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SPOT WELD FAILURE FROM BUCKLING-INDUCED
STRESSING OF BEAMS UNDER CYCLIC BENDING
AND TORSION

G. A. KARDOMATEAS
School of Acrospace Enginecring, Georga Institute of Technology, Atlanta, GA 30332-0150, U.S.A.

Abstract—An important design constraint of spot-weided beams is the fatigue strength of the spot welds.
The present study is concerned with predicting the cyclic life of the spot-welded joints in beams under
bending and torsion. First the physical mechanism of buckling-induced stressing is analyzed. The stress
distnibution is obtained from a two-dimensional buckling model. Afterwards, an expression for the J
integral is found in terms of the gcometnc and loading parameters. This expression is used with a Pans’
law type of fatigue crack growth to assess the fatigue life of the design. Subsequently, an analysis that
explains the phenomenon for the case of torsion loading is provided. An example casc is treated in order
to obtain numerical results for the J intcgral and the number of fatigue cycles as a function of the applied
loading or the weld spacing.

INTRODUCTION

SpoT-WELDED thin steel beams exist in the body of vehicles and constitute the major load carrying
members. The needs of an optimized construction call for an ability to predict the strength and
durability of body structures with higher accuracy at the early stages of design. This, in turn, calls
for a means to accurately cvaluate the strength of spot-welded configurations and understand the
physical variables that affect the durability.

A similar configuration occurs in acrospace structures, namely in compression panels with skin
attached by nivets. The common feature is the spacing of the joints (spot welds or nvets). Examples
of such structures arc: skin-stringer wing surfaces. fusclage stringers, and shells supporting rings.
In all cases the critical event is the buckling of the beam or flange between the spot welds or the
buckling of the skin between the rivets.

In recent years there has been a considerable amount of work directed toward understanding
the factors controlling the fatigue resistance of spot-welded sheets[1-5]. Most studies have
concentrated on the investigation of the strength of joints under applicd tension which causes
shearing of the spot welds [2-5].

The typical structural element under consideration is the box section single or double hat beam
(Figs I and 2), which consists of a hat section with its flanges spot-welded to a closing plate. The
mechanism of fatigue fracture and the deformation pattern occurring in such configurations is
different from the fatiguc of a single spot-welded joint under tensile or shearing load. This is because
the inherent imperfection and waviness at the scgments between spot welds leads to buckling
deflections under bending or compressive loading. The repeated stressing from these displacements
may lead to fatigue failurc of the welds. The present study is concerned with such cases of
buckling-induced failurc of spot welds. The problem is investigated by means of a buckling analysis
and a closed form expression for the J integral at the spot weld site is derived. The objective is
to develop simple methodologics suitable for preliminary design which can serve as the means for
selecting and screening candidate configurations, isolating the parameters that control the fatigue
behavior and providing trend information.

BUCKLING MODEL

. Wewill model the opening of the spot-welded flange. This model is similar to the one described
nref [1]. As shown in Fig. 3, assumc 4 spot weld spacing / and an initial deflection y,(x) (duc
10 an inherent waviness in the initial shape of the flange). The segment between the spot welds is,
therefore, a beam with both ends assumed fixed at the weld sites. An axial compression P and an
end moment M, constitute the loading. We shall discuss the source of the loading at a later stage.
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Spot - welded flonge

Hot- section beam
Fig. 1. Spot weld box beam.

The form of the initial deflection y,(x) is obviously dependent upon the material, the,
dimensions and the welding conditions of the beam; however, for the purposes of analyu'\f;f"a]‘_'?:f
trcatment, we can take v, as a tngonometnc function with deflection at the middle, v,:

B 2n :
Volx) = ;(I ——cos—l—x>. (_1_)

-

Denote by v (x) the additional dettection caused by the loading, then the differential cquation?:q:r}
the deflection of the beam is (Fig. 3):

d” (.
B g

where £ is the modulus of clasticity and 7, is the moment of incrtia of the part being modeled (12:",3r

. § . . &
the flange or the closing plate): 7. =w, 1" 12 wherce 1 is the thickness of the sheet metal and Wiz
the flange width. )

To solve (2) set

= = PL3(x) + yolx)) + M,, [0}

. Y B
y,(x):%'(l —cos?.\‘). (3) ‘
and substitute in (2). In terms of
p= @

we obtain the following by equating the constant terms and the coefficients of cos(2nx/{):

to P

(58)

P P, .
"I’=3(1'1+r0)=l‘opm' (Sb)

Hot -section beam
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Fig 2. Single hat and double hat section box beam.
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Fig. 3. Buckling model for the spot weld spacing on the flange.

The total maximum deflection, midway between the spot welds, 1s

P,

P.— P (©)

f=rotr=r,
ie. it is proportional to the maximum initial deflection t, and has a nonlinear relationship with
the compressive force P.

For the two thin metal sheets with spot welds, subjected to axial compression 2P, the above
relations describe the deformation pattern due to the buckling of the segments between the spot
welds. However, for the usual hat section cross-sectional gecometry, subjected to a bending moment
M,, we need relations for the resultant axial force P and the moment of inertia. To determine the
resultant compressive force we integrate the bending stress over the flange width w, (Fig. 3):

Al M, M, .
= I P kall, 1 i3
P J’n t A > d: [21,('”’+ wi), (7)
where the moment of inertia for the whole beam is given as follows (Fig. 2):
h\? Yogth+2w)  tw,
l,= 2(bl)(§) + % + —(-T—i + %’[wi +3(h +w))7]. (8)

Before we proceed to the evaluation of the-J integral for the geometry of our problem, we
shall discuss another subject of importance. In being deflected in the buckling mode, the flange is
elastically restrained by the web of the hat section beam. The closing plate is in turn restrained
as shown in Fig. 4. The effect of the restraint is to increase the buckling load. To assess this effect
we should solve the problem of buckling of a plate with both left and right sides clamped and the
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Fig. 4. Model of the clastic restriint of the flange by the web.
lower edge also being clamped. For the purposes of this study we shall use a simpler approach

considering that the restraint is a spring [1]. Since for a load R (along the x-axis) the deflection
of a clamped beam of length 4 and moment of inertia /i

Rw? -
=36 ©a).
the spring constant per unit length is
R 3EI EP s
=—=—=—, 9b 3
B é w4’ ( )

where w is the width of either the flange (1)) or the closing plate () as shown in Fig. 4. Thcn |
we can say we have a beam on an elastic foundation of modulus 8 per unit length. The bucklmg
load in such a case (Fig. 4) is given by [6]

aEL( L 3
= - ———— 10
Fu=—F ("’ " 4nﬁn*51,>' (%

where m is an integer. Thus the critical load is given as a function of 71, which represents the number
of half cosine waves in which the bar subdivides at buckling. The lowest critical value may occur
with m =1 or a higher value depending on the values of the other constants. It can be seen that
since B is larger for the flange, the critical load P,, on the closing plate is less than the corresponding
one for the hat section beam. This means that buckling occurs more easily on the closing plate
side. Moreover, m would typically be larger than unity for the flange, so that the buckled shapc
of the hat section would have more than one half cosine wave shape.

The double hat section beam consists of hat section beams with no closing plate (Fig. 2). For \
this geometry '

3
th I\,

Ib=2{2(b1)(g>.+l—2 —LIwi+3(h + w, )]} an
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J INTEGRAL

For two-dimensional problems of materials governed by nonlinear elasticity and deformation
plasticity theory, the J integral is defined as (7]

Ju
J=J’rWdy——T-5;ds. (12)

where I’ =contour surrounding the crack tip, T =traction vector along the contour,
y = displacement vector on the contour, and W =strain encrgy density on the contour. The
coordinate system is such that the x-axis is parallel to the crack faces and the integral is evaluated
in a contraclockwise sense.

A cross-section of the beam ahead of the spot weld carries a compressive load 2P. Behind the
spot weld the two cross-sections of the buckled configuration below and above the spot weld carry
load P and bending moment M. To evaluate the J integral we decompose the system of loads in
Fig. Sa into two subsystems as shown in Fig. Sb.c. The first subsystem consists only of moment
loading behind the spot weld (no loading ahcad of the spot weld) and the second subsystem consists
of the axial loading both behind and ahead of the spot weld (Fig. Sc). The second subsystem
produces a nonsingular stress ficld of pure compression near the spot weld front,

g, = —2P(21). (13)

and therefore the mode 1 and 1T stress intensity factors associated with this subsystem of loading
vanish. Consequently, the stress intensity factors and J integral values or energy release rate values
associated with the total loading system are the same as those associated with the first subsystem
of loading.

Consider a linc-integration contour as shown in Fig. Sb, with the segment of the flange between
the spot welds being in the buckled state as described before. Only the segment 34 contributes to
the J integral since the rest of the cross-section ahead of the spot weld is subjected to vanish-
ing stress and strain. Assume o, =71, =7,.=1,.=0. Along the vertical segment 34 the strain

energy Is
W =J‘ a,dc, =4(0,,¢,, +0..c.) (14)
o
M.,
P
2P

(a)

2P

(b) {c)

Fig. 5. Contour for the calculation of the J integral.
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Furthermore, assume ¢., = 0 since the dimension in the z-direction is large. Then from
1 i "5
I3 [0..—v(o,, +07,)] (15ay°

i,x:taa‘@'

€=

we conclude that

where v is Poisson’s ratio. Also, we find

G = (a"_"a::):(l —"Z)%.

Ty E
Therefore,
11 % ! AN D
=37 (1 =)o,
Now along 34 we have as the only component of the traction vector T, = —ga,, and for thc
corresponding component of the displacement vector derivative cu, /Cx = ¢,,. Moreover, along 34‘L
we have dy = —ds, so the integral in (12) becomes aﬁ-
s 2
Iy =‘[ (0, (,— W)ds = J d=v) i,,dy, (18)‘9
u('
where g, i1s the stress at the middle of the weld spacing. ,,5

Now we need expressions for the stress at the weld and at the middle of the spacing. The su:ss
in the direction of the box becam axis midway between the spot-welded points is found in terms -

of the bending moment at that location: LAy
cda’ P, i)
Mo=M,= —Ely{()..r2= EL 3o = 0Py (19)

We see that the moment midway between the spot welds is the same as that at the spot weld sites.
The stress produced by the moment M at the cross-section above the spot weld line and mxdway
between the spot welds is

M

0\ n(5)= i —12<s<12 (20a)
I, o
For the buckled part below the spot weld line " ‘
!'-5
ol n(s) = — T —1/2<5 <1/2, (20D) :

14 !

where 1 1s the thickness of each metal sheet. Integrating we get
(=viy/( . " (1 =vi) M0
I=lu=—f (f_,:a””md“’j-,,z "”md‘) E 12I}° @

The J integral depends on the weld spacing / through the expression of the moment 3f,, egs (19) -
and (21). Specifically, in terms of

¢, =4n’El, (222)
we get
€ s
=p P 22b)
M= vl Sy 220
Set

(=) 0 '
: 2
“FTFE WmECT S
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7 integral is now expressed in the following form:

‘Tbc
22 G
j=Pl°(cT_—P——'12)2. (23)

FATIGUE ANALYSIS

On the basis of Paric’ law [8], we have

da
T AATY, (24)
where a = the crack length, N = the number of cycles, A and n arc constants of the material and
AJ is the range of the J integral, which is taken from a value of load equal to zero to a range AP.
The crack in this case is the segment between the spot welds. Define f(/, AP) by

9 Cy
I.A.‘[‘ AP —; = P-.-____‘;__"
f( < 0r )=4AJ=(A )lo[Cl—(AP)I:]‘ (25)
Inserting we find _
d/ )
- AL (L AP). (26)

Separating and integrating for growth through the weld diameter & during the fatigue life N, for
a given loading range from zcro to AP (or AM,) we get

led N
J’ f"(l.dP)dl:AJ./dN. 27)

led led
/(I.AP):( f‘"(l.AP)dI:J’ = ler = (AP)* 7 die. (28)

{f

v

This integral can be cvaluated numerically for cach application case. We get

. I{l.AP
(APY vy N, = y ). (29)

So for a given spacing / and loading, the number of cycles can be calculated.
It should be pointed out that the above relation (26) is valid for

A, <AT < J,, (30)

where AJ,, is the threshold valuc and J, is the critical fracture toughness value. Determination of
threshold values through experimental means would be required since data for AJ,, are not easily
available in the literature.

TORSION LOADING

In the usual presentation of torsion of thin walled sections, which is based on the elementary
theory, the discussion is confined to the shearing stresses and the assumption that plane
Cross-sections remain plane. However, cross-sections do warp out of their original planes as the
torque is applied. This warping is very important in the strength of the structure because restricting
It gives rise to constraint forces at the flanges that can cause local opening of the segments between
the spot welds [9). We shall discuss this phcnomenon in detail. First, we idealize the cross-section
of the single or double hat member as a shell consisting of four corner flanges and idealized walls
Carrying only shear (Fig. 6). The four flanges arc the only members capable of carrying longitudinal
hormal stresses.
~ Now assume that we apply an external torque 7. Let us assume that the rectangular box shown
In Fig. 6 twists through the angle ¢ in such a manner that the end bulkheads remain plane and

EFM 423
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Root end

Fig. 6. Deformation produced by a twisting moment.

parallel to cach other. The end bulkheads have width 4 and height A and the length of the box,
is a. The ratio of the shear strains produced by the twist can be found by considering the horizontal -
displacement of point A to A’ by the amount ¢4,;2 and the vertical one of point B to B’ by thc
amount ¢h/2 (Fig. 6): 3

h b o A
w = — m=d—: L=, 3
n=ogi n=dg L=l o0
The corresponding ratio of shear stresses from clementary torsion theory is: o
Af
T r T . !_,__1. (32)'}}::.

== T = =-,
2bhi, 26, 1, 1,

where 1, is the thickness of the top and bottom plates and i, is the thickness of the sic‘lcti_\z
plates. M
Since the shear strains multiplied by the shear modulus give the shear stresses, the two ratios -
in (31) and (32) should be the same. This occurs only in the special case h/b = 1,/1,. Therefore;
in addition to the twist, there is a second deformation in the unrestrained sections: the bulkheads,
and indeed all the cross-sections, warp out of their original plancs in an antisymmetric manner o
as shown in Fig. 7 and thus the shear strains in (31) are modified by an additional shear de-::
formation of the walls until the final shear strains are compatible with the shear stresses determined %
by (32). .
Now assume that we restrict the warping deformation. In the following we assume that the -
boxed shell is fixed rigidly at the root and free at the tip and it is subjected to a torque T (Fig. 8~
Under these circumstances, at the tip there is no restraint or external axial force; this is not the -
case at the root. As was said earlier, a pure torque (with unrestricted warping) produces no stresses
in the corner flanges. Due to restricted warping at the root end, however, there will also be at each «
end a group of constraint forces (Fig. 8). Every group of constraint forces must have zero resultant |
force and zero resultant bending moment in the vertical as well as in the horizontal plane; the four
forces composing the group must therefore be numerically equal and antisymmetrically arranged :*
(such a group has been called “bicouple™ in the literature). Notice that the four forces are
numerically equal even though the thickness and flange arcas show no symmetry (this is

¥ie
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Root end

T

Fig. 7. Warping deformation. A restnction at the root end would produce constraint forces.

because the four-flange shell is rectangular). Let us denote the constraint forces by X,. We shall
first find the stresses in the shell caused by the system of X, forces. The shear flow in a given wall
cannot vary along the length because such a vanation could be effected only by intermediate
bulkheads transferning torquc from one pair of walls to the other pair, and no intermediate
bulkheads are assumed to exist. The shear flow also cannot vary across the width because such
a variation would imply the existence of axial stresses in the sheet, which are excluded by the
assumption that the shect carnies only shear. The shear flow is thercfore constant over any given
wall, and as a consequence the forces in the flanges decrease linearly from their maximum values
X, at the outboard end (root end) to zero at the inboard end (tip end) of the cell. The magnitudes
of the two shear flows ¢, and g can be determined by applying two equilibrium conditions. Since
the system of X, forces cxerts no resultant torque,

(gib)h + (gih)b = 0. (33)
The condition of zero force Z X' =0 applied to a corner flange (Fig. 8) gives
Xo—qia+qa=0. (34)
The solution of the two cquations gives
X X
Y _ [ _ ¢}
9=-3" r:—_ZTI,' (35a)
X X,
r_ 2o, b
=30 W Tg (35b)

Fig. 8. Constraint forces.
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Now we shall find the magnitude of X,. The total stresses are the sum of those due to the

torque T [eq. (32)] and those due to the system of forces X, [eq. (35)]: #5
T X %
co=17 X _ - _o_ _?
BET T 2bht, a1’
T X,

=z] +tf= &
W= T = b, Jar,

Since we assume no warping, the ratio of the shear strains y, and y, given by (31) should 0q11a1»
the ratio of the shear stresses 1, and 1, [eq. (36)):

Be_ T _h N

7~—Th_b'

which gives *
h  1,(Ta — X,bh) s

b~ 1,(Ta + Xobh)

Solving for X, we find f:‘:
( ’:)

Ta b1, 0T

X, = oA T . (39) ;

(EZ* ) = :s,

Notice that the force X, vanishes in the special case A/b = 1,/1,, which means that in this case the
warp would be zero (plane cross-sections remain plane) in an unrestricted shell.

Finally, there will be an axial stress in the flanges due to the force X, given by 1'_
xX, ;
- (w)

ad,

the stress being compressive on two of the flanges and tensile on the other two. In the abo_vp
expression A, is the cross-scctional area of the flange and x is the distance from the tip end.

The compressive stress g,(x) on the flange that carries the spot welds could cause local buckling .
of the segment between the spot welds. Although this stress varies linearly along the length, we
can assume that the segment between the spot welds is acted upon by compressive forces of
magnitude a,4,, where g, is evaluated at the site midway between the spot welds. Thus, we have
again a case of buckling -assisted fatigue occurring in the case of torsion loading. “hea

Several other end conditions could be treated by similar arguments. For example, we cou]d
have a case of partial restriction at the end, i.c. the torque taken out by reactions, while the flange .
forces are transmitted by carry-through members of axial stiffness A£ and so the warping due to
torque is zero while the warping of the root end due to the flange forces is set by the stiffness of
the carry-through members. If, on the other hand, warping is restricted at both ends then we have
two systems of constraint end forces which, due to symmetry, are the same in magnitude and
direction. The magnitude of cach force would be half that given by eq. (39) and in this case the
stress o, would vary lincarly from compression at one end of the flange to tension of equal
magnitude at the other. It should also be noted that the system of forces X,, being self-balanced, .
affects primarily its immediate vicinity in accordance with Saint-Venant's principle of statically
‘equipollent’ systems. The magnitude of X,, in turn, depends chiefly on the difference between the
warps of the adjacent faces (a rigid root is heavily constrained because the foundation has zero .
warp). Such differences in warp can be caused otherwise by differences in torque or by differences
in dimensions (local discontinuitics).

RESULTS OF THE ANALYSIS

The objective of the analysis in the previous section was to find the cause of flange opening
and buckling-assisted fatigue of spot welds in the case of torsional loading. The phenomenon had
been observed in preliminary experiments of single hat box beam sections. Pending the completion
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Fig. 9. Bending loading: number of cycles vs applied bending moment for initial imperfection ry = 0.25
and 0.35 mm (spot weld spacing / = 75 mm).

of a comprehensive test program and the acquisition of related experimental data we shall present
in the following some analytical results on both torsion and bending that can provide useful trend
information.

An example case was considered to illustrate the influence of the various parameters on the
cyclic loading performance of the strucutre. A single hat section of length a =400 mm and hat
cross-section of height &/ = 50 mm and width b = 100 mm was chosen. The thickness of the steel
sheet material was chosen to be uniformly r = | mm. The flange had a width of w,= |5 mm and
the spot welds had a diameter = S mm. The material constants (steel) are: modulus of elasticity
E =206,900 MN,m" and Poisson’s ratio v = 0.32. In the parametric studies the initial imper-
fection r, was in the range of 0.25-0.50 mm and the spot weld spacing was in the range of
40-80 mm. In the fatigue growth law da,d.N = A(AJ)" and typical data for steel are n =2 and
A=1800 MN*m’.

Results of the analysis illustrate the sensitivity with respect to the spot weld spacing and with
respect to the imperfection parameter (initial waviness). For the case of bending, Fig. 9 shows the
number of fatigue cycles and Fig. 10 the J integral as a function of the applied bending moment
for two values of the imperfection variable (v, = 0.25 mm and 0.35 mm) and spot weld spacing
I = 75 mm. The applicd load has been normalized with the quantity 7 = 2P_7,,[{tw,(h + w,)], where
I, is given by eq. (8) and P, is calculated at weld spacing /=75 mm.

The influence of the spot weld spacing is better illustrated in the case of torsion in Fig. 11,
which shows the number of fatigue cycles, and in Fig. 12, which shows the J integral as a function
of the spot weld spacing for two values of the imperfection variable (v, = 0.25 and 0.35 mm) and

vOe 035 mm

J Integral, MN/m

0.2 0.3 0.4 0.3 0.8 o0
Applied Moment, A = M/M

Fig. 10. Bending loading: / integral vs apphed bending moment for initial imperfection r, = 0.25 and
0.35mm (spot wcld spacing / = 75 mm).
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Fig. 11. Torsion loading: number of cycles vs spot weld spacing for initial imperfection v, = 0.25 and
0.35mm (applied torque T = T/T = 0.40).
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Fig. 12. Torsion loading: J integral vs spot weld spaaing for imitial imperfection 1, = 0.25 and 0.35 mm
fapphed torque T = 7.7 = 0.40).

applied torque 7= T/T=0.40. The applied torsional loading has been normalized with the ™
quantity T'= P, (bh/a)(l + (h;b));[1 — (h b)), where P, is calculated at weld spacing /, = 75 mm. "
It is seen that there is a value of the spot weld spacing above which further increase of the
spacing significantly decreases the fatigue life. These results illustrate the basic freatures of the
problem and could naturally be used in conjunction with more detailed analyses.
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