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 the bounding surfaces ofan orthotropic hollow circular cylinder are obtained using 

the Hankel asymptotic expansions for the Bessel functions of the first and second 
kind, Such a load may be constant temperature, constant heat flux, zero heat flux, 
or heat convection to a different medium at either surface. The material properties 
are assumed 10 be independent of temperature. A constant applied temperature at 
the one surface and convection into a medium at a different temperature at the 
other surface is used to illustrate the variation ofstresses with time and through the 
thickness in the initial transient phase. 

Introduction 
Meeling the need for materials which can function usefully 

at different temperature levels is one of the most challenging 
problems facing our technology. The difficulty is compounded 
by the fact that operating conditions involve not only elevated 
lemperature levels but frequently also severe temperature gra­
dients. Such temperature differentials may produce thermal 
stresses significant enough to limit the material life. Some of 
the more important applications of fiber-reinforced composites 
involve the configuration of a hollow cylinder, typically pro­
duced by filament winding on a cylindrical mandrel. For ex­
ample, composite tubes of considerable thickness could be used 
in such parts as automotive suspension components. The man­
ufacturing stage includes a thermal treatment phase, during 
which lhermal stresses of considerable magnilude may be gen­
erated. Other applications may be for launch tubes or landing 
gears. 

Relevant work on understanding the thermally-induced 
stresses in such configurations was done by Kalam and Tauch­
ert (1978), Hyer and Cooper (1986), and Avery and Herakovich 
(1986). These studies dealt with the steady-state problem. A 
solution to the transient thermal stress problem was derived 
by Kardomateas (1989). This solution involved a series ex­
pansion of Bessel functions of the first and second kind and 
it is valid only beyond a certain time value. This is because 
the series expansions cannot be used for large arguments; small 
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time values require including an increasing number of terms 
and therefore large arguments. This paper gives the solution 
for this case of the very beginning of applying the thermal 
loads (the initial phase of transient thermal stresses). The anal­
ysis is limited to orthotropic tubes, (for example, composite 
tubes with the fibers aligned circumferentially). The material 
properties are assumed to be independent of temperature, the 
stresses not to vary along the generators and that there are no 
body forces. 

In this paper the body is assumed to be subjected to any 
kind of thermal load such as constant temp'erature, constant 
heat f1ux, zero heat f1ux, or heat convection to a different 
medium at either surface; in this respect this paper also extends 
the work by Kardomateas (1989), which was done for the 
specific case of a constant temperature on the one surface of 
the cylinder and heat convection to a different medium at the 
other. We shall present an example for the distribution of 
stresses and displacements in the initial phase of transient 
stresses, where it is assumed that one surface of the cylinder 
is at a constant temperature and at the other there is heat 
convection into a medium at the reference temperature. 

Derivation of the Governing Equations 
Consider a circular cylindrical shell r, S r S r2 whose axis 

coincides with the axis of z. The initial (reference) temperature 
is assumed to be zero. The thermal problem consists of the 
heat conduction equation 

Ke2:~,t) + ; aT~~,t)) 

iJT(r,t) 
(r l <r<r2'/>0), (la)at 
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where K is the thermal diffusivity of the composite in the r 
direction. and the initial and boundary conditions 

T(r.t=O)=O at r l ~r~rz, (Ib) 

aT(r,t)
hi --- IrE'! -hzT(rht) =h)(I>O). (lc) 

ar 

anr.t)
hi ---	IrErz+hiT(rz,t) =hj (1)0), (Id)or 

where h" hz• hi, hi are constants which may be positive or 
zero (provided h, and hz, or hi and hi do not both vanish) 
and h) and hj are constants. By choice of these constants the 
general results include all combinations of constant temper­
ature, constant heat flux, zero heat flux, or heat convection 
to a differenl medium at either surface. A solution for the 
temperature field is given by Carslaw and Jaeger (1959) in 
terms of the Bessel functions of the first and second kind J" 
and Y", as follows 

... 
+ E e-KQ~'(d4"JO(ra") + ds"Yo(ra,,»). (2) 

n=1 

where ±a" are the roots (all real and simple) of: 

[hlxJ I (rlx) + hzJo(r,x)] [hixYI (rzX) ­ hi Yo (rzX)]­

-[h,xYI (r,x) + hzYo(rlx)llhjxJI (rzX) ­ hiJo( rzX)]. (3) 

The constants d, are given in Appendix A. 
In cylindrical coordinates (r. 0, z). the constitutive equations 

for the orthotropic body are given in terms of the elastic con­
stants Cij and the thermal expansion coefficients, Cli: 

Orr 

0IJ/J 

0<Z 

'8, 

'" 
'r8 
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f rr - Cl~ T 

flHJ ­ Clef. T 

fu-Cl,!>T 

"fl l 

(4) 

"fTl 

"f" 

Since the temperature field is independent of the angular 
and axial coordinates, the stresses and strains will be a function 
of rand t only. 

Following the analysis by Kardomateas (1989), the strain 
field for this class of problems is expressed in terms of the 
radial displacement VCr. t): 

aV(r,t) V(r,t)
f,,= -;;;--; flHJ= -r-; fu=C(t), (5a) 

"flf, =)'rz =)'" = O. (5b) 

There remain one equilibrium equation for the nonvanishing 
stresses: 

OOrrCr,l) + o,,(r,l) - olJ/J(r.t) = O. (6)
ar r 

Define 
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Q, = CIIClr + CJz<XIf+ CUCll • pa)
 

qz= (CII - CIZJClr + (Cl2 - Cn)Ct(f+ (Cu - CZ)Cl,. Pb)
 

q) = CUClr + CZ)ClI + C))Cl,. (7c)
 

Set 
00 

V(r,t) = Vo(r) + E e-KQ~tR,,(r). (8) 

and express the parameter C( t) in the form 

00 

C(t)=co+	 E c"e-KQ~r. (9)
,,-I 

Substituting equations (4), (5) into (6) and using the definitions 
(7), (8), and (9) results in the following differential equations: 

C II (Vo• (r) + Vo~(r») _ ~ll Vo(r) 

qz{dz+d) +qzdl + (CZ)-Cu)co 

r 

(10) 

• R,,'(r») Czz
CII R" (r) + -r- - 7 R,,(r)( 

(CZ) - Cu)c" [Jo( ra,,) = +d4" -- ­
r r 

- Q,a"J, (ra,,)] + dl" [ Yo (;a,,) 

-qta"Ydra,,)] n= I •... 00. (I I) 

Solution 

Define 

(J 2) 

(13a) 

qz ­
Vo(r) = --'-"-- [dzrln(r/r l ) + d)rln(r/rz)] 

C'l- Czz 

qz(dz+dJ) +qz{11 2C11qz(dz+d)]
+	 - z r. (I3b)[ CII-Cn (CII-Cll ) 

For CII = Cll , the corresponding solution is 

Gzo
Uo(r)=G1of+ ­

r 

(14a) 

(2q,-qz)(dz+d)+2qzd l 1 (/ ) (l4b)+	 r n r rz ,
4C II 

where G, are constants, yet unknown, which, together with 
the constants c" are found later from the boundary conditions. 

To solve equation (J I) for large arguments, we use the Han­
kel asymptotjc expansions of the Bessel functions of the first 
and second kind. For CII ~ Cn , the solution for R" is expressed 
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Cn - C Il
Rn(r)=Gln~I+Gz",.>-J+ c~+R:(r), (150)

C II - Cu
 

and for CII = Cu, the solution for R n is
 

G 2n C2l - C Il
R"(r)=G,~+-+ C c"r!n(rlr2)+R;(r). (ISh> 

r 2 II 

The function R; (r) is the particular solution of the equation 
that results from equation (II) if the right-hand side includes 
only the Bessel functions terms. For small values of the ar­
gument the function R; (r) was given in Kardomateas (1989) 
(although a specific thermal load was considered in that work, 
the expression holds true for the general thermal load consid­
ered here). 

For large arguments, we use the Hankel asymptotic expan­
sions of the Bessel functions of the first and second kind (see 
Appendix B). Employing the substitution 

p=ron; R;(r)=R;·(p), (16) 

gives the following equation for R;· (P) 

R·· '( ») R·· ( ) 
CII~ R;·-(p)+ n p P -Cntl..-T( 

t (- I)konl/tl (k)
 

k-O (2k)!(Sp)llp ...;;;,
 

X (d4n + d5n ) (sin p - 01.tP cos P + 02,tP2 sin p) +
 

+ (d4n-d5n)(cos P+0l.tP sin P+02.kP2 cos p)J, (17) 

where 

4k+1 16k 16kq, 
(18)oJ.k=ql 4k-1 - (4k-I)2; °2.k= (4k-I)(4k-3) 

and Ifl (k) is defined in Appendix B. 
The solution of equation (17) for the function R;· (P) is 

found to be 

R""(p)= ~.,n p-2k-II2COS p +s'Z p-ll-ll2sinp+
n 1.J I'k.1 k.1 

11=0 

+ PZ.2P - 2k - l/2C05 P + s1.2P - II - ll2sin p. (19) 

The coefficients pic I' 511, pI, 2, 512 are determined by consid­
ering the terms in the ~um ('18) that contribute to the terms 
p-2k-1/2 cos p, p-ll-1/2 sin p, p-ll'-ll2 cos p, p-ll-ll2 sin p in 
the right-hand side of equation (170). We obtain the following 
recursive formulas for Pk.I' sk.I' 
PIc.ICI I=PIc- '.dCII ( - 2k + 3/2)2 - Cu ]+s1-1.2CI12( - 2k + I) 

+	 (-I)klfl(k~ (d4n +d5n ), (20a) 
(2k)!S2kon ?r 

s1.ICII =s1-I.l(CIi ( - 2k + 312)2 - Cul-PZ_I.2CI12( - 2k + I) 

(- l)k;llfl(k)OI.k (d -d ) (20b) 
+	 I 4n 5n' 

(2k)!82kon 'V 11' 

and for PZ.2. 51.2, 
PZ.2CII =PZ-I.2[C11 ( - 2k + 1/2)2 - Cu l-s1.,CII4k 

+ (" (- I)k+ Il/tICk) 

l(2k)!S2kan .J;
 
(-I)klf,(k+I)Ol.k+1 J(d -d )
 (20c) 

(2(k + I))! 8~k + I)an 'V 11' 
+	 I .en 5", 

ShCl1 =s1-1.2(CIl ( - 2k + 112)2 - CuI +PZ.ICI1 4k 

+ r(-I)hJl/t,(k) 

l(2k)!S2kan .J; 
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+	 (-J)\h(k+I)a2.hl (d +d ).
4n 5n (2Od) 

(2(k + 1)]!82(k+ I)an .J;J 
The process starts from k = I and the starting values for k 
= 0 are from equations (17) and (18) as follows: 

(210) 

(2Ib) 

=(_ 8 + 3ql) (d4n + d5n ) . (2Ib) 
8a .J;n 

A fine point of the analysis will be addressed now. The 
solution (19) is a particular solution of equation (17). It was 
derived based on the Hankel asymptotic expansions of the 
Bessel functions for values of the argument p = rOn ~ p" = 
18.0 (see Appendix B). A corresponding solution, R:s(r), for 
values of the argument p ~ PIT had been derived by Kardom­
ateas (1989), based on a series expansion for the Bessel func­
tions. Since, for a given root On the argument p ranges from 
rlOn to r~n, there may be a transition point from one solution 
to the other for R; (r) in the expression (15). Both solutions 
are particular ones and may be different. Therefore, at that 
transition point a homogeneous solution term should be added 
to (I9) so that 

R;;(p) =d6nPA1+d7"p>.l+R;· (p); R;(r) =R:; (p), (220) 

where d6n and d7n are determined from the condition of equal 
value and slope at the transition point 

R;; (p,,) = R;s(p".Ion); R:; , (p,,)on = R;s' (P,,.!0n)' (22b) 

The unknown constants Cj' Gij are found from the conditions 
of zero external traction and zero resultant force. These are 
modified from Kardomateas (I 989) to include the general ther­
mal load case. The traction-free condition, U,),ri' 1) = 0, gives 
the following two linear equations in G IO , G20, Co. 

(230) 

where 

(23b) 

and two linear equations for Gin, Gz", cn, n = 1,00, 

(CIIA, + C 12 )rt'I- IG'n + (C'IA2+ C 12 )rt'2 -IGln + AoCn = 

R"" (rp ) 
= - CIl0.R:;' (rpn) ­ C I2 nL n + ql [d4,..!0 (rPn) 

ri 

(23c) 

The condition of zero resultant axial force, P, = J'If"2 uu(r, 

1)211' r dr = 0, gives the last set of equations that are needed 
to determine the constants G i , Ci' For CII ~ Cu 

(CIl + C~I~~IJ) <Ttl; I - Ttl + I )G IO + A ,G20 +A 2Co= 
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ql [(?z-~) 
= -£0(""2) +"2 --2- (2dI -d2- d]) 

+ (d2?z + dl~)ln('2/'I) J. (240) 

2 

=- En(".'2) + (qllan) E (-I)i[d4n';J1 (',on) +d5n'i Y' (',on)], 
;-1 

(24b) 

where EO('2. '1) and En ('10 'JJ are defined in Appendix C. The 
coefficients A 10 A 2 are defined as: 

C2l - Cll) (..A1-+1 "'>'2-+ 1 f CA I = (CII + A2 + 1 ' r - r, ) or II ;>! Cu 

(24c) 
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(?z-~)	 2
-C-- [4Cn C 11 - (Cn-Cll ) 1
 

8 II
 

~l-~l 2
+	 ',In('2I,,) for CII = C ll · (24d) 

4CI1 

After the displacements have been determined. the stresses 
are found by substituting in equations (5) and (4). 

Discussion 
As an example, consider a glass/epoxy circular cylindrical 

shell of inner radius'l = 20 mm and outer radius '2 = 36 
mm. with circumferential fibers. The moduli in GN/m2 and 
Poisson's ratios for this material are listed next. where 1 is the 
radial ('), 2 is the circumferential (0), and 3 the axial (z) di­
rection: 

E) = 13.7. E2 =55.9. E l = 13.7. G 12 =5.6, GlJ =5.6. 

Gli =4.9, JI)2 =0.068. Jll) =0.277, JIll = 0.4. 

The thermal expansion coefficients are: ex, = 40 x 1Q- 6/·C, 
a8 = 10 x 1O- 6/"C. ex~ = 40 x 1O- 6

/" C. For this material, 
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the thermal diffusivity in the radial direction is K = 0.112 X 

IO- l m2/sec. Let us assume that a temperature of To = lOO·C 
above the reference one is applied at r = r1 while there is heat 
convection to the surrounding air at r = r2' In this case hi = 
hj = 0, hj = h2 = I, h] = - To, hi = h where h is the ratio 
of the convective heat-transfer coefficient between the com­
posite tube and the surrounding medium at r = r2 and the 
thermal conductivity of the tube in the radial direction. A 
typical value of this parameter for heat convection to the air 
is h = 0.15 m- I. As was mentioned by Kardomateas (1989), 
although the reference temperature is taken equal to zero, the 
analysis is the same for any initial temperature other than zero, 
in whic.h case To is the applied temperature above this reference 
value. 

In presenting the results, the nondimensional radial distance 
(i.e., through the thickness) is used, defined by 

Figure I shows the temperature and Fig. 2 the displacement 
distribution for time values ( = 0.20, 0.10, 0.05, and 0.025. 
Temperature gradients are steeper for small time values. The 
corresponding distribution of stresses am aee, and au are shown 
in Figs. 3, 4, and 5. The biggest of those is the hoop stress aee 
and its maximum value is seen to be larger for ( = 0.025 than 
for ( = 0.20 by a factor of about 1.8 (Fig. 4). The location 
of the maximum stress also changes with time. The radial stress 
an- is tensile and its maximum value at ( = 0.025 is 2.75 times 
that at ( = 0.20 (Fig. 3). For the same example case, Kar­
domateas (1989) found that under steady-state conditions, the 
radial stress is compressive throughout and the steady-state 
hoop stress is compressive if i < 0.45. This underlines the 
strong dependence of the stress distribution on the time scale. 
The axial stress au: has a maximum compressive value at the 
inner surface; at 1 = 0.025, its magnitude is 1.4 times that at 
i = 0.20 (Fig. 5). The axial component is important because 
the material is normally weaker in the directions perpendicular 
to the fibers. 

Table I shows the number of terms Nrnv, for the summation 
over n in the solution (8) that are required for convergence at 
different times. Convergence is defined here so as the successive 
last three terms are decreasing by at least an order of magnitude 
and the ratio of the last term over the first one for the stresses, 
temperature, and displacement is less than 10-'. Only three 
of the roots, a., are in the "small argument" region; the rest 
are in the "large argument" (Hankel asymptotic expansion) 
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Table 1 Number of terms N_. of tbe solution (8) required 
for convergence". Only tbree of the roots an are in the "small 
argument" region; the rest are in the "large argument" (Han­
kel asymptotic expansions) region . 

( Nmu. 
0.200 4 
0.100 5 
0.050 6 
0.025 8 
0.010 11 

'Convergence is defined here so as the successive last three terms 
are decreasing by at least an order of magnitude and the ratio of the 
last term over the first one on the stresses, temperature, and displace­
ment is less than 10 - '. 

region. In fact, in this initial phase of transient thermal stresses 
the roots in the "large argument" region are dominant and 
more terms are required for smaller time values. 
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APPENDIX A
 
The constants d" d2, d] are expressed in terms of
 

Q= f 1h2hi + f2hlhi + r\r2h2hiln(r2Iri) , (Ala) 

as follows: 
d, = (r2hjhl - r,h]hj )/Q, (Alb) 

d2= rlr2hj h21Q; d] = rlr2h]hi IQ. (A I c) 

The constants d 4., dln are given in terms 9f 

F, (an) = [hia.J, (r2a.) - hilo(r2an)] 

X Ih][hja"'!l (f2an) - hi1o(r2an») 
- hj[h,anl j (rlan) + h21o(r1an»)] , (A2a) 

F2(a.) = ( hj 2a;,+ hi 2)[h 1anl l (rlan) + h21o(r tan))2 

- (h7a;,+ h;)[hja.J, (r2a.) -hi1o(r2an»)2, (A2b) 

as follows: 

FI(a.)

d 4n =
-1t; -- [h,a. Y1 (ria.) + h2Yo(r,a.»), (A3a)

F2 (an ) 

FI(a.)
dln = 'If -- [h,a.J1 (ria.) + hr/o(r1a.»). (A3b)

F2 (a.) 

Finally, it should be noted that the case of h2 = hi = 0 is 
excluded (although it can be treated along the same lines). 

APPENDIX B 
For large arguments, we can use the Hankel asymptotic 

expansions for the Bessel functions (see, e.g., Abramowitz and 
Stegun. 1970) to obtain the following expressions 
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Jo(x) =Ao(x)sin' x+ Bo(x)cos x; J I (x) = 

Bdx)sinx-A1(x)cos x. (Bla) 

Yo(x) = Bo(x)sin x - Ao(x)cos x; YI (x) = 
-AI(x)sinx-BI(x)cosx. (BIb) 

The functions Ao(x), A,(x), Bo(x), B I (x) are given in terms 
of 

t/tdk) = 12.31 .52 ... (4k-I)2, k= 1,00; t/t1(0) = I, (82) 
as follows: 

III .;... (- J)kt/td k ) [ 16kx ] (B3a)(u) Ao(x) = ::0 (2k)!(8x)ll 1- (4k _ 1)1 ' 

III ';"'(-I)k+It/tI(k)(4k+l)[ 
(u) Adx)= f:o (2k)!(8x)2k(4k-l) I 

16kx ] (B3b)
-	 (4k-3)(4k+ I) , 

..	 (- I)*t/tl (k) [ 16kx ] 
(B3c)(u) 1/1Bo(x) = t:o (lk)!(8x)ll 1+ (4k _ 1)1 ' 

1/2 .;... (_I)k+ 't/tdk) (4k+ I) [ 
(u) B1(X)=::0 (2k)!(8x)2t(4k-1) I 

16kx ] (B3d)
+ (4k-3)(4k+ I) . 

In the numerical calculations of the foregoing series, the 
summation process is terminated at the point where the term 
becomes less than a specified small number, which is taken 
here to be 10- 16. In this way, the above series of the Hankel 
asymptotic expansion can be used to calculate the Bessel func­
tions for values of the argument x ~ 18. The series converges 
rapidly and the number of terms required in the summation 
over k is at most 13 at x = 18.0, being smaller for larger values 
of the argument. 

APPENDIX C 
For C I I ~ C11 ' the expression for Eo in equation (24a), is: 

ql(?~2+r~dJ)	 (r~-r~) 
Eo(r"r1 )= 2(C -C (C2l+CIl)ln(r2Irl)+ 

II 22)	 4(C11 - C11 ) 

x [(CIl - ClJ )Ql(d2+ dJ) + 2(CIl + Cn) [ ql (d2+ dJ) 

+	 d _ 2Cllql(d2+dJ)])
ql I C -C . (CIa) 

II 21 

For Cil = Cu. the expression for Eo is 

) - q2(r~2-~dJ) 2Eo( r"r2 - (C2J +CIl )ln (r2Irl)
8CII 

In(rzlr l ) , z	 2 
+ I (ridl+rldJ)(CIJ-C2J)QZ+rl(ClJ

8Cll 

+ C23)[(2q1 - q2) (dz+ d J) + 2q2d ,J J 

(~-~) 
+ 8C (Cn-CIl)[(Ql-QI)(d2+dl)-q2dd, (Clb) 

II 

and the expressions for En. n I, 00 in equation (27), (they 
involve an integration of R;t(P» are for the case of large 
arguments 

En = CIl[rzR,;t (r2an) - rlR,;t (r.Gn) ) + (C1l 

2 (r »)'1+ 1[d
-Cll)a;I!:(-I); 6n Pn
 

;;1 AI + I
 

+(ClJ-CIl)a;1 t 1(1lk1+ s'k,l )A;
k;O l . 2k+ 1/2 

+ (s:- - Ilk.z ) m +k,l lk+ 1/2 k 

2	 (_ I)i + I [ 

+ ~ 2k + 1/2 1lk.2 (rpn) -ll-1/2cos(rPn) 

+ s'k.z (rPn) -ll - 1/2sin(rpn) JJ . (C2a) 

The constant A; and Bk are defined by the recursive formulas 

1 
AZ= - -------An + 

(2k - 112)(2k - 3/2) k-l 

+	 2 I ;\ (rPn) -ll+Jl1sin(rp") 
~ (- ) l (2k - 1/2)(2k - 3/2) 

_ (rp") -2k+ 1/2cos(rp"») 
(C2b)

2k-l/2 ' 

I
Ok= ­

(2k - 1/2)(2k - 3/2) Bk-I + 

z [(ro ) -2k+ ll1cos(ro )
+ !: ( 1)1+ I '" I " 

;=1 (2k-1/2)(2k-3/2) 

(ro ) -zk.. 1/2sin(r.n »)+ I n r-n . (C2c)
2k- 1/2 

The initial values are 

(C3) 

The constants F;. i = I. 2 in equation (C2a) are defined 

(rp")~2+ I 

F;= A2 + I for CII"t. C22 

(C4) 
= In(rp") for CII = Cu. 

The expressions of En for small arguments were given by 
Kardomateas (1989) and are the same for this case of general 
thermal loading. 
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