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ABSTRACT

Delaminated composites under pure bending can undergo snap buckling under
certain conditions of applied bending load and geometrical configuration. The
phenomenon is demonstrated experimentally and is investigated theoretically
by an energy procedure. The geometric non-linearities are included in the
Sformulation. First, a theoretical analysis is performed to model the behavior
of the system and define the conditions for snap buckling. The predicted
buckling loads are then compared with experimentally obtained data from
pure bending loading of Kevlar epoxy specimens with internal delamin-
ations. Good agreement is obtained between the experimental and theoretical
results.

INTRODUCTION

When the application of layered composites or laminates to engineering
components is contemplated, it is essential to answer not only the
fundamental questions on the strength and stiffness of the material, but also
the question of damage tolerance, 1.e. the behavior of the system in the
presence of defects. Indeed, the manufacture of composites requires
involved procedures which may result in the existence of defects in the
finished product.! Delaminations or interlayer cracks may also result from
events during service life such as when objects traveling at low velocity strike
composite laminated plates.? As a consequence, structural elements with
delaminations under compression suffer a degradation of their buckling
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strength and potential loss of integrity from possible growth of the interlayer
crack. Delamination buckling under compression has received considerable
attention,® ® and numerous studies have addressed related issues in both
one-dimensional and two-dimensional treatments.”"!® However, practical
configurations involve loading of composite components not only in pure
compression but also in bending. For example, bending is the normal service
load for the members of composite beam frame systems or the load
introduced from longitudinal impact of non-straight composite beams.’
Therefore, it is of particular interest to study the behavior of laminated
components with delaminations under bending.

Let us consider the delaminated composite beam of Fig. 1 subjected to
four-point bending. The resulting state of pure bending will introduce at the
sections adjacent to the delamination tip an effective compressive force at
the upper part and an equal tensile force at the lower part. Under this
compressive loading the upper delaminated part may buckle, after an initial
bending deformation. Subsequent growth of the delamination may follow
the instability point. This problem differs fundamentally from the usual case
of buckling under compression, where the equilibrium form after buckling is
close to the equilibrium form before buckling. This is because of the induced
initial bending deformation which makes the transition to a new equilibrium
state occur by a snap, and the new equilibrium form to differ essentially from
the initial one. On this subject there has been only an analytical study for the
case of a circular delamination in a plate under axisymmetric compression
and bending.!!

The object of this paper is to present not only a formulation and solution
for the problem of snap-through buckling of beam/plates with through-
width delaminations but also experimental data on this phenomenon. The

; o

Lower part

Fig. 1. Definition of the geometry and of the quantities involved in the non-linear model for
the post-buckled shape.
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problem is non-linear, and large deflection equations will be used in the
formulation. The test results will be from experiments on unidirectional
Kevlar/epoxy specimens.

ANALYSIS

Let us consider a homogeneous, orthotropic beam-plate of thickness 7 and
of unit width containing a delamination at a depth H (H < T/2) from the top
surface of the plate. The beam is subjected to bending moments M,. As
shown in Fig. 1, the interlayer crack extends over the interval —//2 < x < //2.
The whole structure undergoes bending deformation. At the critical value of
bending moment the delaminated layer snaps out. Thus there is a
fundamental difference from the usual case of compressed members in which
the delaminated layer bifurcates from a membrane state (state of pure
compression) to the buckled state. In the present case of bending loading, a
pure membrane state is absent, and separation occurs abruptly and in a
discontinuous manner, with a resulting snap-through of the delaminated
layer.

In systems that exhibit snap buckling, the energy criterion has been used
extensively.!! 713 As no energy is transferred to the system during the snap,
but some may be lost, it can only be expected that the system jumps from a
state of higher energy to a state of lower energy. If no energy is lost, the
minimum load at which a snap can occur is then the load at which the total
energy in the buckled and unbuckled states are equal.'* As an alternative
formulation, which should lead to an exact solution, we would have to solve
the governing differential equations and obtain the corresponding
load-deflection curve. Such an approach is extremely difficult, however,
because it should incorporate the initial deflections and the appropriate
stresses and deformations that exist in the pre-buckling state in the different
constituent parts of the system. Therefore, because of the simplicity offered
by the energy criterion, this approach will be used here,

The post-buckled shape is shown in Fig. 1. Over the region of the
delamination the beam consists of two parts: the delaminated layer (upper
part, of thickness /) and the part below the delamination (lower part, of
thickness T — H). To describe the deformation of each constituent part,
taking the geometric non-linearities into account, we use the exact theory of
plane deformation of members that are restrained elastically at the ends by
means of concentrated forces and moments. However, the first important
observation is that, owing to the bending loading, the two parts have an
essential difference, as the upper buckled layer is part of a compressive
elastica with inflection points whereas the lower part is part of a non-
inflectional tensile curve.
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To describe the deformation of the delaminated layer, which is part of an
inflectional compressive elastic curve, two variables play an important role:
the end-amplitude for the compressed film, @, and the distortion parameter,
«, which is the angle of tangent rotation at the inflection point from the
straight position.*® These are the generalized coordinates of deformation. In
the buckled form, which is assumed to be symmetrical, we denote the end
forces and moments by P, and M. In the following equations the quantities
at the right end are used (see Fig. 1). The moments and angles are assumed
positive clockwise. In terms of these two quantities, relations between the
end stress resultants, P, M, as well as other coordinates of deformation
such as end-slope, 6, and total flexural contraction, e,, can be found. The

> S

relations require the use of elliptic integrals. We define

k = sin (0/2) (1)
The first elliptic integral F(®, k) is defined by
(] d(f)
F(®,k) = A 2
(®.4) L V(1 —k?sin? ¢) (22)
and the second elliptic integral by
(]
E((l),k)zj V(1 —k*sin? ¢)dé (2b)
0

The values of those integrals at the end F(®, k), E(D,, k) are of most interest.
We denote by D; the bending stiffness of each constituent part {upper or
lower), D; = Et}/[12(1 — v,4v5,)]. t; being the thickness of the corresponding
part and E the modulus of elasticity along the x = | axis. The following five
relations define the characteristics of the post-buckled delaminated layer:!®

Axial force

P,=P=4D FX® k)/* (3a)

Moment at right end
M,=4D /HkF®,, k)cos D, (3b)

Rotation at right end
6, =0=2arcsin(ksin®,) (3¢)

Flexural contraction

_n_ol 1 E@,k)
)Lu_eu/z_z[l o] k)] (3d)



Snap buckling of delaminated composites 67

Flexural elastic energy
U, =8(D /) F(®,, k)[E(®,, k) — F(®,, k) cos® (a/2)] (3e)
Furthermore, the deflection at the middle, normal to the central line of thrust
(direction of axial forces P ), Y. is found from
Yom = 2k/(D,/P)(1 — cos ®,) (4a)

It should be noted that at each point x there corresponds a value of the
variable @ (amplitude for compressive members); the value at x =//2 is @ .
Furthermore, at the inflection point, where the slope 8 =«, the value is
® = 7/2 and at the middle x = 0, where 6 =0, ® = 0. With these remarks in
mind, the deflections at all other points can now be obtained from

um

y(x) = 2k /(D,/P,)[cos D(x) — cos D] (4b)
where ®(x) is found from the implicit relation
F(®(x), k) =2F(®,, k)x/I (4c)

To describe the deformation of the lower part, which is part of a non-
inflectional tensile elastic curve, i.e. an elastic curve with curvature always of
one sign, the generalized coordinates of deformation are the amplitude
variable W(x) and the distortion parameter ¢ of tensile non-inflectional
members." > The end stress resultants P, = P and M, as well as the end slope
0 (same for both parts), the flexural contraction e, and the energy U,, are
given by relations similar to (1){4). We define now the first elliptic integral

G(\W,¢) by
, v dy
G ) = ] = 5
1) L /(1 —sinh?(¢/2) sinh? ) (58]

and the second elliptic integral for the tensile lower part by
v
H¥,5)= f \/(1 — sinh? (¢/2) sinh? ) dys (5b)
¢]

The value of the amplitude variable at the left end, denoted by ¥, and the
corresponding values of the above integrals, G(*V,, ¢) and H(\Y', ¢) are of most
interest (Fig. 1). The characteristic relations for the lower part are given as
follows:

Axial force
P =P =4DG*\¥ ¢/l (6a)

Moment at left end

£

M, =4D,/HG(¥P,,e) sinh2

cosh ¥, (6b)
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Slope at left end

§, = —0 = 2arcsin (sinh g sinh lyl> (6¢)
Flexural contraction
H(Y ,¢)
L=efl=21—-——— d
1 el'[ l: G(\PI,I;):| (6 )
Flexural elastic strain energy
U,=8(D,/))G(Y,, e)[G(‘P,, g)cosh? % — H(VY,, 8)] (6e)

Moments and angles are again assumed to be positive clockwise, so the
values at the right end are of opposite sign. To obtain the deflections we
integrate the relation for the slope ¢(x) and the deflections Y(x):

d Y (x) = sin ¢(x) dx (7a)

by using the following two expressions that are essential in deriving the
theory of the tensile large displacement elastic curve:'?

sin? 2% _ G2 8 ginh? W(x)
2 2
D, (d¥(x)\* _ A PR
P( P ) =1 —sinh ésmh Y(x) (7b)

Now, using the condition that at the end x = —//2, ¥ = W,, we obtain the
deflections from

; \:/(D“«"Pl‘) [cosh W(x) —cosh P, ] (7c)

Y (x)= 2sinh
where ¥(x) is found from the implicit relation
G(W(x), &) =2G(Y,, e)x/! (7d)

Furthermore, the deflection at the middle, x =0, at which point ¥ =0, is
found from

Y, = 2sinh (¢/2)/(D/P,)(1 — cosh ¥,) (Te)

We now formulate the problem. The compressive end force at the upper
delaminated part and the tensile end force at the lower part are equal due to
the pure bending loading, resulting from (3a) and (6a):

H3FY®, k) — (T — HPGXY,,¢) = 0 (8)
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The deflections of the upper and lower parts should be geometrically
compatible. Therefore an additional condition is derived from the
compatible shortening of the upper and lower parts

Pl Pl

- T = o = et =70 9
(1 "13"31)w(T_H)E1 +(1 "13"31)‘4,1“{1 + e 9)

e

u

Substituting (3a), (3¢), (3d) and (6d) into the above equation, we obtain

= 2 2
2[1 _H(Y, c):ll - 2[1 B }?(@u,k)}l _ HPTF®,k)
G(¥,,¢) A®,, k) 3T — H)

—2Tarcsin(ksin® )=0 (10)

The corresponding applied moment M, is found from a moment
equilibrium at the common right end section (it should be ncted that the
moment at the right end for the lower part is of opposite sign from that in

(3¢)):
My=M,— M, + P(T/2) (11a)
Substituting (3a), (3b) and (6b), we obtain

E

M ey A8,
O 31 — v, V54

l:H3kF‘((Du,k) cos®, —(T— H)*G(¥,,¢) sinh-gcosh

- TH3F2((I)“.1(");’(2I)i| (11b)

To be able to apply the energy criterion we need the expression for the
total energy of the system. The total strain energy of the system is that due to
both bending and compression or tension of the upper and lower parts:

—U + Pkl — Vi3V3)) LU +P121(1 — Vi3V3y)

U S 2
o ! 2EH ! 2E(T— H)

(12a)

where U, U, are given by (3e) and (6e).
As the initial energy of the segment of length /and thickness 7 under pure
bending is given by

Up = 6M3I1 = v, 3v3 J(ET?) (12b)
we have to fulfill the condition of

Ui £ Uy (12¢)
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Therefore, in the limit of snap buckling,

2E 7

e———y {” A®,, HE®,, k) — AD,, k)cos? (2/2)]
31 —vy3vyy)

54
+(T— HPG(Y,, ::}[G(‘Pl,e) coshzg— H(‘Pl,a)} PR " k)}

12 AT—H)
, i~
— 6M2(ae, 9)(#}?“) ~0 (13)

where M (x,¢,0) is given by (11b).

Equations (8), (10) and (13) constitute a system of three non-linear
equations that can be solved for the distortion parameters « and ¢ and the
end slope 6.

In the solution procedure the end-amplitude values are found from (3c)
and (6c¢) as follows. If arcsin gives the principal value, as 7 < @ < 37/2, we
obtain

@, = — arcsin [sin (0/2)/sin (2/2)] (14a)
¥, =In(x+./(x*+1))  x=—sin(6/2)/sinh(e/2) (14b)

The values of the functions F, E, G, H at these end-points are found from the
elliptic integral definitions (2) and (5). Moreover, in the solution algorithm
for a certain value of the slope 0, the search for the distortion parameter ¢ is
for values from 0-01 to 0-50, whereas, in view of (11a), the search for the
distortion angle # of the delaminated layer is for values from |0] to 90°. There
may be values of the slope 0 for which a solution cannot be found, i.e. it is not
possible to find o and ¢ that fulfill the compatibility condition (10). The point
of snap buckling is defined as the first point (i.e. of minimum M, or |0]) for
which a solution to the compatibility equation (10) exists and where the
energy condition (12c) is fulfilled. The set of values («.,, ¢, 0.,) thus found
defines the critical point.

cg? Ver?

DISCUSSION OF RESULTS AND COMPARISON WITH TEST
DATA

The experimental study was conducted on specimens made of 15 plies of
unidirectional (0° angle ply) prepreg Kevlar 49 of the following
specifications: commercial type SP-328, nominal thickness per ply 0-20 mm
(0-008 in), nominal stiffness £ = E, =758 GPa (11 x 10° psi), E, = 55GPa
(0-8 x 108 psi), G,, = 2-1 GPa (0-3 x 10° psi), Poisson’s ratio v,, =034. A
delamination of length / = 50-8 mm (2 in) was introduced by a Teflon strip of
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TABLE 1
Snap-Buckling Load
H/T M., (Nm) from theory M., (Nm) from tests
1/15 0-45 0-30
3/15 5:03 4-50
4/15 10-46 9-80

0-025 mm (0-001 in) thickness placed in the middle of the length. In this study,
the delamination was introduced through the width and at specific locations
through the thickness (between plies), resulting in a certain range of H/T
values. A width of 12:7mm (0-5in) was used. The specimens had a length of
152-4mm (6in) and the distance between the outer and inner load points
(moment arm) was 254 mm (1 in), whereas the distance between the two
inner load points was 63-5mm (2:51n).

Four-point bending tests were performed in a 9 metric tonne (20 kip) MTS
servo-hydraulic machine. They were carried out on stroke control with a
rate of about 0-2mms ™!, Strain gages were placed at the middle of the
delaminated layer so that the point of snap buckling can be determined from
the sign reversal of the strain. Load-deflection and strain-deflection curves
were obtained.

Table 1 shows the values of the critical bending moment M, as predicted
from the theory, and as obtained from the experiments. The agreement is
reasonable, with the experimental load being, in general, lower. Figure 2
shows the applied moment, M, and strain at the middle of the delaminated
layer vs the crosshead displacement, o, for the case of delaminated layer

20+ Load - 25000

\
S

Strain, ps

Bending Loud, My, Nm
=)

Strain Lviooo
5000
s1- -4/ ---— Predicted Buckling Load
ro
0 T T -50C0
0.000 0.005 0.010 0.015

Crosshead Displacement, §, m
Fig. 2. Bendingload, M, and strain at the middle of the upper delaminated layer vs applied
crosshead displacement, é. The level of the predicted snap-buckling load is also indicated. The
data is for a Kevlar/epoxy specimen with H/T = 3/15.



(b)
Fig. 3. State of deformation for the specimen of Fig. 2, at the point of applied bending load (a) M, =104Nm and (b) M, =171 Nm.
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thickness H/T = 3/15. Snap buckling occurs at the point where the strain
changes sign. The level of the predicted theoretical buckling load is also
indicated, and is seen to be close to the experimentally obtained snap
buckling load.

Finally, Fig. 3 illustrates the snap-buckling phenomenon and shows the
state of deformation of the specimen whose ivad—deflection and
strain—deflection curves are in Fig. 2, for applied bending load of {1)
My,=104Nm and (b) M,=17-1Nm. It should be noted that, for this
specimen, the snap-buckling load is at about M, ,=45Nm (Fig. 2).
Moderate amounts of deflections are seen to occur.
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