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Abstract-An imporlant design constr.unt of spot·welded beams is the f3ligue strength of the spot welds. 
The present study is concerned with p~:cting the C)'c1ic life of the spot-welded joints in beams under 
bending and torsion. Firs! the physic:!1 mc'Chanism of buckling·induced stressing is an3lyzed. The stress 
distribution is obtained from a twCHlimrnsion31 buckling model. Afterwards. an expr=ion for the J 
integral is found in lerms of the geometric 3nd loading parameten. This expression is used with a Paris' 
law type of fatigue crack growth to aSSC'U the fatigue Iifc of the design. Subsequently. an analy~is thai 
e'plalns the phenomenon for the Clse of torsion loading is provided. An example Clse is treated in order 
to obtain numerical resuil~ for the J intq:ral and the number of fatigue cycb as a function of the applied 
IOJJIn~ or the weld sracin~. 

1~IRODlJcrION 

SPOT-WELDED thin sted beams exist in the body of vehicles and constitute the major load carrying 
members. The needs of an optimized construction call for an ability to predict the strength and 
durability of body slructures with higher accuracy at the early stages of design. This. in turn. calls 
for a means to accurately evaluate the strength of spot-welded configurations and understand the 
physical \'ariables that atTect the durability. 

A similar configuration occurs in aerospace structures. namely in compression panels with skin 
attached by rivets. The common feat ure is the spacing of the joints (spot welds or rivets). Examples 
of such structures arc: skin-stringer wing surfaces. fuselage stringers. and shells supporting rings. 
In all CJses the critical event is the buckling of the beam or flange between the spot welds or the 
buckling of the skin between the rivets. 

In recent years there has been a considerable amount of work directed toward understanding 
the factors controlling the fatigue r~istance of spot-welded sheets [1-5]. ~lost studies have 
concentrated on the investigation of the strength of joints under applied tension which causes 
shearing of the spot welds [2-5J. 

The typical structural element under consideration is the box section single or double hat beam 
(Figs I and 2). which consists of a hat section with its flanges spot-welded to a closing plate. The 
mechanism of fatigue fracture and the deformation pattern occurring in such configurations is 
different from the fatigue of a single spot-welded joint under tensile or shearing load. This is because 
the inherent imperfection and waviness at the segments between spot welds leads to buckling 
deflections under bending or compressive loading. The repeated stressing from these displacements 
may lead to fatigue failure of the welds. The present study is concerned with such cases of 
bUckling-induced failure of spot welds. The problem is in\estigated by means of a buckling analysis 
and a closed form expression for the J integral at the spot weld site is derived. The objective is 
to develop simple methodologies suitable for preliminary design which can serve as the means fur 
selecting and screening candidate configurations. isolating the parameters that control the fatigue 
behavior and providing trend information. 

BL'CKLI~G MODEL 

. We will model the opening of the spot-welded flange. This model is similar to the one described 
In ref [IJ. As shuwn in fig. J. assume .i spot weld spal:ing f and an initial deflection )o(.~) (Jue 
to an inherent waviness in the initial shape of the flange). The segment between the spot welds is. 
therefore. a beam with both ends assumed fixed at the weld sites. An axial compression P and an 
end moment .\of, constitute the loading. We shall discuss the source of the loading at a later stage. 

S19 
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Spot - welded flaloe 

Fig. I. Spot weld box beam. 

The form of the initial deflection yo(:e) is obviously dependent upon the material, ther 
dimensions and the welding conditions of the beam; however, for the purposes of analytici[ 
treatment. we can take Yo as a trigonometric function with deflection at the middle, L'o: 

I"n ( 2rr )I"n(r)=- I-cos-x ,	 (I) . 2 /	 -~ 

Denote by y, (x) the additional del1cction caused by the loading, then the differential equation~ 
the deflection of the beam is (Fig. 3): 

where E is the modulus of cL!sticity and " is the momcnt of incrtia of the part being modeled (te.~ 
the flangc or thc closing plate): I. = II', (\ 12 where ( is thc thickncss of the sheet metal and wUJ: 
the flangc Width. ' 

To sol\c (2) sct 

[' ( ")rr )
I, (x) = i I - cos =, x • 

and substitute in (2), In tcrms of 

we obtain the following by equating the constant terms and the coefficients of cos(2rr.x//): 

L'oP 
[' --- ­'-p,,-p' 

P	 ~, 
.\/, =	 -([', + 1"0) = 1"0P::--::---- (5b)

2 2(P" - P) 

ClOllno plate 

wI·
 
Fig , SJ~g:e hal and double h~1 ~clion box beam. 
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FlOIlQ' openlrtQ 
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p p-
Yo 

·1 
Fig. 3. Bucklin~ model rOf Ihe )pol "'dd )p.JC1ng on the t1an~e. 

The total maximum deflcction. mid .....ay bet .....een the spot .....elds. is 

/ = 1"0 + 1", = l'~ P P~ p' (6) 
" 

i.e. it is proportional to the maximum initial deflcction 1"0 and has a nonlinear relationship with 
the compressive force P. 

For the two thin metal sheets with spot .....elds. subjected to axial compression 2P, the above 
relations describe the deformation pattern due to the buckling of the segments betwttn the spot 
welds. However, for the usual hat section cross-sectional geometry, subjected to a bending moment 
MA • we nttd relations for the resultant axial force P and the moment of inertia. To determine the 
resultant compressive force we integrate the bending stress over the Range width ~'t (Fig. 3): 

''':I'. f At. .\1 4 • 

P = t -I· : d: = t 21 (Ir~'t + ~'i), (7)f
.Il:Z b it 

where the moment of inertia for the ..... hole beam is given as follows (Fig. 2): 

h): th' t(h + 21Vf )' t~'t • 
Ib = 2(bt)( '2 + 12 + 12 + 6 [wi + 3(h + wl)~' (8) 

Before we proceed to the evaluation of the J integral for the geometry of our problem, we 
shall discuss another subject of importance. In being deflected in the buckling mode, the /lange is 
elastically restrained by the web of the hat section beam. The closing plate is in tum restrained 
as shown in Fig. 4. The effect of the restraint is to increase the buckling load. To assess this effect 
We should solve the problem of buckling of a plate with both left and right sides clamped and the 
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Fig. J. \lodel of the dJSlic reslrainl of (he nJnge tl\ (he \loeh 

lower edge also being clamped. For the purposes of this study we sh;J1/ usc a simpler approacli,} 
considering that the restraint is a spring [I). Since for ;J load R (along the \'-;J.,ts) the deflection· 
of J clamped beam of length b and moment of inertia' is 

(9a) . 

the spring constant per unit length is 

(9b):1 
- ...i 

.• ~'t 

:;.~:~; 

where", is the width of either the flange (\\'/) or the closing plate (1\',) as shown in Fig. 4. The~'~ 

we can say we have a beam on an elastic foundation of modulus [l per unit length. The buckling. 
load in such a case (Fig. 4) is given by [6] 

4n:Elp (: 3[l") (10)P" = -,-:- m + 4m'n'El • 
p 

where m is an integer. Thus the critical load is given as a function of m, which represents the number 
of half cosine waves in which the bar subdivides at buckling. The lowest critical value may occur 
with m = J or a higher value depending on the values of the other constants. It can be seen that 
since fJ is larger for the flange, the critical load P" on the closing plate is less than the corresponding 
one for the hat section beam. This means that buckling occurs more easily on the closing plate 
side. Moreover, m would typically be larger than unity for the flange. so that the buckled shape 
of the hat section would have more than one half cosine wave shape. 

The double hat section beam consists of hat section bC;.lll1s with no closing pbte (Fig. 2). For .. 
this geometry 

(I J) 
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J INTEGRAL 

For two-dimensional problems of materials governed by nonlinear elasticity and deformation 
plasticity theory, the J integral is defined as [7] 

J~ r WdY-T,Vauds. (12)Jr :c 

where r ~ contour surrounding the crack tip, T = traction vector along the contour. 
u== displacement vector on the contour, and W = strain energy density on the contour. The 
coordinate system is such that the x-axis is parallel to the crack faces and the integral is evaluated 
in a contracJockwise sense. 

A cross-section of the beam ahead of the spot weld carries a compressive load 2P. Behind the 
spot weld the two cross-sections of the buckled configuration below and above the spot weld carry 
load P and bending moment M. To evaluate the J integral we decompose the system of loads in 
Fig. 5a into two subsystems as shown in Fig. 5b.c. The first subsystem consists only of moment 
loading behind the spot weld (no loading ahead of the spot weld) and the second subsystem consists 
of the axial loading both behind and ahead of the spot weld (Fig. 5c). The second subsystem 
produces a nonsingular stress field of pure compression near the spot weld front. 

11 .. = - 2P(2t). ( 13) 

and therefore the mode I and 11 stress intensity factors associated with this subsystem of loading 
vanish. Consequently. the stress intensity factors and J integral values or energy release rate values 
associated with the total loading system are the same as those associated with the first subsystem 
of loading. 

Consider a line-integration contour as shown in Fig. 5b. with the segment of the flange between 
the spot welds being in the buckled state as described before. Only the segment }4 contributes to 
the J integral since the rest of the cross-section ahead of the spot weld is subjected to vanish­
ing stress and strain. Assume 11 .. =!'l = !.: = !" =O. Along the vertical segment 34 the strain 
energy IS 

( 14) 

2P 

(0) 

(b) Ie) 

Fig. 5. Contour for the calculalion of the J integral. 
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Furthermore, assume (,: = 0 since the dimension in the =-dirc:ction is large, Then from '!1 
':'~t 

..... ':3.1: 

(ISaf 
J:~
 

we conclude that '~<
 

(f~.(1:: = \'O'.IJ' 

where v is Poisson's ratio, Also, we find .:'~~,-,!116·,
I 2 (J" ,1 r J)fj"<

l =- «(J - V(J .. ) = (I - \' ) - ," £ u., £ )~]~{, 

Therefore, ,'~ 

I " ':~IV = - (1 - \'-)(J­2£ , (!p;n' 

'ij~<l 
Now along 34 we have as the only component of the traction vector T, = - (J .. and for the " 
corresponding component of the displacement vc:ctor derivative r~u,!(;x = l ... Moreover, along 3;£:: 
we have ct.r = -ds, so the integral in (I:!) bc:comes·~t.; 

.~i.':I 

f (I - v:) • 
1.,.= f.,.«(J .. (u-W)ds= ,~ 2£ (J~ ..... df, (l,~~ 

......-..:

""r 
where (J ...... is the stress at the middle of the wc:ld spacing. ' ~;,l 

Now we need expressions for the stress at the weld and at the middle of the spacing. The slresS·.~ 
in the direction of the box beam axis midway between the spot-welded points is found in terms 
of the bending moment at that location: A;­

c ~:r: P" 
M.. = M, = - £I,y;(xll . • 1: = £1'1-': =0 roP., P . (19) 

- -( ,,- Pl 

We scc: that the moment midway between the spot welds is the same as that at the spot weld sites" 
The stress produced by the moment .\1 at the cross-section above the spot weld line and midway 
between the spot welds is 

I .\f.. s,
(J ...... (s) = -1- . - ,'2 ~ s ~ ',:! (20a) " , 

For the buckled part below the spot weld line 

II .\I.. s 
(J (s)=----' -(/2~s:!i;t/2. (20b) ;' 

I"J'" I, , 

where t is the thickness of each metal sheet. Jntegrating we get 

(I-v:)(f': I: f': II' ) (l-v:).\I;,)
1=1.,.= '£ (J"",,(s)ds+ (J,;",,(s)ds = ---;-T' (21) 

- -,: -12 £ I_I, 

The 1 integral depends on the weld spacing' through the expression of the moment l..t.. eqs (19) 
and (21). Specifically, in terms of 

(22a~ ~, 
7 

we get 

(22b) ;..; 

.... ~Set 

(22c) 
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.The J integral is now expressed in the following fonn: 

'2 C2 
i:= P-t·o (c _ p/ 2)2' (23) 

1 

FATIGUE ANALYSIS 

On the basis of Pari~' law [8), we have 

da
 
dS := A (M)", (24)
 

where a := the crack length, N := the number of cycles. A and n are constants of the material and 
l!J is the range of the i integral. which is taken from a value of load equal to zero to a range !J.P. 

The crack in this case is the segment between the spot welds. Define /(1. !J.P) by 

., , (1
/(1. !J..H, or !J.P):= M:= (!J.P)'L'o [ ~,. (25) 

C, - (!J.P)/·( 

Inserting we find _ 

d/
-d := A/"(I. !J.P). (26)

,v 

Separating and integrating for growth through the weld diameter d during the fatigue life Nt for 
a given loading range from zero to !J.P (or jJ/,) we get

l.J

f r·~1
 
I /'"(1. ~P) d/ := A Jo dN. (27)
 

Let 

(28) 

This integral can be evaluated numerically for each application case. We get 

_. IU.!J.P)
(!J.P }-"lo'S,:= --­

A 
(29) 

So for a given spacing / and loading. the number of cycles can be calcubted. 
It should be pointed out that the above relation (26) is valid for 

M,,,, < M < i,. (30) 

Where !J.il~' is the threshold value and i, is the critical fracture toughness value. Detenninalion of 
threshold values through experimental means would be required since data for t:J,Iv are not easily 
available in the literature. 

TORSIO:\ LOADING 

In the usual presentation of torsion of thin walled sections. which is based on the elementary 
theory. the discussion is confined to the shearing stresses and the assumption that plane 
cross-sections remain plane. However. cross-sections do warp out of their original planes as the 
torque is applied. This warping is very important in the strength of the structure because restricting 
it gives rise to constraint forces at the flanges that can cause local opening of the segments between 
the Spot welds (9). We shall discuss this phenomenon in detail. First, we idealize the cross-section 
of the single or double hat member as a shell consisting of four comer flanges and idealized walls 
carrying only shear (Fig. 6). The four flanges are the only members capable of carrying longitudinal 
normal stresses. 

Now assume that we apply an external torque T. ut us assume that the rectangular box shown 
in Fig. 6 twists through the angle 0 in such a manner that the end bulkheads remain plane and 

EF\l 'U-I 
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I A I I A'-L ?--- \, V 

Fig. b. Ddomullon produced by a (W'Sling moment. 

".t;.~., 

parallel to each other. The end bulkheads have width h and height h and the length of the bOx;'-, 
is a, The ratio of the shear strains produced by the twist can be found by considering the horizonta1! 
displacement of point A to A' by the amount ¢h/:' and the \ertical one of point S to S' by the',. 
amount ¢h/:' (Fig. 6): ,.'

.;;...: ~ 

.,.~ h ..:;.:.....b 
i'.=¢-=;-: - =- (31)/

.:.a i'. h 

The corresponding ratio of shear stresses from elementary torsion theory is: ,p' 

r r =-!...- . r r T, r~ f. (32]1 
b 2bhf. ' • = 2bhf.' r. lb ;,~l 

where lb is the thickness of the top and bottom plates and f. is the thickness of the side>. 
'I \ f_'

plates. " I.~~~ 

Since the shear strains multiplied by the shear modulus give the shear stresses. the two ratios':' 
in (31) and (32) should be the same. This occurs only in the special case h /b = f./lb • Therefore,' 
in addition to the twist. there is a second defonnation in the unrestrained sections: the bulkheads,'" 
and indeed all the cross-sections. warp out of their original planes in an antisymmetric manner .. 
as shown in Fig, 7 and thus the shear strains in (31) are modified by an additional shear de'( 
fonnation of the walls until the final shear strains are compatible with the shear stresses detennined t 
by (32), " 

Now assume that we restrict the warping defonnation, In the following we assume that the,?.. 
boxed shell is fixed rigidly at the root and free at the tip and it is subjected to a torque T (Fig, 8)/~ 
Under these circumstances. at the tip there is no restraint or external axial force; this is not the ). 
case at the root. As was said earlier, a pure torque (with unrestricted warpinlS) produces no stresses 
in the comer flanges, Due to restricted warping at the root end, however, there will also be at each ... 
end a group of constraint forces (Fig. 8). Every group of constraint forces must ha\e Lero resultant .. 
force and zero resultant bending moment in the vertical as well as in the horizontal plane; the four ".", 
forces composing the group must therefore be numerically equal and antisymmetrically arranged ~' 
(such a group has been called "bicouple" in the literature), Notice that the four forces are . 
numerically equal even though the thickness and flange areas show no symmetry (this is 
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Fig. 7. Warping deformation. A restriction at the root end would produce constraint forces. 

because the four-flange shell is rectangular). Let us denote the constraint forces by Xo. We shall 
first find the stresses in the shell caused by the system of Xo forces. The shear flow in a given wall 
cannot vary along the length because such a variation could be etTected only by intermediate 
bulkheads transferring torque from one pair of walls to the other pair, and no intermediate 
bulkheads are assumed to exist. The shear flow also cannot vary across the width because such 
a variation would imply the existence of axial stresses in the sheet. which are excluded by the 
assumption that the sheet carries only shear. The shear flow is therefore constant over any given 
wall. and as a consequence the forces in the flanges decrease linearly from their maximum values 
Xoat the outboard end (root end) to zero at the inboard end (lip end) of the cell. The magnitudes 
of the two shear flows q:' and q: can be determined by applying two equilibrium conditions. Since 
lhe system of Xo forces exerts no resultant torque, 

(q:h)h + (q:h)h = O. (33) 

The condition of zero force r X =0 applied to a corner flange (Fig. 8) gives 

Xo - q: a + q: a = O. (34) 

The Solulion of the two equations gives 

x Xo .Yo 
q~ = -~, r~ 

I 
= --.,-, (35a) 

.:..a .:..a1b 

.r Xo (35b)t. =201.' 

Fig. 8. Corutnint forCC1. 
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Now we shall find the magnitude of Xo' The total stresses are the sum of those due to the~ 

torque T [cq. (32») and those due to the system of forces Xo [eq. (35»): ·iI 
., 

r x T Xo .\i 
~& = T& + T& = 2bhl& - 2a1& ' (36~;:.: 

r x T Xo •.~~., 
:. = T. + T. = 'bh + 2 . (36W 

- I. al.	 l.~· 

Since we assume no warping, the ratio of the shear strains y& and "I. given by (31) should e4~'~ 
the ratio of the shear stresses T, and T. [eq. (36»): . ~t 

-i4h	 .~: 

(37).
T.	 _f;r.~ 

:...,'"\~.:.; 

"I. b' 
which gives 

.,,~ 
(3Sf' 
..J"q.~.Solving for Xo we find 
~; 1r. 

hII I )	 "!l'~
Ta ( I - b~ ; :' ..£ 

Xo = bh (h 1& ) . (~~~:: 
b~ + I'J.~:. 

Notice that the force Xo vanishes in the special case h:b = I.il h , which means that in this case':tii1· 
warp would be zero (plane cross-sections remain plane) in an unrestricted shell. ..•~ 

Finally, there will be an aXIal stress in the flanges due to the force Xo given by ~1'~; 
r; 

'''J, ..xXo 
(1/= -.	 (40)

aA/ 

the stress being compressive on two of the flanges and tensile on the other two. In the above 
expression A/ is the cross-sectional area of the flange and x is the distance from the tip end. :~. 

The compressive stress a/(.'() on the flange that carries the spot welds could cause local buckling. 
of the segment between the spot welds. AI,though this stress varies linearly along the length, w~ . 
can assume that the segment between the spot welds is acted upon by compressive forces 'of 
magnitude a/AI' where a/ is evaluated at the site midway between the spot welds. Thus, we have 
again a case of buckling-assisled faligue occurring in Ihe case of torsion loading. ~h~ 

Several other end conditions could be treated by similar arguments. For example, we could' 
have a case of partial restriction at the end, i.e. the torque taken out by reactions, while the flange.. 
forces are transmitted by carry-through members of axial stiffness AE and so the warping due to . 
torque is zero while the warping of the root end due to the flange forces is set by the stiffness of . 
the carry-through members. If. on the other hand. warping is restricted at both ends then we have 
two systems of constraint end forces which, due to symmetry, are the same in magnitude and 
direction. The magnitude of each force would be half that given by eq. (39) and in this case the 
stress at would vary linearly from compression at one end of the flange to tension of equal 
magnitude at the other. It should also be noted that the system of forces Xo. being self-balanced, 
affects primarily its immediate vicinity in accordance with Saint·Venant's principle of statically 
'equipollent' systems. The magnitude of Xo. in tum. depends chiefly on the difference between the 
warps of the adjacent faces (a rigid root is heavily constrained because the foundation has zero: 
warp). Such differences in warp can be caused otherviise by differences in torque or by differences 
in dimensions (local discontinuities). 

RE.SULTS OF THE ANALYSIS 

The objective of the analysis in the previous section was to find the cause of flange opening 
and buckling-assisted fatigue of spot welds in the case of torsional loading. The phenomenon had 
been observed in preliminary experiments of single hat box beam sections. Pending the completion 
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Fig. 9 Iknding loading: number of cyclC'1 vs applied bending moment for initial imperfection r. - 0.~5 

and 0.35 mm (spo! weld splicing 1- 75 mm). 

ofa comprehensive test progrJm Jnd the Jcquisition of related experimental dJtJ we shJl1 present 
in the following some anJlyticJI results on both torsion Jnd bending that CJn provide useful trend 
information. 

An example case was considered to illustrate the influence of the various parameters on the 
cyclic loading performance of the strucutre. A single hat section of length 0 = 400 mm and hat 
cross-section of height" = 50 mm and width b = J00 mm was chosen. The thickness of the steel 
sheet material was chosen to be uniformly r = 1 mm. The flange hJd a width of "'f = 15 mm and 
the spot welds had a diameter d = 5 mm. The material constants (steel) are: modulus of elasticity 
E = 206.900 MNim: and Poisson's rJlio ,. = 0.3:!. In the parametric studies the initial imper­
fection "0 was in the range of 0.:!5-D.50 mm and the spot weld spacing was in the rJnge of 
40-80 mm. In the fatigue growth law do ,d,\' = A (t:Jr and typical data for steel are n = 2 and 
A = 1800 MN-: m1. 

Results of the analysis illustrate the sensitivity with respect to the spot weld spacing and with 
respect to the imperfection parameter (initial waviness). For the case of bending, Fig. 9 shows the 
number of fatigue cycles and Fig. 10 the J integral as a function of the applied bending moment 
for two values of the imperfection variable (t'o ... 0.25 mm and 0.35 mm) and spot weld spacing 
1= 75 mm. The applied load has been normalized with the quantity ,fJ ... 2P"lb/ [r"pl + "'f}]' where 
Ib is given by eq. (8) and P" is calculated at weld spacing 10 = 75 mm. 

The inRuence of the spot weld spacing is better illustrated in the case of torsion in Fig. II, 
which shows the number of fatigue cycles. and in Fig. 12. which shows the J integral as a function 
of the spot weld spacing for two values of the imperfection variable (t·o ... 0.25 and 0.35 mm) and 

E 
% 1.00.-4 
:I 

ii 

i' 
5 8.00.-t .., 

Applied Moment. it - M IM 

Fig. 10. Iknding loading J intcgral n applied bending moment for initial imperfoction r? - 0.:5 .nd 
0.35 mm (spot ""cld spacing I - 75 mm). 
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Fig. II. Torsion loading: number of c)'clo vs spot w~ld spacing for initial imperfection r. - 0.25 and 
0.J5 mm (applied torqu~ r- TIT - 0.-10). 
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Fig. 12. Torsion loading: J integral n ~p0t ... c1d s~C1ng for mltial ImperfectIOn r. - 0.2.5 and 0.35 mm 
fappht\1 lorqu~ r- T. T. OJO) 

'. {':;. 
applied torque t = TIT= DAD. The applied torsional loading has been normalized with the, 
quantity T = P,,(bhla)(1 + (hib)];[l - (h b)]. where P" is calculated at weld spacing '0 '" 75 mm.:/: 

It is seen that there is a value of the spot .....e1d spacing above which further increase of the~·.~ 
spacing significantly decreases the fatigue life. These results illustrate the basic freatures of the . 
problem and could naturally be used in conjunction with more detailed analyses. . 
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