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Thin Film Modeling of Delamination Buckling in Pressure
Loaded Laminated Cylindrical Shells

G. A. Kardomateas* and C. B. Chungt
Georgia Institute of Technology, Atlanta, Georgia 30332

Delamination is one of the basic defects lnberent to laminated shell structures. Under uniform external
pressure such delaminations may bucklie and subsequently propagate. This phenomenon is modeled here as a
first approximation by considering a two-dimensional geometry (ring approximation) and a thin delaminated
layer. Growth is studied by a fracture mechamics-based energy release rate criterion. Closed-form expressions for
the critical pressure and growth conditions are derived, as weil as for the cutoff level of the delamination range
below which local delamination buckling cannot take place. A formulation that accounts for the effects of

transverse shearing forces is also presented.

Introduction

CLASS of important structural applications of fiber-re-

inforced composite materials involves the configuration
of laminated shells. Although thin plate construction has been
the thrust of the initial applications, much attention is now
being paid to configurations classified as moderately thick
shell structures. Such designs can be used in components in the
aircraft and automobile industries, as well as in the marine
industry (c.g., composite hulls for submersibles). Moreover,
composite laminates have been considered in space vehicles in
the form of circular cylindrical shells as a primary load-carry-
ing structure. Besides composite structures, this problem
could be of more general interest, as related to the adherence
of preventive surface coatings, for example, to enhance corro-
sion and wear resistance.

The study of delamination behavior is needed because when
the application of layered composites to engineering structures
is contemplated, it is essential to answer not only the funda-
mental questions regarding the strength and stiffness of the
material but also the question of damage tolerance, i.e., the
ability of the system to resist failure in the presence of defects.
The manufacture of composites requires involved procedures
that may potentially result in the existence of defects in the
finished product.! Indeed, local spalling or debonding may
occur due to manufacturing imperfections or due to service
loads that may include moisture-induced stresses and defor-
mations, impact, and vibrations. As a consequence, structural
elements with delaminations under compressive stress fields
suffer a degradation of their stiffness and buckling strength
and potential loss of integrity from possible growth of the
interlayer crack.

Delamination buckling in plates under compression has re-
ceived considerable attention and numerous contributions
have addressed related issues in both one-dimensional and
two-dimensional treatments.2¢ However, delaminated shells
have not yet been adequately investigated. Very few investiga-
tions have been carried out in this area. The buckling of
stiffened circular cylindrical shells, with two unbonded or-
thotropic layers, is reported in Ref. 7. In this work it was
assumed that the layers do not separate during buckling, i.e.,
the deformation of both layers was assumed to be the same.
The case when one of the two unbonded orthotropic layers is
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circumferentially cracked was also examined. The results in
Ref. 7 for a cylindrical shell made of aluminum with ablative
outer layer and subjected to hydrostatic pressure show that the
ablative layer had to be increased by 50% in thickness in the
damaged (debonded) cylindrical shell to obtain the same buck-
ling load as that of the perfect cylindrical shell. In Ref. 8 the
effect of longitudinal delamination in a thin laminated cylin-
drical shell on the critical external pressure was examined, but
this study presented only the governing equations with some
numerical results for thin shells and did not provide closed-
form solutions nor did it consider the problem of growth of
the delamination. Likewise, very interesting numerical results
were presented in Ref. 9 for the instability of symmetric cross-
ply delaminated thin cylindrical shells.

One of the cases of delamination buckling is the bifurcation
(adjacent-equilibrium) mode, which occurs with delamina-
tions near the outside surface of the shell. The other case,
which involves the configuration of a local debond near the
inside surface of the shell, differs fundamentally from the
usual case of beam or plate buckling under compression where
the equilibrium form after buckling is close to the equilibrium
form before buckling. This is due to the inherent curvature in
the shell geometry that makes the transition to a new equi-
librium state occur by a snap and makes the new equilibrium
form to differ essentially from the initial one. On this subject
of snap through delamination buckling there has been a recent
study in the case of plates under pure bending (snap through
buckling occurs because of the induced initial bending defor-
mation). !¢

The thin film model approximation was first introduced by
Chai et al.? for rectilinear plate geometries. Such first approx-
imation analyses are useful because the results are quite simple
and illustrative of the results for the more complete models. In
this problem, besides the two-dimensional approximation
(ring geometry), an additional approximation is made regard-
ing the thickness of the delaminated layer, i.e., the unbuckled
portion of the shell has been considered ‘‘infinitely thick”’
with respect to the delaminated layer. The closed-form expres-
sions derived allow a direct assessment of the effect of location
of the delamination through the thickness and its size on the
buckling characteristics.

Analysis

In the present study, the configuration under study is repre-
sented in Fig. 1 and consists of a homogeneous, orthotropic
ring of thickness h, and of unit width containing a single
delamination at depth A, from the top surface. The configura-
tion is subjected to a uniform pressure load p. The delamina-
tion is symmetrically located over the range — 6 < 8 <6,. Over
this region, the structure consists of the part above the delam-
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ination, of thickness h,, referred to as part /, and the part
below the delamination, of thickness A;;, referred to as parn
II. The remaining part of the structure that is intact and of
thickness A, is referred to as the ‘‘base shell’” and the subscript
s is used. The latter is extended over the range — (x — 6,)
<0, <(x — ;). The line @ = 0 is the same for parts / and /7 but
is diametrically opposite for the ‘‘base shell’’ (Fig. 1).

The laminate is loaded by a uniform pressure p that in turn
creates a compressive hoop stress field; at the critical level we
assume that local buckling of the delaminated layer only (part

I) occurs, the lower part // and the base shell undergoing no .

additional - “ependent radial displacements, except possibly
for a uniform contraction.

Denote by w;(6) the radial and by v;(f) the circumferential
displacements of the midsurface of each part. The correspond-
ing resultant internal forces and moments are denoted by
Ti{0) and M}(0), respectively. In the following, R denotes the
midsurface radius of curvature, taken the same for all three
parts. An additional quantity that will be used is the midsur-
face rotation f; defined by

Bi = (I/R)(v; — w;) (la)

The prebuckling state of uniform external compression p is
characterized by the displacement field:

Rp(1 — vipv)
v20) =0, wl(6)=wo= —T“‘

8®=0, i=1Lils (1b)

In denoting the material properties we have used the subscripts
1 for the radial direction and 2 for the circumferential direc-
tion; hence, E; is the modulus of elasticity along the circum-
ferential (normally reinforcing) direction. There is also a pre-
buckling internal resultant force and moment field:

Ta®) = —pR(hi/h), MR@) =0, i=11Ils (Ic)

The buckled shape of the film is now represented by the
displacement field, where the superscript @ represents the addi-
tional (to the prebuckled state) quantities:

wi(0) = A cos(x/0)0,  vi(0) = Bsin(x/0)0  (2a)

For the other parts

wiO) =wi@)= -A, VEO)=vi®)=0  (2b)
Notice that this displacement field satisfies the kinematic
boundary conditions at the interface since all three parts have
the same displacements and rotations, i.e., §;(8o) = 0, w;(60) =
- A, and v;(p) =0, fori=11ls.

The nonlinear differential equations of equilibrium (nonlin-
ear Donnell shell theory) to be satisfied for each part are!!

RTyy+ My =0 (3a)
M,’,,,, - RT,’. - RT',',ﬁ,-_., =pR? (3b)

where p; = p for part I and for the base shell, and p, = 0 for

part I].
In the previous equations, the resultant forces and moments

for each part can be found from the displacement field as
follows:

Esh;

Ti = —(W" + V, )
(1= v)R “ %
i Elhi3
My (Vio— Wiw)

T 120 = npa)R?
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The linear form of the resultant force/moment-displacement
equations is used since, in linear stability analysis, terms
quadratic or cubic in w and v/ are omitted because of the
smallness of the incremental displacements.

The displacements in the previous relations are both the’
prebucking and buckling, i.c.,

w; = 0 a = 0 a
=Wy + W, vVi=v, + (5a)
Since the postbuckled shape is a perturbation of the prebuck-
ling state, the additional quantities are of first order (can be
infinitesimally close to the initial state). Therefore, substitut-
ing the expressions for the resultant force and moment into the
differential equations of equilibrium and retaining first-order
terms, we obtain
2

A
T3 (e = Wiw) =0 (5b)

WO+ Vo +
hfz a a a a Wo . a
lZRz(v'm —~ Woess) — (W7 + V) — R (ve—wa) =0 (50)

Using the expressions for the displacement field of Eq. (2a)
in the first of the previous relations gives for the buckled layer

A—-—B(l+ Ai )1(” by f) 6
- 12R2/6 12R? 6} ©

Finally, substituting Eqs. (2a) and (6) into the second differ-
ential equation, Eq. (5¢), gives the critical conditions as fol-

lows:
Woor _ hi ( __">
=T2R1 1 2 (7a)

or, from Eq. (1b), the critical pressure

E, h,’h,(r’ )
gt U 7b
P = 20— ) RONB (78]

In the previous analysis, the Donnel shell theory equations
for dead loading were used. If the equations for fluid-pressure
loading are employed,!! the last term in Eq. (5¢) would be
wo(w? + wo)/R instead of — wy(v§ — wi)/R. Following the
same steps as before would lead to the critical pressure

S ﬁ’2—"’<12—1) (1+ h’2> 7
P =20 = ) RON\G 12R? ()

i.e., a smaller value by the factor 1/[1 + (h?/12R?)]. The
correction is insignificant for thin delaminations (h; < R, k).

Now let us consider the question of delamination growth.
As long as the load or, alternatively, the compressive hoop
strain in the base shell ¢ is below the critical value, ¢, = wo,/

6,=0

Fig. 1 Definition of the geometry. A delamination size + 69 exists at
a depth A; from the outside surface.
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r, the delamination does not lose stability. For ¢>e¢, the
delamination buckles, and the buckling mode is given by Eq.
(2a) in terms of the constant A that represents the buckling
level and can be determined from compatibility requirements
in terms of the compressive hoop strain in the base shell ¢ and
the critical one ¢, since € = ¢, + A/R. In this way the energy
release rate G = G(fp,¢,) is a function of the compressive
strain in the shell, and G can be plotted as a family of curves
for each value of the strain level (or alternatively 4). A similar
analysis was employed in Ref. 6 for delaminations in plates.
The complete postbuckling solution taking geometric nonlin-
earities into account (such as in Ref. 4 for a plate configura-
tion) would provide a more accurate description of delamina-
tion growth. Pending such a solution, we use the present
buckling analysis to obtain insight into the growth problem in
the context of the present approximate formulation. Further-
more, if the ecigenmode from the buckling solution (zeroth
approximation) is used to start the iteration cycle in Newton’s
method of computing numerical solutions for the nonlinear
governing equations,'? it has been shown'® that the zeroth
approximation for the postbuckling pressure-deflection curves
can compare well with the converged Newton’s method.
Define a reduced thuckness quantity:

2

= W i=1ILIs ®)

t;

The strain energy in the buckled layer consists of the exten-
sional energy (due to Ty) and the bending energy (due to M)
and is given by

(1 = vpavy) j"o

T2(O)R, db
2Eh, wlOR,

U=

-6y

1200 = wpry) [*
+ 2Eh } ,[_.QMM(G)R' dé (9a)

Using Eqs. (6), (4), (7a), and (2a) results in

Eh, u 11)2
U = 2 —
TS R T\ @)% o)

Since for parts /7 and s,

Eh
TH=-A—2"— Mi=0 10a
® (1 = »iz9)R ® o
EZhJ
Tg= —~A——————, My=0 10b
® (1 = wizr)R ® o}
12— v
] L] "
Vo ' HIMs « 4730

pcr/pgla
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Fig.2 Delamination buckling pressure vs delamination size ¢ for
several values of delaminstion depth A;; Pye Is the global buckling
load for the entire shell.
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Fig. 3 Form of stablility loss by local delamination buckling,

we obtain
Eshy, Eh,
Uy=—"""""A%,, U, =—""—AXx-6y) (11)
T A= n)RT " T (1= wn)R =6

The potential energy Il is
I(6o) = Uy + Uy + U; — W (12a)

where Wg is the work of the external load. Since the load
remains constant, Wy = 2(U; + Uy + U;) and

= - (Ul + Uy + U‘) (12b)

Since the incremental delamination growth is R df,, the energy
release rate is

(13)

Taking into account h;; = h, — h; and using Eqgs. (9-13), we
obtain the energy release rate

e Yo
G—z(l—"lz”zl)RzA [l+t,0}, 1 l+30% +2( (14)

If we adopt the growth criterion of a critical level of the
energy release rate G, then the previous equation can be used
to assess the growth conditions for a given delamination range
6, in terms of the midpoint deflection of the buckled layer A
or, equivalently, the additional compressive hoop strain in the
base shell, €5, = A/R.

Transverse Shear Effects

In studying stability problems of composite materials, con-
sideration should be given to the effect of the transverse
shearing force that is introduced in the process of buckling
deflections. This is because of the relative low ratio of shear to
extensional modulus of composites as opposed to that of their
metal counterparts. Transverse shear effects in delamination
buckling of composite plates have been considerd in Ref. 3.

An accurate description of transverse shear effect would
involve using higher order shell theories.!4!3 For the present
study we employ a first-order shear deformation theory. The
displacement field throughout the delaminated layer W (r,0)
and V(r,6) is described in terms of the midsurface displace-
ments w(6) and v(6) and the additional rotation function y¥{6)
so that

W(@.0)=w@), V(.0 =v(0)+n0) 15)
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Fig. 4 Energy release rate vs delamination size 8 for several values
of midpoint deflection of the delaminated layer. An initial delamina-
tion size of #g = 5° and a thickness of h;/h; = 2/30 were assumed.

where 7 is the thicknesswise coordinate from the midsurface.
Using the nonlinear strain definitions in the expression for the
strain energy and the principle of stationary total potential
allows the derivation of the governing equations for the non-
lienar case under consideration in the same fashion as for the
usual linear case.!’

Three nonlinear differential equations of equilibrium, to
be satisfied for the delaminated layer, are found by this ap-
proach:

T~'9 +T,e=0 (16a)
T” + RN”B_‘ = T,.'" = - pR (l6b)
Muyo— RT,y=0 (16¢)

The resultant forces and moments in the previous relations are
defined as

A/2 A/2 &
To= E s dn, Ne= E 2 dy (17a)
-a2 -a2R + 1
A2 A2
My = j o dn, Ty= j 70 dn (17b)
—An2 -an

Therefore, in this case the resultant forces and moments can
be found from the displacement field as follows:

B R+ h/2
Te=4 —mm)[ R_pa™tvu-Réa+ h,-w..] (18a)
i JRH h,/2> —
M = - v,,v,,)( e hya) it vie Ry, (18b)
Nig= —22 [ b Wi+ vie— RY.0)
¥ =) [ RE-RF4 Y .
LR h,-/2¢ ] . s
R-n2" (18¢c)
R+ h/2
TL=G,;AR———_ hl’/z(w“-— Vi + RY) (18d)

The classical shell theory corresponds to Ry(6) = — (Wo—v
+ woe) = RB. In general, the previous equations become the
;l_::;s;ecal shell theory, Egs. (3) and (4), if we substitute Ny, with
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In the prebuckling state

E, hy
(l - I’.zl’n) R2 - h12/4

Yo=0, Np= wo (19

Using the same form for w(6) and v(6) as in Eq. (2a) and
setting

v=vo+ ¥,  Y(6) = Csin(x/60)0 (20)

we obtain from Eqs. (16) and (18) the governing equations for
the first-order quantities as follows:

WS+ Vi — Ry + (h,/q)¢?~

+ Gl ;':z"zt) Ve 4+ Ry =0 (21a)
wet v - Ry + s - PO e ey Rys)
q E
N1 -
R 2 Eqnz”z:)(v.: —wi) =0 (21b)
E (h’ 1)( @+ v9 — RY5%)
—_— T w -
Gi)(1 — wpv)\gR e *
(W= Vv'+Ry)=0 Q2lc)
where
R+ h;/2
T="R "2 (22)
Set
N,'} =
22b
Giq (v - 9(2)) @z

The first and third equilibrium equations, Eqs. (21a) and
(21c), give

(B + Ak)1 + N3) = CR (23a)

Gi(1 — v )3 N§ _ ]
(A +Bk) = CR0 [ Ex? l+l\7?,) R + 1| (23b)

Substituting in the second equilibrium equation, Eq. (21b),
gives the critical load from

i)
N[
* 7 (1 = vva)R\ 63

(h; - Rq)
24
M= IEA/CAl - rp)iRal — R 2

Hence, from Egs. (19) and (1b), the critical pressure including
transverse shear effects is

e (5
Per = (1 = »12v21)RA, 9(2> 4R?

(h: — Rq)
24b
“ — [Exx¥/ Gl — vizvn)03Rq)(h; — Rq)) e

Discussion of Results

Depending on the delamination size and location through
the thickness, local buckling of the delaminated layer may not
always occur before buckling of the entire shell. The critical
pressure for buckling of the entire structure (global buckling
pressure, p,0) is given by'¢

E2h13

=— 25
P 4(1 — vjvy))R? 3
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This may well be below the critical pressure for local delami-
nation buckling [Eq. (7b)].

This concept is illustrated in Fig. 2, which shows the critical
buckling pressur= vs delamination range 6, for various loca-
tions of the delamination. For h;7h, = 1/30, local delamina-
tion buckling cannot occur for 6, less than about 3.5 deg; for
h;/h, = 2/30, loca' delamination buckling does not take place
for 6, less than about 7 deg. For h,/h, = 4/30, the cutoff
range is increased to 13.5 deg.

For delamination ranges beyond this point, the critical pres-
sure is strongly dependent on the size of the delamination,
rapidly dropping with increasing 6. By equating Egs. (25) and
(7b) we can find the cutoff angle 6, below which delamination
buckling does not occur:

‘l'h/
R ———— 26,
boe = THE+ 77 i

In producing the results of Fig. 2, we have assumed a
composite circular cylindrical shell of thickness over mean
radius ratio A,/Ry= 0.05. It is supposed to be made, for
example, by filament winding, with the fibers oriented around
the circumference. The moduli in GN/m? and Poisson’s ratios
used (typical for a glass/epoxy material) are listed next, where
1 is the radial (r) and 2 is the circumferential () direction:
E, =57.0, v;; = 0.068, v; = 0.277. A uniform pressure p is
applied at the outside boundary. A delamination of angular
range 6, exists at a depth k; from the outside surface.

Figure 2 also shows the effect of the location of the delam-
ination through the thickness. For the same delamination
range 0, the critical load decreases for delaminations located
closer to the outer surface (i.c., smaller k,/h,). For h;/h, = 2/
30, the critical buckling pressure is four times the one for
h;/h, = 1/30 for a delamination of 6, = 10 deg.

Figure 3 shows the buckled configuration corresponding to
the assumption of Eq. (2a) for the buckled shape. Finally, Fig.
4 shows the energy release rate as a function of the delamina-
tion size 8, for specific levels of midpoint deflection. An initial
delamination size of ;=5 deg and a thickness of h;/h, =
2/30 were assumed. The energy release rate has been normal-
ized with the quantity E;h, /(1 — »;;»,;). The rapidly dropping
G with delamination size indicates that a growth criterion
based on a critical energy release rate would more likely
predict stable growth of the delamination for this particular
geometry.

Transverse shear effects can be assessed on the basis of Eq.
(24) for the critical pressure. It is seen that the effect of
transverse shearing forces is increased for smaller delamina-
tion ranges 6, as well as for larger delamination thicknesses 4, .
For our example case, with moduli ratio E3/G,; = 10, shell
thickness A,/Ry = 0.05, delamination thickness A;/h, = 4/30,
and delamination range 6, = 15 deg, Eq. (24) would predict a
reduction in the delamination buckling load p., of 0.54% (vs
the corresponding values without transverse shear effects).

On a §, = 5 deg delamination of thickness 4;/h, = 1/30 the
critical load would be 0.30% lower, whereas for the same
delamination thickness k;/h, = 1/30 but larger size of 6, = 10
deg, transverse shearing forces would reduce the buckling load
by only 0.08%. Since we are considering a thin shell, these
effects are, in general, minor. Transverse shear effects are
expected to be more important for thicker delaminations that
would normally arise in thick shells. Transverse shear effects
are also expected to increase the energy release rate since the
additional energy due to the transverse shearing forces would
be included.?

Conclusions

In summary, an approximate analytical model was devel-
oped to study the stability of composite shells with thin delam-
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inations under external pressure. Thin film approximation is
based on regarding the unbuckled portion of the structure as
being *‘infinitely thick®’’ with respect to the delaminated layer.
The quantitative aspects of the problem were investigated over
a range of values for the delamination size and thickness.
Closed-form expressions for the critical pressure [Eq. (7b)]
and growth charact ristics [Eq. (14) for the energy release
rate] are derived, as well as for the cutoff level of the delami-
nation range below which local delamination buckling cannot
take place [Eq. (26)]. Furthermore, an investigation of the
transverse shear effects on both the buckling load and the
growth characteristics was performed. These effects are found
to cause a reduction in the critical load [Eq. (24) for the critical
pressure with transverse shear effects).
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