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@ three-dimensional body. The results show that the shell theory, lictions ‘cam
produce nonconseruative results on the critical load of composite shells with mod-
erately thick construction. The solution provides a means of aa'ww,mmg *
the limitations of shell theories in predicting stability loss. i aasessi ,-L

Introduction

A class of important structural applications of fiber-rein-
forced composite materials involves the configuration of lam-
inated shells. Although thin plate construction has been the

st of the initial applications, much attention is now being

to configurations classified as moderately thick shell struc-
tures. Such designs can be used in components in the aircraft
and automobile industries, as well as in the marine industry.
Moreover, composite laminates have been considered in space
vehicles in the form of circular cylindrical shells as a primary
load carrying structure.

In these light-weight shell structures, loss of stability is of
primary concern. This subject has been researched to-date
through the application of the cylindrical shell theory (e.g.,
Simitses, Shaw, and Sheinman, 1985). However, previous work
(Pagano and Whitney, 1970; Pagano, 1971) has shown that
considerable care must be exercised in applying thin shell theory
formulations to predict the response of composite cylinders.
Besides the anisotropy, composite shells have one other im-
portant distinguishing feature, namely extensional-to-shear
modulus ratio much larger than that of their metal counter-
parts.

In order to more accurately account for the aforementioned
effects, various modifications in the classical theory of lami-
nated shells have generally been performed (Whitney and Sun,
1974; Librescu, 1975; Reddy and Liu, 1985; see also Noor and
Burton, 1990 for a review of shear deformation theories). These
higher-order shell theories can be applied to buckling problems
with the potential of improved predictions for the critical load
(Anastasiadis, 1990).

However, there has not yet been any effort to produce a
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solution based on three-dimensional elasticity to the problcm S
of buckling of composite shell structures, against whigh IESults’
from various shell theories could be compared, ;. 9
Towards this objective, this work presents an ICity; /
lution to the problem of buckling of oomposxt:.,cxlmdﬁcal
orthotropic shells subjected to external prasurq.LMMQl
results for an example case of a fiber-reinforced bq]lmd
under external pressure are derived and compared.withsh
theory predictions. These results can be used tqmnﬁe”
accuracy of the classical shell theory and the mstwpw\ ed
shell theories for moderately thick construction. .y premal 0

Formulation

At the critical load there are two possible infinitely close
positions of equilibrium. Denote by 14, ty, wo the r, 8, and z
components of the displacement corresponding to the primary.
position. A perturbed position is denoted by QTSI

u=Ug+au,;; v=vgtav; w=wy+aw, )

where « is an infinitesimally small quantity. Here, au, (. 6, -
2), avy(r, 6, 2), aw,(r, 6, z) are the displacements 1 ;which -
the points of the body must be subjected to shift them,{rom -
the initial position of equilibrium to the new equilibrium:po-
sition. The functions u,(r, 8, 2), v, (s, 6, 2), w,(r, apz‘) are
assumed finite and « is an infinitesimally small quaputy in-
dependent of 7, 6, 2. g

The nonlinear strain displacement equations are '

u 1 a\l fav\' faw\’
“=ar 5[(5) *(5) *(3:) - @

Jdw w11 o)
o roé r 2 roéd r
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Substituting (1) into (2) we find the strain components in
the perturbed configuration:

4d)
Qe)
1 dwdw

*:sz]- @n

=St tai Ta=Tetaretalye,  (a)
=t aen+aiey Tn=Tatarata’y,, (3b)
=k tatgtaley Ya=Thtoretaire,  (30)

wbereqmthevalues ofthestnmeomponemsmthemual
position of equilibrium, q, are the strain quantities cofre-
sponding to the linear terms, ande, aretheonueorrespoudmg
to the quadratic terms. These strain quantities are given ex-
plicitly in terms of the displacements u,, Uy, Wo and iy, ¥y, Wy
in Appendix B.

The stress-strain relations for the orthotropic body are

- & 63 &3 0 0 O] le

(.7} Ci3 Cnn On 0 0 0 (7%

O = €3 € Cn 0 0 0 € (4)
Te: 0 0 0 cu 0 O]yl

Tn 0 0 0 0 ¢35 0]y

w) L0 0 0 0 o v

where ¢; are the stiffness constants (we have used the notation
1mr,2m=60, 3 = 2). Substituting (3) into (4) we get the
stresses as

, - , -
o,,=af’,+aa,,+a’a,, 1,.=1?.+m',.+a’1,., (5a)
o ‘ 2 - o , 2 -
-~Opy ™ Ogg+ QAOgg+ A€oy To=To+aTgta‘t,, (5b)
, - , -
au = a‘,’, + a0, + a’a,z To:= 12: +ary, + azn,. (5¢)

where of, o;, oy, are expressed in terms of ¢, ;. <;. Te-
spectively, in the same manner as Eqgs. (4) for ¢; in terms of
-

In the following we shall kecp in (5) and (3) terms up t0 a,
i.c., wé neglect the terms which contain o>

Governing Equations. The equations of equilibrium are
taken in terms of the second Piola-Kirchhoff stress tensor T
the form

div(Z-F")=0, (6a)
where F is the deformation gradient defined by
F=l+grad¥V, (6b)

where ¥ is the displacement vector and | is the identity tensor.
Notice that the strain tensor is defined by

£=%(FT-F—I). . (6¢)
More spexifically, in terms of the linear strains,
" du 1dv u ow
T Wit =Ty
lou v v ou aw au 13w
"“rao a r ""a—z"EF‘ €o= a r30' ab)
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and the linear rotations,
_12! 3_0 ' Ou 'Qo_c“' _Ou+u
rde o S

the deformation gradient F is
B 1 B
.5¢d"“x
1 1

F= ie,.'fu‘ | R X" =€ — W, (8)

l‘+ €y

L T ep =iy 2¢.,+u, 1+ |

and the equilibrium Eq. (6a) gives

-:—r[c..(l+¢,)+r,.(% e..-o,) +r,.(%¢,.+¢.)]
1
+%%[r,.(l+e,)+c..(%¢,.—u.)+r.,(3¢,.+¢.)]
2 1 1
+3-z Tdl +€,) + 7¢, zc,.—o, +0, 2¢a+q

+%[a,,(l +6,,) — es(1 + €4g) +f,,(% e,,+¢,)
—r.,(% ¢u-u,)-2mu.] =0, (%)
-:-%[1,.(% ¢,.+w,) + 0gg(1 + €g9) +1.,‘(% e.,-u,)]
a 1

+a—[ ( e,.+w,) +f..(l+e“)+ag(2¢.1-u,)]
a
a—[ ( e,.+a,)+r,¢(l+¢“)+r,,( e.,—a,)]
1 1, -
C,.+(|) + Oge 26,.-(0; +7- ZC’: w,

+1,:(% e,,-n.:.) +r,.(2+e,,+e~)] =0, (9b)

d 1 1
a T Ee,,—yu + 1y, Ee.:'l»u, +0,.(l+e;,)
-l»i 1 - + 1 + +1.{1+e,)
o O 2¢n we T 2‘0: w, | +7 {1 +ey
4—l 9 l 1 + + 7141 +€,.)
r 30 erx Wo | ~Ou)3 et Tl + €.

+}[o,(% e.,—u.) +1,.(§ e.,+u,) +7-(1 +eu)] =0. (9)

Introducing the linear strains and rotations in the form (3),
€8 8y = & + ae,, w, = wf + aw, as well as the stresses
from (5) and keeping up to a' terms, we ob(am a se( of equa-
tions for the perturbed state in terms of the €, ofand ¢;, ;.
Notnoe that in addition to the notations we adopted carlier, €;
and ] are the values of e, and w, for & = uo, v =-vg and w
= wgand e, and «, are the values foru = 4, v = v, and w
= w.

Since the displacements ug, 1y, wo. correspond to positions
of equilibrium, there must exist also equations of the form (9)
with the zero superscript, which are obtained by referring (6a)
to the initial position of equilibrium.

N
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Thus, after subtracting the equilibrium equations at the per-
turbed and initial positions, we arrive at a system of homo-
~encous differential equations which are linear in the derivatives

sy, vy and w, wuh respect to 7, 8, z. This follows from the
.4ct that a.,. ey, «, appear linearly in the equation, and are
themselves, in virtue of (7), linear functions of these deriva-
tives. The system of equations, corresponding to (9), at the
initial position of equilibrium, is, on the other hand, no.linewr
in the derivatives of w,, Uy, Wo. However, if we make the
additional assumpuon to neglect the tcrms that have ¢° and
o) as cocfficients, i.c., terms €0y and oy, we can usc the
tinear classical ethbnum equations to solve for the initial
position of equilibrium.

Moreover, if we make the assnmpuon to neglect the terms
that have ¢ and o as coefficients, i.c., terms e{o; and wjo;
and furthermore, since s dmaemuc feature of stability
woblausnstbesluft fromposmonsmlhsmallmuonsto
positions with rotations subsunmlly exceeding the umns. if
we neglect the terms eyaj thus keeping only the «; ) terms,
we obtain the following buckling equations:

a 4 ° 4 0 L l-a- ’ ° L ° ’
r (o — Tty +7n¢l)+’“ (Tro—Cogsy + Tosiy )
+2 (1= 1, + a%)
az' "

41 (it 130 4 78] ~ 2%} =0, (100)

a ’ e’ e’ l a 4 4 e’
> (T4 T, -r&u,)+;5 (e + Tops; — Toro, )
a . o , o e’
+5; (Tog+ T ooy ~ O gria, )

1. . . ) .
+ 210+ aows; — Cop; + Totg — T ) =0, (105)

d

. . . l a . . s
p (Tr— Gorisy + 700, -2 (7o:— 70w + 0%, )

+-a- (au-fnwa'*nu,H (Tr— ooy +7%w, ) =0. (10¢)

Boundary Conditions. The boundary conditions associ-

ated with (6a) can be expressed as
F®-L)si=0(r), an

where ¢ is the traction vector on the surface which has outward
unit normal 7 = (/, m, n) before any deformation. The trac-
tion vector ¢ depends on the displacement field ¥ = (u, v,
w). Indeed, because of the hydrostatic pressure loading, the
magnitude of the surface load remains invariant under defor-
mation, but jts direction changes (since hydrostatic pressure
is always directed along the normal to the surface on which it
acts).

This gives

[a,,(l+¢,)+t,.(% e,.—u,) +r,,(% e,,+u.)]l
1 1
+ [1..(] +e,.,) +¢..(5 e.,—w:) +1.‘(5 e,,+u.)}m
1 1
+ [r,,(l +e,) +r.=(§ e,.—w:) +au(5 t,,+w.)]n=x,,

(12a)
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[a,(% c..+u,) + 7,41 +en) 4-'1,',(%0.,—0,)]1
+ [1,.(% e.,-u.:;) + Oge(1 + €4q) +1“(%¢.‘—u,)]m
+ [1,,(% t.o-#u:) + 74,1 + €g9) +a,(% e.,—o,)]n-(.,

(12b)
[a.(% ea-u.) +14(% e..+u,) +10(1 +¢a)]l
+ [r..(% e..-«o) +o~(§ e.,w') +7{1 “a’]'"
+ [1.,(% ¢n-¢.) +ru(‘; ¢¢¢+v.-) +o(l +¢¢)]""r

(12¢)
If we write these equations for the initial and the perturbed
equilibrium position and then subtract them and use the pre-
vious arguments on the relative magnitudes of the rotations
] we obtain

(O — 7000z + Toeiag N+ (Tra—0ews; +Tortag )
+ (1 7o, + oZesg = lim {-:; [t (Vo+aV) 1 ml}.
(13a)

(Tt Oy — 750, M+ (Gog+ 759wy — T80, Y1

r . . - l

+ (Tor+ Toeo; ~¢2.«-»)u=llt% {; [te(Vo+aly) - 1( Vo)]}-
(130)

(T Trocty — G0g )+ (Tgr+ Goocs, — 7%00g Y111
+(oz+ 70, *12,&.')n=lin= {i e (Fo+ V) -2, ( Vo)l} -
(13¢)

Let A% and #' denote the normal unit vectors to the bounding
surface at the initial and perturbed positions of equnhbnum.
respectively. Before any deformation, this vector is 4 = (A
m, n). For external pressure p loading at the initial position

L, (Vo) = —p cos(A°F); te(Vo)= —p cos(A°%8);

£, (V)= —p cos(2°.%), (14a)

and at the perturbed position
L(Vo+aW )= —p cos(A'F); £(Vo+aV))= - p cos(d'B);

L(Vo+aV,)= —p cos(i'.£). (14b)
But in terms of the deformation gradient
Fledi=(14E2)A™, \5)

where E9, E} is the relative elongation normal to the bounding
surface at the initial and perturbed equilibrium posmons. re-
spectively. More explicitly,

f.' Uf) m

cos (A°, F)_l Eo[(l+e°)l+ (
" (% e°n+u3)n]. (16a)
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ws(f.’)-ﬁ[ (% ¢:‘.+u:)l+(| +&)m

-] oo
cos(A%.) = 7[( - w-)’
+(-;¢e,+«:)o-+u+e&)n]- (16c)

Similar expressions hold true for the perturbed state. For
example,

cos(',f) 'nle',{{“ +érac)l
{e-d--9
. [ (% e?.+u:) +a(%¢;+u.')]n}. an

The assumption of small strains allows neglecting ES and
EL in comparison with unity. Substituting into the expressions
(14) for the tractions in terms of the pressure and subtracting
the initial and perturbed state and using the same arguments
on the magmtudc ofrouuonstoneglecte, in comparison with
u. . we arrive at the following expressions:

1(Vo+aV) -1, (V) =po(u;m—uyn),  (18a)
L(Vo+aV)) - t4(Vo) = —pa(el-a, n), (18b)
t(Vot aV)) —t,(Vo) = pa(wgl—w,m). (18¢)

And in lieu of (13) for the lateral surfaces, i.e.,form = n =
OQand!/ =1,

a,',-f',’.a,' +7‘,',u¢' =0, (192)
T+ 0%, ~ 1%, = —puag, (19b)
Tr+ Toew, ~ Oy = Py . (19¢)

Prebuckling State. The problem at hand is that of a holiow
cylinder rigidly fixed at its ends and deformed by uniformly
distributed external pressure p (Fig. 1). The axially symmetric
distribution of external forces produces stresses identical to all
cross-sections and dependent only on the radial coordinate 7.
In this manner the forces at the ends are distributed identically
over both surfaces and reduce to equal and opposite resultant
forces and moments. Let R, be the internal and R, the external
radius and set ¢ = R/R;. Lekhnitskii (1963) gave the stress
field as follows:

k-1 k-1 ke
p_(r P anfRa
1-c (R,) M (r) - @)

P r &-1 pC‘-' R kel

o _ _ £ - - g+ f N2 ;

Mol pupE k(R,) l-cakc (r) . @09)
P r k-1

] —

O a _cu)a" (a3 +axk) (R;)

“.kl

R &l
U= (ay- a,,k)c""(') « (20c)

(20d)

Equations (4) for the orthotropic constitutive behavior, where
¢, are the stiffness constants as well as the inverse relationship
where g, are the compliance constants have been used, i.c.,

19=1r0=19=0.

198 / Vol. 60, MARCH 1993

Fig. 1 mwm.:lﬂlnlmm
€ a, @ a3y 0 0 O Ow
€ a @n a3 0 0 O Coe
| | en an 0 0 O L -
|10 0 0 a 0 of|r]
Yz 0 0 0 0 Qss 0 Trn
b7 0 0 0 0 0 a Tre

Since the rotations at the initial position of equilibrium are
¢ither zero or of the same order as the strains, the classical
linear elasticity equilibrium and strain-displacement equations
<an ordinarily be applied to the initial position of equilibrium.
Hence, integration of the above stress field through linear
strain-displacement relations (Eqgs. (7)) gives

uo(r)=Dipr* + Dypr~*, wvy=we=0, @
where
2
a1a3 — a1y Cn
k= {7uonZ2p, 2 @)
anay; —as \I;
1 ay
T e ert——————— -—— k
D, A= kR [au*'auk o (ap+ay )]
! (23a)
(enk+cp)(1 -c*)R;™"
. ct-IRf<l ay;
= = - -— —ank
D, a-Hk a, —apk P (a3 - ank)
ck—leOI
= . (23b
(—cuk +cp)(1 - c*) @30)
Perturbed State. 1n the perturbed position we seek plane

equilibrium modes as follows:
u,(r.8) = A, (r)cos né;
v (r,0)=B.(r)sin n8; w(r0)=0.
Substituting in (7) we obtain
a=kp(Cir* ™ '=Cyr™""); €a=p(Cir* '+ Cyr™*""),
(25a)
h=v0=10=1%=0. (2sb)
The first-order strains are given II'I Appendix B. However,
let us examine the expretsnon for ¢..:
)3w.
ar

1 o v, {1
= = +w
(l+¢°) +(2,. )a+(2¢§
Since all terms multlpllcd by e.,- or u,. can be neglected based
on the arguments made previously, ¢,, = du,/dr = e,,. It tumns

4)
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. out that we can usc for the first-order strains the very ‘much
; shmpler linear strains ¢, i.c., q, = ¢,. Therefore,

n-fn-Aa(')m "'o (w)
. . A (r)4 nB.(r)
W=Cy=——— — cos nb, 6b)
. e . B, nA,
Ye=Cn= [B.(r) -—W]sin nd, (26¢)
@=v0:=7-=0, (26d)

and the first-order rotations are

2 = [n;(r)+9—"-(—')—1'-"—"-‘-'ﬂ]sin no,  (26e)

wg =w, =0. )
Denote AL (r), B (r) the ith derivative of A.(r), B.(r).
respectively, with the notation AR (r) = A,.(r) and Bh(r)

8,(r). Substituting in (10) and using (4) and (5), c.g., a =
1€ + Ciates. We Obtain the following two linear
ordinary differential equations of the second order for 4,(r),

Ba(r):

2
D5 AL () (dar "2+ dnpr* > 4 dapr=t Y
=0

1
+ 3, B (r) (qor’ "2+ qupr* "'+ qapr~t~**) =0,
i=0

Risr=<R;, (27a)

ZB("(r)(bnr" +b,ypr‘ 3¢iy bapr-t-3+))
=0

+ Z AN(r) (fn’>‘z+fnP’*""'+fnP’-‘-’°i) =0,

in0

Ri<srsR;, (Q1b)
‘The boundary conditions (19) are written as follows:
A, (R})cy+{Au(R;) +nB,(R)} %=o. j=12 (280)
/

B. (Rj)[ (C“"“’;J) +ho,pR; ™! +h02PRj-‘-']

\ 1
+1Ba(R;) +nA..(R,-)l[ (— c“+821)§-+ho.pR}'2

]

+h¢2pR,-""]=0, j=1,2 (28b)

where p; = p for j = 2, i.e., r = Ry (outside boundary), and
p; =0forj = 1,i.e.,r = R, (inside boundary).

The constants d;, Qi by, fij. hy in the above equations are
given in Appendix A and depend on the material stiffness
coefficients ¢; and the constants n and k.

Equations (27)-(28) constitute an cigenvalue problem for
differential equations, with p the parameter, which can be
solved by standard numerical methods (two-point boundary
value problem). The relaxation method was used to obtain
results which are discussed in the following. The minimum
eigenvalue is obtained for # = 2. An equally spaced mesh of
241 points was used 10 derive the results. The procedure is
hishly efficient with rapid convergence. An investigation of
; nvergence showed that essentially the same results were
¥ aced with even three times as many mesh points.

Results and Discussion
As an illustrative example, the critical pressure was deter-
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1y

.

Criticat Pressure, OPs

.0 . .2 .3 .4 1.8 .6 1.7

AR

Fig.2 Crttical pressure, p,, versus ratio of outsideAnside radius, R/R,.
Comparison of the three-dimensional elasticity and the shell theory pre-

mnedforacompomcarwhrcyhndaofmnandmsk. =
1 m. The moduli in GN/m’ and Poisson’s ratios used (typical
fota;hs/epoxymerul)mhstedbdow where 1 is the
radial (r), 2 is the circumferential (6), and 3 the axial (z7)
direction: E, = 14.0, E; = 51.0, E; = 14.0, G,; = 5.7, Gy
= 5.7, Gy = 5.0, 3 = 0.068, vyy = 0.277, »y; = 0.400.

Figure 2 shows the critical pressure as a function of the ratio
of outside versus inside radius R;/R,. The elasticity solution
is compared with the predictions of classical shell theory (c.g.,
Ambartsumyan, 1961). It is seen that the buckling load pre-
dicted by shell theory is 33 percent higher than the elasticity
solution for Ry/R, = 1.3, it is 70 percent higher than the
elasticity solution for Ry/R, = 1.5 and is more than two times
the elasticity solution for Ry/R, = 1.65.

The direct expression for the critical pressure from classical
shell theory is

("2 l) (29a)

where R = (R, + Ry)/2is the lmd-surfaoe radivs, and h =
- R, is the shell thickness.

The previous value can be found by using the Donnell non-
linear shell theory equations (Brush and Almroth, 1975) and
seeking the buckled shapes in the form (24) where A,(r) =
A,, i.e., it is now a constant instead of function of s, and
B.(r) = B, + (r — R)B with B, being a consiant, i.c., it
admits a linear variation through the thickness. Since 8 = (v,
— u,4)/R, the latter can also be written in the form B,(r) =
B, + (r — R)(B, + n)/R.

As a consequence, we obtain the following shell theory buck-
ling equations:

Poash™= (l

2

U g+ le—m (4y 000 — V1 00) =0, (295)

hl
FpT (41 0000 — Uy g00) + (11 4+ 03 4)

_PR(1 - nywy)
Eh

Substituting the displacements from (24) and using the previous
expressions for A,(r) and B,(r) results in the eigenvalue (29a)
and the *“*eigenvectors®” given by

s e (11t ) [ oo+ )] e

Figures 3 and 4 show the variation of A,(r) and B.(r).
which define the eigenfunctions, for Ry/R, = 1.5, as derived
from the present elasticity solution, and in comparison with
the shell theory assumptions of constant A, (r) and lincar B,.(r).

(vig—u100) =0. (29¢)
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0.96 4
0.95 Y v = ——
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IR

Fig. 3 “Eigenfunction™ Afr} versus normelized radis! distance 7R, A
wnit value st the outside boundary has srbitrarily been set.

£2

1

0.3 1

Bn(e)

. T

L]

1.2 1.3 1.4 1.5
/R

Fig. 4 “Eigenfunction™ B/} versus normalized radisl distance /R,.

181

-
<
a
Q st
©
-
)
e
® E1ssricky-isotropic
o
2 o \
<
(]
oe % \
bt § Elasticy-Orthotropic
00 A a et
.0 1.1 1.2 1.3 1.4 1.9 1.6 1.7
R2/R1

Fig.S Critical pressure, p, versus ratio of outsidefiaside radius, R/R,,
for the orthotropic case, and the isotropic one with E = E;; Le,, the
modutus along the periphery and Polsson’s ratio v = 0.3

s nese values have been normalized by assigning a unit value
for A4, at the outside boundary r = R,.

Finally, Fig. S shows the effect of material constants by
presenting a comparison of the critical load for the orthotropic
case with the previously given moduli and Poisson’s ratios,

200 7/ Vol 60, MARCH 1993

Table 1 - Critical presswre, po R}/ (Esh*) »
Onthotropic, moduli in GN/m™: E; = 51, E, = E, = 14, ¥
Gu - 5.0. G“ - G“ - $.7 ot

0.068, #;y = 0.277, 0y, = 0.400

Poisson’s ratios: o, = "

Ry/ R, ' E‘.“ki‘! M ;W
7.0 0.27128 0.2930 74

1.18 0.2768 03119 127

1.20 0.2784 0.3308 188

125 0.2780 0.3495 259

1.30 0.2762 0.3681 13

1.33 027133 0.3864 4.4

1.40 0.269% 0.4046 50.]

‘from Eq. @9¢) with @ = 2

and the corresponding one by assuming isotropic material with
modulus £ = Ej, i.e., the modulus along the periphery, and
Poisson’s ratio » = 0.3. It is scen that the orthotropy results
in significantly lower critical load with increased thickness. For
example, at Ry/R, = 1.5, the isotropic material has 40 percent
higher critical load than the orthotropic case. Naturally, the
reduction in critical load can be qualitatively attributed to the
reduced shear and radial stiffness of the orthotropic material,

The comparison of our elasticity solution was performed
with the Donnell shell theory. It has been known (Danielson
and Simmonds, 1969) that the Donnell shell theory can produce
in some instances inaccurate results (such as for long tude
behavior), as opposed to the more elaborate Fliigge theory that
provides more accurate predictions. However, for the problem
under consideration, due to the assumed two-dimensional
buckling modes (i-e., no z component of the displacement field,
and no z-dependence of the r and 8 displacement components),
both the Fliigge and Donnell equations would give the same
critical load. Indeed, the buckling equations for the Fligge
shell theory (see, e.g., Simmonds, 1966) would be: the Eq.
(29b) without the term 4%/12R* (4,00 — U1 es), and the Eq.
(29¢) with the first term being Ir’/lzﬁ(u.,.., + 2u 9 + uy)
instead of //712R? (uiy eeee ~ U100e)- Substitution of the buck-
ling modes (24) gives the same critical load, Eq. (29a), as the
Donnell shell theory. Future work will consider the more com-
plete problem of buckling of cylindrical shells of finite length
under axial compression and external pressure, in the context
of the present elasticity formulation; in this case the differences
among the various shell theories are expected to surface.

It should also be noted that although the equilibrium ap-
proach was employed in the present formulation, a variational
approach could also be applied. In this case, we can use the
principle of virtual disptacements by considering virtual dis-
placements of the form adu,, ady,, and adw,. The internal
virtual work, which is essentially a volume integral of the
product of siresses and strains in (3) and (5), can be written
in the form 3W; = W™ + oS + oW, and the same
is true for the external virtual work §W, due to the applied
pressure. Finally, we would obtain the variational formulation
in the form of 3#% = WY, Such an approach is expected
to lead to similar results as the present direct equilibrium ap-
proach.

For a more specific comparison of the results for a range
of radii ratios that would probably constitute practically mod-
erately thick-to-thick shell construction, Table 1 shows the
critical load derived by the present elasticity formulation and
the shell theory predictions for orthotropic material and for
ratios of outside over inside radius ranging from 1.10 to 1.40.
A similar companison is performed for the isotropic case in
Table 2.

From the results presented previously, it can be concluded
that predictions of stability loss in composite thick structures
can be quite nonconservative if classical approaches are used.
Specifically, the previous example showed that the critical load
predicted by shell theory is higher than the three-dimensional

Transactions of the ASME



Table 2 Critical pressure, p RI/(Eh?)
Isotropic, £ = £; » STGN/m?, » = 0.3

' Elauicity Shell’
.10 0.2999 0.3139 s3
115 0.3109 0.336) 8.2
1.20 0.3209 0.3567 1.2
1.23 0.3301 0.3769 14.2
1.30 0.3384 0.3969 12.3
1.35 0.3459 0.4167 205
1.40 0.3528 0.4363 237

Hrom Eq. (29¢) with m « 2

elasticity predictions by more than a factor of two for a ratio
of outside over inside radius greater than about 1.6. The present
formulation and solution provide a means of accurately as-
sessing the limitations of shell theories in predicting stability
loss when the applications involve orthotropy and moderately
thick construction. Further work is needed to assess the ac-
curacy of improved higher-order shell theory predictions on
the critical load in comparison to the elasticity ones. A com-
parison of these theories to the classical shell theory has aiready
been performed by Anastasiadis (1990).
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APPENDIX A
:fine the constants C, and C; (10 simplify the o3 expres-
sions) as follows:
1 uRl -1
ey G = 3.
NRET T a-eM

C=- . (A1)

(l-¢

Joumal of Applied Mechanics

where ¢ = R,;/R;. Furthermore, kkdeﬁnedln(zz)andcgm

the stiffness constants. from (4).,
The coefficients of the first dlﬂtremhl Bq. (27a) are

du=c,; dy=dnu=0, dp=c,; d,=d,=0, (A2)
kn? kn’

doo= - (€4 Cr); do= -5~ Cii da==-GCy (AY)
. kn kn

Qo= - n(Cn+Cu): Qo=-"7 Ci; Ya=3" G, (A9
k k

Qo=n(C3+Ca); Gn"-TnCﬁ q.,--z—nC,. (AS)

The cocfficients of the second differential Eq. (276) are
given as follows:

bu=cwi bu=3Cii bn=3 G, @1
bi=cwi bu=3 Ci b.,=§c,. ®2)

bu= - (car +eudi bu==3Ci ba=-3C (B3
Jo= ~nlentew); Ju==3Ci Jum~3C (B4
fu=—nteatcadi fu=3Cn Jo=3C (@)

Finally, the coefficients of the second boundary condition
(28b) are

i i
ba=3Ci ba=3GC )

APPENDIX B
The strain components in the initial position of equilibrium
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‘The strain components associated with the linear terms (cor-
responding to the perturbed position of equilibrium) are
o gy duo Juy  dug doy  dwy Iw,
“wrtawatanta o DN

el i (130 w) (13 o
“w r30+r+(r30 r)(rat r)

13 uo) 13y, w4 1 3wdw
o(2met) (2 t) 335 o

_dw dug duy Sy dw Sy dw,
u az+az az+az Oz+iz ' D)

daw du oy du (1w
rd8 or r or\rd r

Qugfl duy v\ 3ufldey uo
+ar(r30 r)+3r(r80+r)

aup (130, w) 12w dwy 133w,
+3r(r 30+r)+r3r M*rar ' (©2d)

» Uy Aw,  dup du,  u, duy
Y=t or tor oz tor az

dug 30, Ju, g 2wy, dw, 2o
ar a2z ar oz o oz ar az0 ©%°
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ol ™ ru*az( u‘f) :
lau v. 80 l?&g,
rd r
S m-,,u- uzo.a_mzwwo
AZ\r 3 r rd 3z rae u:k

The strain quantities corresponding to the quadratic termg

R

(associated with the initial post-buckling behavior) are: -2/
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