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Summary. An asymptotic analysis for the initial postbuckling behavior of delaminated beam/plates
is performed. Under the assumptions of inextensional deformation, the exact expressions that govern
the plane elastic deformation of the different parts of the system avc expanded in a Taylor series in
terms of the distortion variable. Order of magnitude arguments are used to relate the distortion
variables and these are subsequently used in an asymptotic solution for the deflections and the load.
Finally, a comparison with experiments is performed.

1 Introduction

Delaminations or interlayer cracks may result from events during service life such as low
velocity impacts with particular implications for aerospace applications [1]. Also, many
potential sources for defects to occur in the finished product exist in the manufacturing
procedures [2]. A situation of fundamental interest in the current context is the behavior of
compressed structural members with the presence of delaminations. Prediction and ana-
lysis of the deformation with methods based upon the stability theory is cssential for the
study of another important related aspect, that of delamination growth by fracture mecha-
nics methods. The problem of delamination buckling is not new (see e.g. [3]—[6]); how-
ever this work differs from the other investigations in a number of ways, and, as will be
evident in what follows, the approach we have used here leads to explicit quantitative
description of the initial postbucking behavior and addresses issues of interest regarding the
phenomenological aspects of the postbuckling deformation. As a related paper, in an at-
tempt to include the effect of large (leflections, the system was modelled in [7] by employing
the large deflection (elastica) equations and solving numericaly the resulting nonlinear
equations. This paper will use the large deflection equations aiming at a direct asymptotic
solution.

In a delaminated system, which can be thought of as consisting of an aggregate of con-
stitutive parts, the conditions of geometrical continuity play a particularly important part
in the realization of equilibriumn states which follow non-linear paths. There are exact laws
governing the behavior of single members in equilibrium under arbitrary end-restraints.
They constitute the exact theory of plane deformation of elements that are elastically
restrained at the encs by means of concentrated forces and couples [8]. Generalized co-
ordinates of deformation are the distortion parameter «, which rcpresents the tangent
rotation at an inflection point from the straight position and the amplitude variable @.
We define by @, the generalized amplitude referred to the end at the upper, lower or base
part (¢ == u, [, b respectively). The initial postbuckling deformations are relatively small so
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that the exact expressions may be expanded in Taylor series in terms of the distortion para-
meter. Exact dependence of the end moments, end rotations and the flexural contraction
is through elliptic functions; however the asymptotic expressions given in this worl are in
terms of trigonometric functions (in the form of Taylor series). Based on this background,
in this paper we discuss further theoretical considerations on the phenomenological aspects
of the postbuckling deformation of delaminated beams. We also give an asymptotic solution
to the problem and present comparison with tests.

2 Analysis

2.1 Phenomenological aspects of the postbuckling deformation based
on flexural elastica assumptions

Consider a clamped plate of length L and unit width with a delamination of length I = 24,
as shown in Fig. 1. The delamination is at an arbutrary location through the thickness 7'.
Over the delaminated region, the laminate consists of the part above the delamination, of
thickness H, referred to as the “upper” part and and the part below the delamination, of
thickness 7' — H, referred to as the “lower” part. The section near each end where the
laminate is intact and of thickness 7', is referred to as the “base’” laminate.

At this point our basic postulate is that the system is ineatensional, so the buckled con-
figuration of each constitutive part is part of an inflectional elastica with end amplitude
@; and distortion parameter «; [8]. At the critical state the end-amplitudes are @;°. The
subscript ¢ = w, [, b, refers to the upper part, lower part or base laminate respectively. The
upper and lower parts are symmetrically distorted. In the following we shall also denote by
D; the bending stiffness, D; = Et3/[12(1 — v,,v;,)], &; being the thickness of the correspond-
ing part.

Suppose that in the slightly buckled configuration @, has changed by a small amount
¢, then

D, =@ + ¢u. (1)

Lower Part

Fig. 1. Definition of the geometry
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The change ¢, is assumed to be of order «,, where «, is the distortion parameter. However,
an analogous assumption is not needed for the lower and base parts. Then the end rotation
at the common section o is given by expanding the relevant expression in Taylor series in
terms of «, (notice that at the critical state w® = 0):

w = (sin (bu) oy + O(O‘uts) = (sin (puo) &y -+ (cos (Duo) oy by - O(o‘u : ¢>u2) . (2)

By the continuity condition, w is the same for both the upper and lower part as well as the
base plate. The asymptotic expansion of the end moment is similarly (again u,° = 0)

M,
pu = = = (20y cos D) oy + Oo?)
= (20,0 cos B,0) v, (2 cos D0 — 20,98in D) &, - hy + Olovy - $a?). (3)

The axial force is given by

P,
Pu — D = 4¢u2 + O(O‘uz) = 4@1;02 + 8®u0 * (I)u + 0(¢u2) . (4)
Notice that
P2
P LYY (5)

un

and the flexural contraction parameter is obtained

€y 1 1 sin 20, . .

/n——“l——(z‘g o, )Oéu + O(xy?)
B 1 1 sin29,° ) 1 [sin 29,° 2 cos 29,° 2. O 8 6
=1 - 3 @0 Ky s @0 ®,0 oy® » y + Oloy?) . )

Analogous expressions hold for the lower part (subscript 7). The expressions for the bhase
plate are somewhat different because this part is unsymmetrically distorted and are out-
lined in the Appendix.

It at the critical state the axial load in the upper part attains the Euler value, then
?,° = 7, and from (2) it is concluded that w = O(«,?). However, the load at the lower part
is below the Euler value (except if the delamination is exactly in the middle of the thick-
ness), @,° <~ 7 and so from (2), ® = O(x,). By a similar argument, o = O(«p). Therefore,
we conclude that

oy = O(xy?); oy = O(o,?). (7)
Now suppose that at the critical state buckling would occur at @,° < #. The geometrical
compatbibility condition reads

qr

Ju— 1 ———TSinw. (8)

Then from (6) the left hand side of (8) is O(«,?) while from (2) the right-hand side is O(w)-
By this argument we conclude that, under the postulates of inextensional elastic behavior,
ab the critical state the load in the upper part should attain its Euler value. In the post-
buckling stages, however, both the upper and lower parts as well as the base plate contract
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flexurally so that continuity at the common section is conserved. 1t follows that the dis-
tortion parameters of the lower part and the base plate «,, are of the order of «,* and
furthermore, the rotation at the common section is of the order of x,?> whereas both the end
moment and change in axial force is of the order of «,.

2.2 Asymplotic solution

In the following we shall develop an asymptotic solution for the early postbuckling be-
havior. In formulating the solution, we shall make use of the above arguments. We shall
also assume the system of coordinate axes for the upper and lower part located at the middle
of the delaminated segment; for the base part, outside the delaminated segment, of length
ly, = Lj2 — a = 2b, the origin is located at the specimen end. Define the normalized co-
ordinate quantities £ and 7 by & = «/a, § = y/a for the upper and lower parts, and by
& — z/b, § = y/b for the base part. The exact differential equation for the slope function
0(%) in each part is

a0,(%) 47:(%)

| la?sin04%) = 0;

dz? dz

— sin 6,(%), (9)

where 1; = Pu?[/(n2D;) for the upper and lower parts, and Iy = Pyb%/(72Dy) for the base
part is the normalized load parameter and 7,(Z) is the normalized deflection. Expand the
load, ;, end rotation, w, and slope functions, 0,, in terms of a small parameter «:

Zi = Z,-o + 87:,'1 + 8221‘2 J,** (101)

0i(x) = €0y, (x) 4 e20(x) - -+ (10.2)

w = cw, + 2wy, + -, (10.3)
03

Substituting in (9) and making use of sin § =0 —37 + -+ leads to the following differ-
ential equations for the first and second order problem for the upper part

dzole(f) z

= s Aucnggul(i’) == 0> (111)
dz?
d20,,(3) - . -
Poel®) | g m0,0l8) = — i 0,(®). (11.2)
dz?

The solution is given in terms of &y, — n Viuo =z by

041 (%) = cuy 8N kyo, (12.1)

nz)‘u 1Cu1

12.2
o (12.2)

Ous(T) = Cup SN kyo — d, 5T COS kyoT; dyo

By the arguments made before (see Eq. (7)), for the lower and base parts (assume the
base part is clamped at one end),

0u(%) = 0; 05, (%) =0, (13.1)

ng(i‘f‘) = Cq2 sin k[oi, 0[)2(’7') = Cpp sin kbo:’i’, (132)
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where ki, /A, @ =1, b. Notice that Didy, — Duuo(T — H)/H or ki — |/ — [H]
(T — H)] =, and by force equilibrium [3] Dylpoa?/b® = Dyiue + Didyy or kyy — m l/ibo
— nHb/(Ta).

Thus the slope at the common section is

w, =0; Wy - —du.,u = ¢ Sin kyy == —cpe 8IN 2k, . (14)
For convenience, define &2 — w. Then, from (10.3), an additional condition holds,
w.,:]_; Wy =My = e = 0. (15)

Next the moment equilibrium condition at the common section is considered. The end

moments are given by M; — —(D;/a) 6(Z)'|;_,. The equilibrium condition reads for the
order ¢':
2D kg — Dyiy H — DA (T — H). (16)

The conditions (14), (15) with the definition (12.2) for d, », give an expression between Tul
and ¢y,

i} 2%

Tl = — —=. (17.1)
4
Furthermore,
dyo = —1; Crs — 1/sin ks Cpo — —1/sin 2kp, . (17.2)
Now the geometric compatibility condition is
1 1
1 1 Ty )
5 0.2(%) dz — 5 0Xz)ydx = (1'a)sinw, (18)
-1 —1
and by expanding sin w, it reads for the order &2
ety == 2, (19)

The solution ¢,, << 0 in (19) is retained because of the negative sign of the deflection of the
upper part. Thus we obtain from (19) and (17):

2a

hu (20.1)
and from (16)

- D, 2(T + H)

Iy = o= 2 T (20.2)

D, =mHc,

We proceed now to the solution to the second order problem. At this point we need the
solution 0;,(x) for the differential equation of order ¢,. For the upper part
020,(2)

dz?

- = = 1 -
+ 21407[20143(‘%) = _21417[2011,2(3’7) - )‘uzﬂzgux(i) 1 "6‘ )~u07l2021('")' (21)

Notice that the last term is due to the nonlinear effects. The solution to the above equation
is found to be

0us(Z) = Cuy SIN Kyo® 4 d,, 5, % €08 kyo@ -+ d, 5,8 510 ko - €, 4, 8103 by &, (22)



170 G. A. Kardomateas

where

5, "
A7y 5 . Cu1

=T, ¢ T (23)

TY
Moreover, d, ;, is given in terms of the unknowns Zue and ¢y
2kuodu,a| = zulcuzﬂ2 + ):uzculnz + eu,axﬁkio + 2du,32 = f(zu,zy Cuz) - (24)

For the lower and base parts (¢ =/, b), the corresponding solution is

_ . _ . . Zucieﬂz
0i5(X) = ciy SIN ko + dy 5, & cos ki ; dig = . (25)
The condition (15) for w; gives from (22) and (25):
dus1 = 0; Ciy = —y 5, cob kyy; Coy = —2dy, 5, cob 2ky, . (26)

Taking into account that 0, (x) =0 and w, = w, = 0, the geometric compatibility con-
dition to the order €3 is in turn from (18)

1

[ 6u(%) 6.:(%) d =0, (27)

from which we find

ey = (2[1;: (28)

From (28), (26) and (24) we find

fius = L (29)
4a

Now the second order moment equilibrium reads

Dyblcuskuy + dy o)) — Dibcokiy cos kg + Dyacyky, oS 2k,

_ [D,z,, 2 D @;—H)} i (30)

which gives

R 2T 3 R o ZEeDtat ok (31)
da(T — H)? %3 2l (I' — H)* bHn®

Tn each case the applied force is given by force equilibrium by P; — Dyn2ly;/b* = D,n21,;/a?
-+ Dz?,;/a?. We can find the solution to higher order problems in a similar fashion. The
solution to the fourth order problem is outlined in Appendix IT. The deflections are found

0,3
from (9) by using sin (%) = 0;(z) — — #)

sions for 8;(z) from (10.3) to obtain

+ -+- and integrating the asymptotic expan-

5

7 7

‘ 3 7t
7(®) -ef@.-l(ﬂ'c’) a5 EZfem(.sc') & + a"f[@,:a(i') — 0“6(; )] dz + ... (32)

0 0 0
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Moreover, the axial displacement is given by

2 1

B bff)b?(i) % + % @ /0,,2(5-) iz — (T — H) sin . (33)
0 2

The solution obtained thus far allows obtaining an expression for d to the order ¢*. For this
purpose, the compatibility condition in Appendix IT can be used to obtain the fourth order
flexural contraction of the upper part from the known solution 6,,(Z). Moreover, taking into
account (15), (18), (19), (27), we can write the normalized shortening 5 — 6/L as follows:

< H &, (a sin 2kp0 . [l sin 2kyl,
=g — 4+ — _ | gy = - —— 34
L A {6’2 (L kL “\Z oL )| T (34)

3 Discussion of resulfs

The analysis will be used to predict the initial postbuckling behavior in illustrative cases.
Consider beam/plates of length/thickness L/T = 16, delamination length I/L = 1/2, and
delaminated layer thicknesses of H/T = 2/15, 3/15, 4/15. Let us focus on the strain at the
middle of the delaminated layer. Denoting by o the radius of curvature, the strain at the
outer surface of the delaminated layer is

= B (Eeul ot 5‘“0u2 = we 2740) = o [(C!l-lku-(l) e+ (Cuzkuo + dusy) £ + ] (35)

gy = =
* 20 2a ' 2a

Figure 2 shows the strain at the middle of the upper delaminated layer as a function of the
axial displacement for the cases of varying delamination thickness as described above.

A comparison with experiments is shown in Fig. 3. The specimens were made of 15 plies
of unidirectional (0° angle ply) prepreg Kevlar 49 of the following specifications; commercial
type SP-328, nominal thickness per ply 0.20 mm (0.008 inches), nominal stiffness £ = I,
= 75.8 GN/m? (11 x 108 psi), B, = 5.5 GN/m? (0.8 x 108 psi), ¢, = 2.1 GN/m? (0.3 x 108

% BT =4

x10

microstrouns

Upper Stroin,

BT
0.00 0.01 0.02 0.03 0.04
AxiLol Displocement, inches

Fig. 2. Strain at the middle of the upper delaminated part vs. axial displacement for the cases of
delamination thickness (H)/total thickness (7') of 2/15, 3/15, 4/15
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Fig. 3. Theoretical (solid line) vs. experimental (dashed line) strain at the middle of the delaminated
part vs. axial displacement

psi), Poisson’s ratio v, — 0.34. A delamination of length [ = 50.8 mm (2 inches) was in-
troduced by a 0.025 mm (0.001 inch) thick Tetlon strip placed in the middle of the length
between the third and fourth ply (so that /7 — 3/15) and through the width. The length
between the grips was L — 101.6 mm (4 inches). A width of 12.7 mm (0.5 inch) was used
to keep the load level small and prevent any possible bending of the grips. Compression
tests were conducted on a 20-kip MTS servohydraulic machine. They were carried out on
stroke control with a rate of about 0.8 mm per minute. The specimen was clamped at the
upper grip and a special fixture at the lower grip. The latter one was designed so that the
specimen slides into it and therefore no bending is introduced by tightening the end. To be
able to compare with the theory, the compliance of the testing machine is also needed. It
was measured from a simple compression test (without a specimen) and was found to be
0.685 x 10~4mm/N (0.12 > 10 *in /lb). Strain was measured with strain gauges at the middle
of the delaminated layer. Figure 3 shows the predicted (solid curve) and the experimentally
measured (dashed curve) strain as a function of the axial displacement. The levels of strain
for both curves are comparable.

Notice that the above analysis predicts that in the initial postbuckling stage the lower
part detlects downwards while the upper part deflects upwards. The experiments showed
indeed that both parts were deflecting in opposite directions for the values H/7' = 1/15 to
4/15 that were tested (this was verified by strain gaging the lower part and observing the
sign of the strain).

4 Conelusions

A delaminated beam/platc was analyzed on the basis of an asymptotic expansion in the
expressions of the exact theory of elastic deformation (of which the elastica theory is a
special case). Under the postulates of inextensional elastic behavior, order of magnitude ar-
guments lead to the conclusion that the distortion parameters of the lower part and the
base plate x, , are of the order ,? (where «, is the distortion parameter of the upper dela-
minated part) and furthermore, the end rotation is of the order of «,? whereas both the
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end moment and change in axial force are of the order of «,. These considerations are used
in an asymptotic solution that gives direct expressions for the load and displacement.
Experimental results on the strain at the middle of the delaminated layer are compared
with the predictions of the theory.

Appendix I

The distorted curve for the base part is unsymmetric with end amplitudes @,;, @,;. To
illustrate the asymptotic expressions for the base plate, assume the simply supported (pin-
ned end) case. The amplitude at the pinned end takes the value of @,; — =/2. Suppose that
in a slightly buckled configuration the amplitude at the other end (the common section)
@, has changed by a small amount ¢,, then &, = @0 | ¢,. Then the end rotation is

X cos Dp; — cos Dy, ) ) cos @0
= b, Olo,3) — @0 4o 0T |
1) (sm bi a— ) oy + Oop?) {sm L0 - F——Y o
1 Jeos o — S 2 8P Loty + Oloute? (A1
1cos — — : )
U T B — ) B — g | P T ) |

The expression for the end monient is

M, A
Up = = (@b,j = ijj) CcoSs ¢b SOy T 0(0(!73)
Dy
7 4 ;
D0 — 5 cos DY - oy + | cos Dy — | D0 — 5% ¢y 4 Oocpdp?) - (A2)

The axial force for the base plate is the applied axial force which at the critical state is given
by

pPojz2 7 \*
20 = = (o0 — ),
# =5 =7 3)

D,
and the change during the initial postbuckling is
Apr = (Poi — Dyj)* — (P, — Py)? + Oloy?) = 2( D — (2/2)] bp +- O($s?) - (A3)

From (A1) we see that in general o = O(x;) = O(«,?), and from (A 2) the end moment for
the base part is of the order of «,. Furthermore, ¢, — O(¢,) and the change in axial force
is of the order of «,.

Appendix II

The fourth order differential equation for the upper part is

&20,,(3) - _ _ ,
j(lv) ! )»uoit?@“(i') = _}“uxn?'oua(j') = ;{uzngaue(i') = 2—71.375201;1(55)
dz?
CBE) . () O
| ;»1/,1753 L(L)+ )w:,onz ul('c) _(JC) . (B])

6 2
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The solution is found to be

044(T) = Cuy SIN kyoT + dy (1T COS ko + dy, 2T SIN ko - dy 43®3 COS kyo X

+ Cyr SINB kyoT 4 €y, 407 SIN kyo T €OS kyo, (B2)
where
La?d, c2.d,
du,qa = —161,‘—0'3%’ Cu,ge — ——]—2’2_1 (B31)
u
Quo = —4]5 (;\uznzdu,zl + Zulﬂzdu,al + 6dy,5 + 2kioeu,42), (B3.2)
w0
2 3 2 3 5
CurCug A7 [ € Dy 49
Cu,a1 16 8kio ( 6 Cu 31) — 8k oo (B3.3)

and the following expression for d, ,,, which depends on the unknowns Fasy i

2hyoly o1 = AusPCur + AusPCur + Aui?2Cus + 2y 02 + 012560 01 + Ahuoly a2 - (B3.4)
The condition (15) gives the following condition for 1,,, ¢us:

Blouodiay + duiu,sst? = s Bead =0. (B4)

Similarly the solution for the lower and base parts, + =1, b, is

0:,(Z) = ¢y SIN kyoT - di & COS kyoZ -+ d; &% 8In Ky, (B5.1)
j‘[.lnzdz.ill £ o % 2 . =
di,n T; 2kiodi,41 = Ay®Ciy + App7Cir + 2d; 40 (B5.2)
i0

The geometric compatibility condition (18) for the terms of the order ¢* is now:

1 1

1
-;—foig(fc) dz z»fam(a’c) 0ua(%) dT —%fofg(;z-) dz — 0 (B6)

-1 -1

from which we obtain c,, while 1,, is in turn obtained from (B4). Now the moment equi-
librium equation at the common section for the order ¢* becomes

@

7 g P s - T — H 7!2
_"Dvﬂu,j(w)‘f | [ DIB[,’}(IH_{ 1 + Db b

. . H
65(2) 15y — (1),2,33 =B, S B

o 17
from which we obtain 4,,.
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