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DeIaaa.IDatioD Is ODe of tbe bask defects b1beft11t to lamlaated abeD ItlVdures. Uader uaJrorm exteraaJ 
pressure sucb ddamlaalloDS may buckle alId IUMeqHatly propagate. This pbeaomeaoa Is modded bere as a 
fint approUlDatloD by eoas.lderiDI a two-4l8easioul leomdly (riDI approumalloD) aad a tbia ddamlaated 
layer. Growtb Is st1Idled by a fracture medauks-based eaef'l)' rdease rate critmoa. 005ed-form expressiODS for 
tlte critk:aJ pressure aDd ,rowtb eoadllloDl are deriYed, as weD as for tbe cutoff level of tbe delamJaatloa raalll 
IIefow wbkb local ddamJaalloD backllal cuaot take place. A formalalloa lbat aceouats for tbe effects of 
trallS\'erw shearial forces Is also preseated. 

A 
Introduction 

CLASS of important structural applications of fiber-re­
inforced composite materials involves the configuration 

of laminated shells. Although thin plate construction has been 
the thrust of the initial applications, much attention is now 
being paid to configurations classified as moderately thick 
shell structures. Such designs can be used in oomponents in the 
aircraft and automobile industries, as well as in the marine 
industry (e.g., composite hulls for submersibles). Moreover, 
composite laminates have been considered in space vehicles in 
the fonn of circular cylindrical shells as a primary load-carry­
ing structure. Besides composite structures, this problem 
could be of more general interest, as related to the adherence 
of preventive surface coatings, for example, to enhance corro­
sion and wear resistance. 

The study of delamination behavior is needed, because when 
the application of layered composites to engineering structures 
is contemplated, it is essential to answer not only the funda­
mental questions regarding the strength and stiffness of the 
material but also the question of damage tolerance, i.e., the 
ability of the system to resist failure in the presence of defects. 
The manufacture of composites requires involved procedures 
that may potentialJy result in the existence of defects in the 
finished product. I Indeed, local spalling or debonding may 
occur due to manufacturing imperfections or due to service 
loads that may include moisture-induced stresses and defor­
mations, impact, and vibrations. As a consequence, structural 
elements with delaminations under compressive stress fields 
suffer a degradation of their stiffness and buckling strength 
and potential loss of integrity from possible growth of the 
interlayer crack. 

Delamination buckling in plates under compression has re­
ceived considerable attention and numerous contributions 
have addressed related issues in both one-dimensional and 
two-dimensional treatments.2-6 However, delaminated shells 
have not yet been adequately investigated. Very few investiga­
tions have been carried out in this area. The buckling of 
stiffened circular cylindrical shells, with two unbonded or­
thotropic layers, is reported in Ref. 7. In this work it was 
assumed that the layers do not separate during buckling, Le., 
the defonnation of both layers was assumed to be the same. 
The case when one of the two unbonded orthotropic layers is 
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circumferentially cracked was also examined. The results in 
Ref. 7 for a cylindrical shell made of aluminum with ablative 
outer layer and subjected to hydrostatic pressure show that the 
ablative layer had to be increased by 500/0 in thickness in the 
damaged (debonded) cylindrical shell to obtain the same buck­
ling load as that of the perfect cylindrical shell. In Ref. 8 the 
effect of longitudinal delamination in a thin laminated cylin­
drical shell on the critical external pressure was examined, but 
this study presented only the governing equations with some 
numerical results for thin shells and did not provide c1osed­
fonn solutions nor did it consider the problem of growth of 
the delamination. Likewise, very interesting numerical results 
were presented in Ref. 9 for the instability of symmetric cross­
ply delamit:!ated thin cylindrical shells. 

One of the cases of delamination buckling is the bifurcation 
(adjacent~uilibrium) mode, which occurs with delamina­
tions near the outside surface of the shell. The other case, 
which involves the configuration of a local debond near the 
inside surface of the shell, differs fundamentally from the 
usual case of beam or plate buckling under compression where 
the equilibrium fonn after buckling is close to the equilibrium 
fonn before buckling. This is due to the inherent curvature in 
the shell geometry that makes the transition to a new equi­
librium state occur by a snap and makes the new equilibrium 
fonn to differ essentially from the initial one. On this subject 
of snap through delamination buckling there has been a recent 
study in the case of plates under pure bending (snap through 
buckling occurs because of the induced initial bending defor­
mation).IO 

The thin film model approximation was first introduced by 
Chai et al.2 for rectilinear plate geometries. Such first approx­
imation analyses are useful because the results are quite simple 
and illustrative of the results for the more complete models. In 
this problem, besides the two-dimensional approximation 
(ring geometry), an additional approximation is made regard­
ing the thickness of the delaminated layer, Le., the unbuckJed 
portion of the shell has been considered "infinitely thick" 
with respect to the delaminated layer. The closed-form expres­
sions derived allow a direct assessment of the effect of location 
of the delamination through the thickness and its size on the 
buckling characteristics. 

Analysis 
In the present study, the configuration under study is repre­

sented in Fig. I and consists of a homogeneous, orthotropic 
ring of thickness h. and of unit width containing a single 
delamination at depth hi from the top surface. The configura­
tion is subjected to a unifonn pressure load p. The delamina­
tion is symmetrically located over the range - 60 < (J < (Jo· Over 
this region, the structure consists of the part above the delam­
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ination, of thickness h" referred to as part I, and the part 
below the delamination, of thickness hl/' referred to as part 
/I. The remaining part of the structure that is intact and of 
thickness h, is referred to as the "base sheU" and the subscript 
S is used. The laller is extended over the range - (11" - (0) 

<6, < (11" - (0), The line 6 '" 0 is the same for parts I and /I but 
is diametrically opposite for the "base shell" (Fig. I). 

The laminate is loaded by a uniform pressure P that in tum 
creates a compressive hoop stress field; at the critical level we 
assume that local buckling of the delaminated layer only (pan 
I) occurs, tre lower part /I and the base shell undergoing no 
additional 6· ~ependent radial displacements, except possibly 
for a uniform contraction. 

Denote by w;(6) the radial and by Vj(B) the circumferential 
displacements of the midsurface of each part. The correspond­
ing resultant internal forces and moments are denoted by 
T',,(B) and M;.t.6), respectively. In the following, R denotes the 
midsurface radius of curvature, taken the same for all three 
parts. An additional quantity that will be used is the midsur­
face rotation fJ; defined by 

fJj '" (1/R)(v; - w;.,) (Ia) 

The prebuckling state of uniform external compression P is 
characterized by the displacement field: 

R Ip(1 - I'll"ll)
vP(6) = 0, wP(6) = Wo = 

£lh, 

ff; (6) =0, i = I,ll,s (Ib) 

In denoting the material properties we ha\'e used the subscripts 
I for the radial direction and 2 for the circumferential direc­
tion; hence, £1 is the modulus of elasticity along the circum­
ferential (normally reinforcing) direction. There is also a pre­
buckling internal resultant force and moment field: 

T:(6) = - pR (hi / h,), M:(B) = 0, i = I,ll,s (Ic) 

The buckled shape of the film is now represented by the 
displacement field, where the superscript Q represents the addi­
tional (to the prebuckled state) quantities: 

wi(6) =A cos(1I"/6Q)8, vi(6) = B sin(1I"/60)8 (23) 

For the other parts 

wii(fJ) = w: (6) = - A , vu(6) = v,·(6) = 0 (2b) 

Notice that this displacement field satisfies the kinematic 
boundary conditions at the interface since all three parts have 
the same displacements and rotations, i.e., fJ;(60) = 0, w;(6o) = 
- A, and vj(60) = 0, for i =1,II,s. 

The nonlinear differential equations of equilibrium (nonlin­
ear Donnell shell theory) to be satisfied for each part are lJ 

RT;,., + M;'., = 0 (3a) 

(3b) 

where PI =p for part I and for the base shell, and P, = 0 for 
part /I. 

In the previous equations, the resultant forces and moments 
for each part can be found from the displacement field as 
follows: 

DELAMINATION BUCKLING IN SHELLS 

The linear form of the resultant force/moment-displacement 
equations is used since, in linear stability analysis, terms 
quadratic or cubic in w,· and vr are omitted because of the 
smallness of the incremental displacements. 

The displacements in the previous relations are both the' 
prebucking and buckling, Le., 

(Sa) 

Since the post buckled shape is a perturbation of the prebuck­
ling state, the additional quantities are of first order (can be 
infinitesimally close to the initial state). Therefore, substitut­
ing the expressions for the resultant force and moment into the 
differential equations of equilibrium and retaining first-order 
terms, we obtain 

h l w·, + v~ + -'-l(v~ - WM) = 0 (Sb). . 12R' . 

h l W 
--1 v_-w_ - w +V, -- v,-w" = (Sc)I (. .) (. .) 0 (. .) 0 
12R .~, 'R" 

Using the expressions for the displacement field of Eq. (18) 
in the first of the previous relations gives for the buckled layer 

l 

( 
hl )11"~( h r)A=-BI+-I
-- 1+-1-- (6)

l2R l 6 12R l ~ 

Finally, substituting Eqs. (18) and (6) into the second differ­
ential equation, Eq. (Sc), gives the critical conditions as fol­
lows: 

(7a) 

or, from Eq. (lb), the critical pressure 

p _ £1 h1hl(r _ I) (7b) 
er- 12(1-I'111'1I) R) ~ 

In the previous analysis, the Donnel shell theory equations 
for dead loading were used. If the equations for fluid-pressure 
loading are employed,lI the last term in Eq. (Sc) would be 
wo(w· + w.~)/R instead of - wo(v.~ - w,~)/R. Following the 
same steps as before would lead to the critical pressure 

£1 h1hl(r )!( hI )p - - --I 1+-- (7c) 
cor - 12(1 - I'llI'll) R) ~ 12R l 

i.e., a smaller value by the factor 1/[1 + (hl/12R 1)]. The 
correction is insignificant for thin delaminations (hi -C R, h,), 

Now let us consider the question of delamination growth. 
As long as the load or, alternatively, the compressive hoop 
strain in the base shell E is below the critical value, Eer = wOcr/ 

s 

(4) 8, '" D 

Fli. I DennltloD or tb~ ceo_try. A d~lamJDatlon sJ.u ±'o ulsls al 
a d~ptb hi rrom tb~ oul5ld~ surface. 
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r, the delamination does nOl lose stability. For f > fer the 
delamination buckles, and the buckling mode is given by Eq. 
(2a) in terms of the constant A that represents the buckling 
level and can be detennined from compatibility requirements 
in terms of the compressive hoop strain in the base shell f and 
the critical one fer since f = fer + A / R. In this way the energy 
release rate G = G(OO,fer ) is a fun~tion of the compressive 
strain in the shell, and G can be plotted as a family of curves 
for each value of the strain level (or alternatively A). A similar 
analysis was employed in Ref. 6 for delaminations in plates. 
The complete post buckling solution taking geometric nonlin­
carities into account (such as in Ref. 4 for a plate configura­
tion) would provide a more accurate description of delamina­
tion growth. Pending such a solution, we use the present 
buckling analysis to obtain insight into the growth problem in 
the context of the present approximate formulation. Further­
more, if the eigenmode from the buckling solution (zeroth 
approximation) is used to start the iteration cycle in Newton's 
method of computing numerical solutions for the nonlinear 
governing equations,l2 it has been shown lJ that the zeroth 
approximation for the post buckling pressure-deflection curves 
can compare well with the converged Newton's method. 

Define a reduced tnlckness quantity: 

h 2 

t ---' ­ i = I,I/,s (8)
1- 12R 2' 

The strain energy in the buckled layer consists of the exten­
sional energy (due to TtII ) and the bending energy (due to M tII ) 

and is given by 

U = (I - 1'121'21) J'" T.J/O)R dO 
I 2Eh tfI\' 

I -'0 

+ 12(1 - 1'121'21) J'" M 2 /O)R dO (9a)2Eh 3 tfI\ I 
I -10 

Using Eqs. (6), (4), (7a), and (2a) results in 

VI = Eh, A 2_'_1_(1 _1O?)200 (9b) 
2(1 - 1'12"2I)R I + 'I /fa 

Since for parts 1/ and s. 

(lOa) 

(lOb) 
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we obtain 

The potential energy IT is 

IT(Oo) = VI + Vl/ + Vs - WE (l2a) 

where WE is the work of the external load. Since the load 
remains constant, WE = 2(VI + Vl/ + Vs) and 

IT = - (VI + Vl/ + Vs) (l2b) 

Since the incremental delamination growth is R dOo, the energy 
release rate is 

I em 
G= (13)

R dOo 

Taking into account hl/ = hs - hI and using Eqs. (9-13), we 
obtain the energy release rate 

lG = Eh A 2 [_tl_(1O? _I)(I + 310?) + 2] (14) 
2(1 - 1'121'21)R 2 I + 'I /fa /fa 

If we adopt the growth criterion of a critical level of the 
energy release rate Ge , then the previous equation can be used 
to assess the growth conditions for a given delamination range 
80 in terms of the midpoint deflection of the buckled layer A 
or, equivalently, the additional compressive hoop strain in the 
base shell, t:",s = A / R . 

Transverse Sbear Effects 
In studying stability problems of composite materials, con­

sideration should be given to the effect of the transverse 
shearing force that is introduced in the process of buckling 
deflections. This is because of the relative low ratio of shear to 
extensional modulus of composites as opposed to that of their 
metal counterparts. Transverse shear effects in delamination 
buckling of composite plates have been considerd in Ref. 3. 

An accurate description of transverSe altar erfect woUld 
involve using higher order shell theories. 14•u For the present 
study we employ a first-order shear deformation theory. The 
displacement field throughout the delaminated layer W(r ,8) 
and V(r ,8) is described in terms of the mldsurface displace­
ments ...(8) and v(8) and the additional rotation function ~B> 
so that 

W(r ,8) = ...(8), V(r ,8) = \1(8) + '1Yt<B> (IS) 
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,~ .----------------------, 

,.­

t Delamination size, 60 (deg) 

60 ,illilial 

FiI." EDuI)' release nIt n delamiaalioD size '0 for several mua 
of mklpoJDI dtntct.loa of tht ddamiuled Ia)'a-. AD hlitial dtJaaUu­
dOD Au of I. ~ SO aad a IblckDtSS of hI/h. = 1/30 w~ assumed. 

where" is the thicknesswise coordinale from the midsurface. 
Using the nonlinear strain definilions in the expression for the 
strain energy and Ihe principle of stalionary 10lal polenlial 
allows the derivation of the governing equal ions for the non­
Iienar case under consideralion in the same fashion as for the 
usual linear case. IS 

Three nonlinear differenlial equations of equilibrium, to 
be satisfied for the delaminaled layer, are found by this ap­
proach: 

T,..• + T,. = 0 (16a) 

T,. + RN"/1,, - T,.., = - pR (16b) 

M,.., - RT,. = 0 (l6c) 

The resullanl forces and momenls in the previous relations are 
defined as 

"/2 J"/2T,. = a,. d'1, N,. = ~ d'1 (l7a)J-/1/2 -"I2R + '1 

"12 JII/2
M,. = a,." d", T,. = r,. d'1 (l7b)J- /112 - /112 

Therefore, in this case the resullant forces and moments can 
be found from the displacemenl field as follows: 

£2 [R + hJ2 ]T;,= (1-"12"21) to. R _ h;/2(W; + v/., - Ry,.,) + h;y,., (ISa) 

R + h;/2 ] 
(18c)+ to. R _ h,/2 y,., 

/ R + h l /2
T,. =G I2 to. (w.. , - V; + Ry,) (18<1)

R - hl 12 

The classical shell theory corresponds to R y,(0) = - (w. - V 

+ wo.,) = R{J. In general, the previous equalions becom'e the 
classical shell theory, EQs. (3) and (4), if we substilute N,. with 
T,.IR. 

DELAMINATION BUCKLING IN SHELLS 

In lhe prebuckling stale 

N2. £1 hI"'0 =0, ,. = 2 2 Wo (19)
(I - "ll"ll) R - hI 14 

Using lhe same form for w(O) and v(O) as in EQ. (2a) and 
selling 

~(O) = C sin(...1(0)8 (20) 

we obtain from EQs. (16) and (18) the governing equations for 
lhe first-order Quantities as follows: 

w.; + vj, - Ry,~,. + (hllq)y,~,. 

+ Glrt l - "121'21) (W; _ v. + R~ = 0 (2Ia)£ . 

• • R.I.. hI.!." Gdl -1'121'21)(. • R.I.")
W +v,- ",+-",- w_- v,+ '" . 'q' E .-. . 

NO,.(I - "121'21)+ (v·, - w':..) = 0 (2Ib)Eq . .­

E (!!l- _I)(W; + v~ - Ry,.,.)
Gdl - "/21'21) qR ., . 

- (w.; - v· + R~ = 0 (2Ic) 

where 

(22a) 

Set 

(22b) 

The first and third equilibrium equations, Eqs. (2Ia) and 
(2Ic), give 

(B + Ak)(1 + ~) =CR (23a) 

(A +Bk) =CR~[GI2(l-1'121'21~ ~ _!!l- + I] (23b) 
60 £2r (I +~) qR 

Substituting in the second equilibrium equalion, EQ. (21 b), 
gives the critical load from 

t{,= (1- ~:1'21)R(~ -I) 
x (hI - Rq) (24a) 

(I - [£2r/Glrtl - "12"2,'#-oRqJ(hl - Rq) I 

Hence, from Eqs. (19) and (Ib), lhe critical pressure including 
transverse shear effecls is 

Discussion of Results 
Depending on the delamination size and localion through 

the thickness, local buckling of the delaminaled layer may not 
always occur before buckling of the entire shell. The critical 
pressure for buckling of the entire struclure (global buckling 
pressure, Palo) is given byl6 

E2h; 
(25)P aJo = -4(-1--"""""="--'12"'-2-1)-R-J 
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This may well be below the critical pressure for local delami­
nation buckling [Eq. (7b»). 

This concept is illustrated in Fig. 2, which shows the critical 
buckling pressur~ vs delamination range 60 for various loca­
tions of the delamination. For hi/h. = 1/30, local delamina­
tion buckling cannot occur for 60 less than about 3.5 dc:g; for 
hi/h. = 2/30, loca' delamination buckling does not take place: 
for 60 less than about 7 deg. For hi/h. = 4/30, the cutoff 
range is increased to 13.5 deg. 

For delamination ranges beyond this point, the critical pres­
sure is strongly dependent on the size: of the ddamination, 
rapidly dropping with increasing 60• By equating Eqs. (25) and 
(7b) we can find the cutoff angle 8Ot: below which delamination 
buckling does not occur: 

6 _ 1fhl (26)
Ot: - .J3h} + hI 

In producing the results of Fig. 2, we have assumed a 
composite circular cylindrical shell of thickness over mean 
radius ratio h./R o =0.05. It is supposed to be made, for 
example, by filament winding, with the fibers oriented around 
the circumference. The moduli in GN/m2 and Poisson's ratios 
used (typical for a glass/epoxy material) are listed next, where 
I is the radial (r) and 2 is the circumferential (6) direction: 
£] = 57.0, "1] = 0.068, "21 = 0.277. A uniform pressure p is 
applied at the outside boundary. A delamination of angular 
range 60 exists at a depth hi from the outside surface. 

Figure 2 also shows the effect of the location of the delam­
ination through the thickness. For the same delamination 
range 60 the critical load decreases for delaminations located 
closer to the outer surface (i.e., smaller hi/h.). For hi/h. = 21 
30, the critical buckling pressure is four times the one for 
hl/h, = 1/30 for a ddamination of 60 = 10 deg. 

Figure 3 shows the buckled configuration corresponding to 
the assumption of Eq. (13) for the buckled shape. Finally, Fig. 
4 shows the energy release rate as a function of the delamina­
tion size: 60 for specific levels of midpoint deflection. An initial 
delamination size: of 80 = 5 dc:g and a thickness of hI/h. = 
2/30 were: assumed. The energy release rate has bc:c:n normal­
ized with the quantity £2h./(1 - "12"21). The rapidly dropping 
o with delamination size indicates that a growth criterion
 
based on a critical energy release rate would more likely
 
predict stable growth of the delamination for this particular
 
geometry.
 

Transverse shear effects can be assc:ssed on the basis of Eq. 
(24) for the critical pressure. It is seen that the effect of 
transverse: shearing forces is increased for smaller delamina­
tion ranges 80 as well as for larger delamination thicknc:ssc:s hi. 
For our example case, with moduli ratio £]/011 = 10, shell 
thickness h./Ro= 0.05, delamination thickness hI/h. = 4/30, 
and delamination range 60 = IS deg, Eq. (24) would predict a 
reduction in the delamination buckling load PCT of 0.54'" (vs 
the corresponding values without transverse: shear effects). 

On a 60 = 5 dc:g delamination of thickness hI/h. = 1/30 the 
critical load would be 0.3007. lower, whereas for the same 
delamination thickness hi / h. = 1/30 but larger size: of 60 = 10 
deg, transverse: shearing forces would reduce the buckling load 
by only 0.0807•. Since we are considering a thin shell, thc:sc: 
effects are, in general, minor. Transvc:rsc: shear effects are 
expected to be more important for thicker delaminations that 
would normally arise in thick shells. Transvc:rsc: shear effects 
are also expected to increase: the energy relc:asc: rate since the 
additional energy due to the transverse: shearing forces would 
be included.) 

Conclusions 

In summary, an approximate analytical mood was devel­
oped to study the stability ofcomposite shells with thin ddam­

inations under external pressure. Thin film approximation is 
based on regarding the unbuckled portion of the structure as 
being "infinitely thick" with respect to the delaminated layer. 
The quantitative aspects of the problem were investigated over 
a range of values for the delamination size and thickness. 
Closed-form expressions for the critical pressure [Eq. (7b») 
and growth characcristics [Eq. (14) for the energy release 
rate) are derived, as well as for the cutoff level of the delami­
nation range below which local delamination buckling cannot 
take place (Eq. (26»). Furthermore, an investigation of the 
transverse: shear effects on both the buckling load and the 
growth characteristics was performed. These: effects are found 
to cause: a reduction in the critical load (Eq. (24) for the critical 
pressure with transverse shear effects]. 
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