)/(aoe I,=a/P) 
1·0 +0·70/ + 6·15 (homogeneous case) 
0·9 +0·77/ + 5·88 
0·8 +0,87/ + 5·60 
0·7 +0·99/ + 5·31 
0·6 +1·17/ + 4·99 
0·5 +1·41/ + 4·65 
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FIG. 7. Distribution of the displacement u, for a ring of thickness h under 
internal pressure p for the example case of linearly varying lastic 
constants. The broken line represents the homogeneous case (non-varying 

elastic constants throughout) 
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stresses we obtain the displacement 

Figure 7 shows the distribution of the radial displacement Ur through the 
thickness for the example case considered (solid line), as compared with the 
homogeneous, non-varying elastic-constant case (dashed line), given by 

k 1 
pC + [ (,)k (b)k]Ur = 1- eZk (alZ + a22k ) b - (alz - a2Zk ) -;: . 

The displacement U r is seen to be higher for the non-bomogeneou case, 
especially near the inside edge. 
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