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 of the three-dimensional theory of elasticity. The results are compared with the 

critical loads furnished by classical shell theories. For the isotropic material cases 
considered, the elasticity approach predicts a lower critical load than the shell the­
ories, the percentage reduction being larger with increasing thickness. However, 
both the F1iigge and Danielson and Simmonds theories predict critical loads much 
closer to the elasticity value than the Donnell theory. Moreover, the values of n, m 
(number of circumferential waves and number ofaxial half-waves, respectively, at 
the critical point) for both the elasticity, and the Fliigge and the Danielson and 
Simmonds theories, show perfect agreement, unlike the Donnell shell theory. 
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Introduction 
Loss of stability is of primary concern in composite struc­

.tural applications because of the large strength-to-weight ratio 
of these materials. Shell-like components of modest thickness 
are considered for possible applications in the marine industry, 
as well as the automobile and space industries. The accurate 
prediction of buckling under axial compression is an important 
consideration because of the uniaxial or, more generally, biax­
ial compressive fields that can be encountered in such appli­
cations. 

Buckling of shells has been almost exclusively researched to 
date through the application of the cylindrical shell theory 
(e.g., Simitses, Shaw, and Sheinman, 1985). The classical so­
lution, derived through the Donnell formulation, yields for an 
isotropic shell of radius Ro and thickness h (Fig. I), a critical 
stress directly proportional to h/Ro and independent of the 
length, I, of the shell. 

It has already been pointed out that this solution can yield 
incorrect results for very long cylinders, which can buckle as 
columns with undeformed cross-sections (Timoshenko and 
Gere, 1961). For very short cylinders the classical formula is 
also inadequate and a trial-and-error procedure through dif­
ferent combinations of the number of circumferential waves, 
n, and the number of axial half-waves, m, is needed (Brush 
and Almroth, 1970). 
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In this respect, Danielson and Simmonds (1969) obtained a 
set of accurate shell theory buckling equations for arbitrary 
cylindrical elastic shells of finite length. Their critical loads 
for shell of finite length were as simple as those predicted by 
the simplified Donnell equations, yet as accurate as those pre­
dicted by the more elaborate Fliigge equations (Fliigge, 1960). 
Simmonds and Danielson (1970) used their set of accurate 
buckling equations to compute the critical loads of axially 
compressed circular cylindrical shells subjected to "relaxed" 
boundary conditions. Their results showed that as IIRo - 0 
or as IIRo - 00, the buckling load approaches zero, in contrast 
to the behavior predicted by the DonneH equations. All the 
previously mentioned studies considered thin shells. 

It seems natural that a comprehensive investigation of the 
performance of the simple classical solution and the various 
shell theories with respect to the shell thickness would be of 
interest in view of possible structural applications of modest 
thickness. An accurate solution for the stability characteristics 
of moderately thick shells is also needed in order to compare 
the accuracy of the predictions from various improved shell 
theories (e.g., Whitney and Sun, 1974; Librescu, 1975; Reddy 
and Liu, ]985; see also Noor and Burton, 1990, for a review 
of shear deformation theories). 

Kardomateas (1993) presented a three-dimensional elasticity 
formulation and solution for the buckling of cylindrical or­
thotropic shells subjected to external pressure. It was shown 
that the critical load predicted by shell theory can be noncon­
servative (in particular, for the" example case of glass/epoxy 
material considered, it was 34 percent higher than the elasticity 
solution for ratio of outsidelinside radius R2/R 1 = 1.3). This 
work was based on a simplified problem definition in that the 
prebuckling stress and displacement field was axisymmetric, 
and the buckling modes were assumed two-dimensional, i.e., 
no z-component of the displacement field, and no z-depend­
ence of the rand () displacement components. 
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Fig. 1 Cyllndrica. ahell under axial compression 

To further assess the thickness effects on the stability of 
shells, the problem of buckling of a traversely isotropic thick 
cylindrical shell under axial compression is investigated. No 
restrictive assumptions are made concerning the thickness. 
Again, the nonlinear three-dimensional theory of elasticity is 
appropriately formulated, and closed-form analytical solutions 
are produced. The formulation is different from the previous 
work by Kardomateas (1993) because a finite length and a full 
dependence on r, 6, and z of the buckling modes is now as­
sumed, which increases the complexity of the problem. Specific 
results will be presented for the critical load and the buckling 
modes. The results will be compared with the simplified Don­
nell fonnula, the critical load from the nonsimplified Donnell 
shell theory, the Fliigge (1960) shell theory, and the Danielson 
and Simmonds (1969) formulation. 

It should be noted that although composite shells may exhibit 
general anisotropy, we shall restrict ourselves to transverse 
isotropy, because more general anisotropy would not allow a 
direct solution of the corresponding three-dimensional elas­
ticity problem. Actually, Elliott (1948) was the first to address 
the problem of obtaining closed-form solutions for transverse 
isotropy. 

Formulation 
The equations of equilibrium are taken in terms of the second 

Piola·Kirchhoff stress tensor 1: in the form 

div (1:.F T)=O, (10) 

where F is the deformation gradient defined by 

F =I + grad V, (I b) 

where V is the displacement vector and I is the identity tensor. 
Notice that the strain tensor is defined by 

I TE=- (F .F-I) ( Ie)
2 

More specifically, in terms of the linear strains: 

au 1 au u ow 
e =- e =- -+- e =- (20) 

rr or' fI6 r 06 r' U oz ' 

lou au v 
(2b)e =--+---,

r6 r 06 or r 

and the linear rotations: 

I ow au au ow au u I au 
(2c)2wr=~ 06 - OZ' 2w9 =OZ - or'2w,= or +~-~ 06' 

the defonnation gradient F is 

1+erT 2:
1 

er6- w, 2:
1 

e",,+w9 

F= (3)2:
1 

er6+ w, 1 +ef16 2:
1 

e9,-Wr 

2:
1 

e",,-w9 2:
1 

e9,+wr 1+eu 

At the critical load there are two possible infinitely close 
positions of equilibrium. Denote by uo, uo, Wo the r, 6, and Z 
components of the displacement corresponding to the primary 
position. A perturbed position is denoted by 

u=UO+aul; v=vo+av.; w=wo+aw1, (4) 

where a is an infinitesimally small quantity. Here, aUI(r, 6, 
z), aUI(r, 6, Z), aWl (r, 6, z) are the displacements to which 
the points of the body must 'be subjected to shift them from 
the initial position of equilibrium to the new equilibrium po­
sition. The functions u. (r, 6, z), VI (r, 6, z), WI (r, 6, z) are 
assumed finite and a is an infinitesimally small quantity in­
dependent of r, 6, z. 

Following Kardomateas (1993), we obtain the following 
buckling equations: 

a , 0' 0' la, 0' 0' 
or (arT-TrlJW, +TnW9 )+; 06 (Tr6- a(J/JW, +T9<W9) 

o , 0' 0' 
+ OZ (T",,- T9zW, + a:;:W9) 

1 , , 0' 0' 0 I

+- (arT-afl6+TnW9 +T9zWr -2TrlJW,)=O, (Sa)
r 

1, 0' 0' 0' 0'+- (2Tr6+ arrW, -a(J/JW, +T9zW9 -TnWr)=O, (5b)
r 

0, 0' 0' I, 0' 0'+;- (au - TnW9+ T9zWr)+- (T",,-arrW9+TrlJWr)=O. (Se)
vZ r 

In the previous equations, a~ and wJ are the values of au and 
Wj at the initial equilibrium position, i.e., for u = Uo, v = vo 
and w = wo, and a~ and wJ~ are the values at the perturbed 
position, Le., for u = u .. v = VI and w = WI' 

The boundary conditions associated with (10) can be ex­
pressed as: 

(6) 

where t is the traction vector on the surface which has outward 
unit normal Ii = (/, m, n) before any deformation. The trac­
tion vector t depends on the displacement field V = (u, u, w). 
Again, following Kardomateas (1992), we obtain for the lateral 
and end surfaces: 

(a:,-1"~: +'T~;)/+ ('T~-O~; +'T~zW;)m 

+ (T~-T~~; +o~~)n=O, (70) 

(T~+a~; -T~;)/+ (a~+T~; -T~~;)m 

+ (T~,+T~; -a~;)n=O, (7b) 

(T~+T~; -a~~)/+ (T~,+a~; -T~~)m 

+ (a~+T~zW; -T~~)n=O. (7e) 

PrebuckJing State. The problem under consideration is that 

Journal of Applied Mechanics JUNE 1993, Vol. 60 /507 



of a transversely isotropic cylindrical sheIl compressed by an 
axial force applied at the ends. The stress-strain relations for 
the transversely isotropic material are as folIows: 

trrOrr Cll CI2 Cn 0 0 0 
0(J6 1t(J6CI2 CII Cn 0 0 0 

Cn Cn C33 0 0 0 t u°u (8)
0 0 o Css 0TO, "YO< 
0 0 0 o CSSTn "Yn(Cll-~CI2)I2J0 0 0 0 0Tr6 "Yr6 

where cij are the elastic constants (we have used the notation 
1 .. r, 2 E 8. 3 .. z). 

Denote the length of the shell by 1 and the area of the 
transverse section by A. If we assume that the stresses along 
the loaded upper end (z = I) and the reaction along the lower 
end (z = 0) of the sheIl are distributed uniformly. and are 
normal to the bounding planes, then the components of stress 
tensor that satisfy the equations of equilibrium and the traction 
conditions on the surfaces are simply 

0u= _!!..= - 00; a~=o~= T~=T~= T~=O. (90)
A 

For a transversely isotropic body, the corresponding displace­
ment field can be found by using (8) and (2): 

CI3 
Uo= 2 oor, Vo=O;

C33 (CII + CI2) - 2c 13 

CII +C12 
(9b) 

Perturbed State. Using (5) and (9), the three-dimensional 
elasticity equilibrium equations for the perturbed position can 
be written as folIows: 

oo~ I OT~ 0, ,I"
---+- -+- (T -0""") +- (0 -0=) =0 (100)or r 00 oz n V-o r rr ~ , 

OT~ 1 OO;e 0, ,2T~ 
-+- -+- (TO'+OOW,) +-=0, (lOb) 
or r 00 OZ r 

o~~+! OT;,+~+ T~=O. (lOc) 
or r 00 OZ r 

In the above equations, o~, OJ} are expressed in terms of t~, 
t ,}, respectively, in the same manner as Eqs. (8) for oij in terms 
of fij. The strains ti}' are in turn expressed in terms of the 
displacements, UI, VI' Wj, in the same manner as the linear 
strain displacement relations (2). Substituting, we obtain the 
equations of equilibrium in terms of the displacements at the 
perturbed state, Uj, VI> WI as foIlows: 

CII (~UI +! OUI_ UI)2 2or r or r

1 1 02UI ( 0 0) a2UI 
+2 (CII-CI2)? o~ + C5S-"2 at 

1 0 (1 OVI) 1 OVI 
+2 (CII +CI2) a; ~ ao - (CII-CI2)? ae 

00] 02 WI 
+ (CI3+css)+"2 oroz=O' (110)[ 

+ ~ :oH (CII +CI2) e;l + ~l) + (Cll-CI2) ~I 

+ [(CI3+css)+~]O~I] =0, (lIb) 

02 WI I aWl I 02 W1 ) a2WI 
Css ( ar2 +~ a;:+-;z a~ +clJ ot 

a (OUI UI I aVI)+ (cn+css) - -+-+- - =0, (lle) 
az or r r 00 

(a) We seek a first group of solutions in terms of a function 
41 in the form 

(l2) 

A similar form had been used by EIIiott (1948) for Cartesian 
coordinates. Then equations (110) and (lIb) are satisfied if 

0241 I 041 1 if/fl)
Cll ( or2+~ or +? a~ 

00 " ]0241
+ C5s+ k (Cn+ css) +"2 (k-I) ot=O, (130)[ 

and (lle) is satisfied if 

0
241 I 041 1 ( 241) 0241 

[(Cn + c,,) + kc,,] ( or2 + ~ or +? o~ + kC33 ot = o. 

(13b) 

A nonzero solution of these Eqs. (130) and (l3b) can be found 
only if they are identical; this occurs if 

C,,+k(CI3+C,,) + (k-I)(ool2) 

(140) 

This gives a quadratic equation for; or k. The equation for 
x = ;, with roots s7 and ~, depending on the compressive 
stress 00, is 

CII CS,x2 + [ (C13 + C5S) (cn + Css + ~) 

-C55(CS5-~) -CIICJJ]X+CJ3(C".-~) =0, (l4b) 

and the corresponding k i: 

k,"=s7CII - Css + (0012)	 (1 A_)i= 1,2. .... 
CI3 + c" + (00/2) 

(b) A second group of solutions is sought in terms of the 
function l/; in the form: 

1 ol/; ol/;
UI=~OO; vl=-ar; WI=O. (15) 

Then Eqs. (110) and (lIb) are satisfied if 

1 (02l/; I ol/; I 02l/;) ( 00) 02l/;
2 (CIl-CI2) or2+~ or +? o~ + css-"2 at =0, (16) 

and Eq. (lIc) is identicaIly satisfied. 
(c) Finally. an obvious third group of solutions is the rigid­

body displacement field with components V... V,. and V, along 
the Cartesian x. y. z coordinate system: 

UI = V.. cos 8+ V, sin 0; VI = - VA sin 0+ V, cos 8; WI = V,. 
(17) 

The displacement is a superposition of the fields (a), (b), 
and	 (c). 

Now the functions 41 and l/; are sought in a separable form: 
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f/1/...r, 6, z) = Z(z)Aj(w) cos nB; area integral into a contour integral, and the condition (240) 

i= 1,2 corresponding to s" S2' (180) 

"'(r, 0, z) =Z(z)B(w) sin nO. (18b) 

Notice that the decomposition in terms of the three functions 
!PI> !P2' and'" may be considered complete in the sense that it 
results in the number of constants needed for the formulation 
of the eigenvalue problem as will be seen in the following. 

Now set 

p =AT. (l8c) 

Substituting in (130), we obtain the ordinary differential equa­
tions: 

• I, (~n)Ai (p) +~ Ai (p) - Si +; Ai(p) =0, (190) 

where .s1 are given in (140). In a similar fashion, substituting 
in (16), we obtain the ordinary differential equation: 

u 
B· (p) +_pl B' (p) - (rl+-p~)B(P) =0 where rl 2css - o 

CII-C\2 ' 

(l9b) 

Moreover, Z(z) is found to satisfy 

Z· (z) + ),2Z(Z) = O. (I 9c) 

The assumption 

Z(z)=sin Az (19d) 

satisfies the third differential Eq. (l9c). 
For a hollow cylinder, since we do not have a restriction of 

finite values at r = 0, the solution to the two Eqs. (190) and 
(I9b) involves the modified Bessel functions of both the first 
and the second kind. 

Ai(p) =C;l"(sj?) +D;K"(siP); B(p) =Cc/"(qp) +DoK"(qp), 
(20) 

where the constants ICh C2 1 and (D 1, D 2 l are in general 
complex conjugate pairs and Co and Do are real. 

Before satisfying the boundary conditions at the lateral sur­
faces, we shall discuss the boundary conditions at the ends. 
From (7), the boundary conditions on the ends are 

, 0' . ' 0' . ' - 0 - 0 I (21)Tn,+Uu.fo'J8 =0, T8<-U:;,....w, =0, Uu - , at z- , 

Since, u~ varies as sin hz, the condition u~ = 0 on both the 
lower end z = 0, and the upper end z = I, is satisfied if 

m1r 
),=-1. (22) 

In a cartesian coordinate system (x, y, z), the first two of 
the conditions in (21) can be written as follows: 

I 0' , 0'
Trz+Uu.fo'Jy=O; T)'l-Uu.fo'JJ(=O. (23) 

It will be proved now that these remaining two conditions are 
satisfied on the average. 

The lateral surface boundary conditions in the cartesian 
coordinate system (analogous to (7», with fl the normal to the 
circular contour are (notice that from the prebuckling state u~ 
= U~y = T~y = 0): 

U,;,. cos (fl, x) +T~ cos (fl, y) =0, (240) 

T~ cos (ti, x) + U;y cos (fl, y) =0. (24b) 

Using the equilibrium equation in cartesian coordinates (anal­
ogous to (5», gives 

a r r ' 0' r r (au';" ~) 
az J J (Trz+uu.fo'Jy)dA= - J J a;+ ay dA. (250) 

A A 

Using now the divergence theorem for transformation of an 

on the contour, gives the previous integral as 

-) [u";" cos(fl, x) +T~ cos(ti, y)]ds=O, 
l' 

where A denotes the area of the annular cross section and 'Y 
the corresponding contour. Therefore,

)t (T';' + u~; )dA = const. (25b) 

Since based on the buckling modes, T~, ~, T~t and w; and 
hence T';', w;, T;", and w;, all have a cos (mTz/l) variation, 
they become zero at z = 1/(2m). Therefore, it is concluded 
t1}at the constant in (25b) is zero. Similar arguments hold for 
T)'l' 

Moreover, it can also be proved that the system of resultant 
stresses (23) would produce no torsional moment. Indeed, 

..E... r r [X(T;"-U~;)-Y(T';'+U~;)]dA 
az J JA 

= -) t[x(~+~)-ye;;+ a;;) JdA. 

Again, using the divergence theorem, the previous integral 
becomes 

-) (X[T;y cos (n, x) + U;y cos (fl, y)] 
l' 

- y[u';" cos (n, x) + T~ cos (ti, y)]lds=O. (260) 

Hence, 

(26b) 

and this constant is again zero since T';' = T;, = w; = w; = 
Oatz = 1/(2m). 

Finally, it should be noted that since UI varies as sin Az, 
d 2u, 

u\=d;=Oatz=O,I, (26c) 

which is the condition of simply-supported ends; furthermore, 
WI and VI can be made equal to zero at some point at the end 
z = 0 by the choice of the constants Vi in (17). 

Notice that based on the previous analysis, we have found 
that 

!pi(r, 0, z) = [C;l" (Sjw) 
+D;K"(SiW)] cos nO sin Az; - i= 1,2 (26d) 

and 

"'(r, 0, z) = [Cc/"(qw) + DoK"(qw)] sin nO sin Az. (26e) 

Now we proceed to the boundary conditions on the lateral 
surfaces r = R j ,} = I, 2, which will ultimately give the 
characteristic equation for the critical load. 

From (7), we obtain 

u~=O; T~=O; T~=O, at r=R h R 2• (27) 

Substituting in (27), (15), (12), (2), and (8), and using the 
identities for the derivatives of Bessel functions, we obtain a 
system of six linear homogeneous equations in Ci, Di , i, = I, 
2, and Co, Do. In particular, the boundary condition U rr = 0 
at r = Rj ,} = 1,2 gives 

1" 1"+1](CII-CI2) CO n(n-l) R}+n),q R[ [ j 

K" Kn+ I]}+Do n(n-I) RrnAQRj[ 
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Kn Kn+I]-Cn n(n-I)2+M;-­
[ R j Rj 

-ClJk;>.2KnJ =0, j= 1,2. (280) 

The boundary condition T;' = 0 at r = Rj , j = 1,2 gives 

In+ J In 2..21 ]Co 2'Aq R -2n(n-l) Rr).. q n[ j 

Kn+l Kn 2...2K ]-Do 2'Aqli;"+2n(n-I) Rt)..q n[ 

'" [ In In+I]- L..J C; 2n(n-l) R2+2nM;T 
;c 1,2 J J 

K
+ 2: D;[-2n(n-l) K;+2nM; n+l] =O,j=I,2. (28b)

R;=1.2 R J J 

In a similar fashion, the condition T ~ = 0 at r = Rj • j = I, 
2 gives 

nln nKn '" [nln M ]Co-+Do-+ L..J Ci (k;+I) -R.+ ;In+\ 
RJ R j ;=1,2 J 

+i~2 D;(k;+I)[n~n-M;Kn+l j=I.2. (28c) 

The Bessel functions I\n.n+ 1) and K'n.n+ 11 are assumed to be 
evaluated at MiRj if they are inside the sum, E, and hence 
belong to the coefficients of C; and D;, i.e., Iln.n+ II "" IIn.n+ 'I 
(MiRj); they are evaluated at 'AqRj if they are outside, and 
hence belong to the coefficients of Co and Do, i.e .• Iln.n+ II == 
Iln.n+ II (XqRj ). 

By equating the determinant of the above system (28) to 

zero, we obtain an equation for 00 (characteristic equation) 
which can be solved to obtain the critical load. In general. the 
roots SI and S2 are either both real or complex conjugates, 
whereas q, defined in (l9b), is normally a real variable. In the 
case of real s" S2, the determinant of the linear system (28) is 
real. 

In the case of a complex conjugate pair ISh s21. the Bessel 
functions have complex arguments and the constants C h C2 

and D" D2 are complex conjugates, whereas Co and Do are 
real variables. Furthermore, (In(MIRj ), In (M2Rj) I and 
lln+ dMIRj ). In+I(M2Rj) I are also complex conjugate pairs 
and the same holds true for IKn(M1Rj), Kn(Xs2Rj ) and 
IKn+,(MIR), Kn+I (M2R). The 6 x 6 matrix of coefficients 
of the linear system (28) has two rea! columns (corresponding 
to Co and Do and the remaining four are two pairs of complex 
conjugates. Therefore. it turns out that in this case the deter­
minant of (28) is also rea!. In either case, equating to zero the 
determinant results in a nonlinear real equation for 00' 

The modified Bessel functions of zero and first order are 
evaluated from polynomial coefficients given by Abramowitz 
and Stegun (1964) and those of the higher order from the 
associated recurrence relations. It should be noted that due to 
these polynomial approximations for the Bessel functions, the 
equation for zero determinant turns out to have a large number 
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of very closely spaced roots, for R2/R 1 less than about 1.15, 
which renders this procedure unsuitable for finding the bifur­
cation load for thin shell construction; for moderate thickness, 
however, a single, well-defined root is found 

Discussion of Results 
In a cylindrical sheII subjected to axial compression, a large 

number of instability modes correspond to a single bifurcation 
point. By setting 

_ m1fRom=-­ (29)I ' 

we obtain the simple formula for the eigenvalues of isotropic 
shells from the DonnelI theory as follows (Timoshenko and 
Gere, 1961): 

h2 2E (m2+n2)2 m
o ----- +E (30)
0.s-Doonell-(l_r2)12R~ m2 (m2+n2)2' 

where E is the modulus of elasticity and r is the Poisson's 
ratio. A distinct eigenvalue corresponds to each pair of the 
positive integers m and n. The pair corresponding to the small­
est eigenvalue can be determined by trial. Analytical minim­
ization of 00 from (30) with respect to the quantity [(m 2 + 
n2)/m]2 gives the well-known classical result: 

Eh 
(31)

OOcr. C - Donnell = Ro~ 3(1 _ '/) . 

As discussed in the Introduction, this formula holds true for 
shells of intermediate length; for short shelIs the trial-and­
error procedure is necessarily used (Batdorf, 1947). In the 
classical she11 theory solution, the radial displacement is con­
stant through the thickness and the axial and circumferential 
ones have a linear variation, i.e., the displacements are in the 
form: 

UI (r, 0, z) =Vo cos nO sin Az, 

udr, O. z) = [ Vo+ r~R (Vo+ nvo)] sin nO sin Az. (320) 

WI (r, 0, z) = [Wo- (r-R)XVol cos nO cos Az. (32b) 

where Vo• Vo• Wo are constants (these displacement field var­
iations would satisfy the classical assumptions of err = ere = 
en = 0). 

Two other shell theories. namely the Fliigge (1960) and the 
Danielson and Simmonds (1969), have produced results for 
the critical loads in shelIs and should therefore be compared 
with the present elasticity solution. The expression for the 
eigenvalues derived from the Fliigge equations (Fliigge, 1960), 
00,F and the more simplified but just as accurate one by Dan­
ielson and Simmonds (1969), OO.DS are 

o -E QF.DS (33 ) 
O.IF,DSI - m2[ (m2 + n2)2 + n2J' a 

where the numerator for the Fliigge theory is 
2 

Q = h (m2+ n2)4 _ 2[lIm2+ 3m4n2 
F 12R~(1-1I2) 

4+ (4 - r)m2n4+ n1 + 2(2 - lI)m2n2+ n J +m\ (33b) 

and for the Danielson and Simmonds equations, 

h2 

QDS 2 2 (m2+n2)2(m2+n2_I)2+m4. (33c)
12Ro(1-11 ) 

Again. a distinct eigenvalue corresponds to each pair of the 
positive integers m and n, the critical load being for the pair 
that renders the lowest eigenvalue. 

Concerning the present elasticity formulation. the critical 
load is obtained by finding the solution 00 of the determinant 
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of (28) for a range of nand m, and keeping the minimum 
value. Table I shows the critical load and the corresponding 
n, m, as predicted by the present three-dimensional elasticity 
formulation, and the critical load and the corresponding n, 
m, as predicted by the simple Donnell shell formula, Eq. (30). 
A length ratio I/R2 = 5, and isotropic material with E = 14 
GPa and Poisson's ratio v = 0.3 have been assumed. In all 
cases, a value of R 2 = I m is taken, and a range of outside 
versus inside radius ratios, R 2/R" which would probably con­
stitute moderately thick shells is examined. In general, the 
number of axial half-waves, m, is less for the elasticity solution 
than that of the shell theory, although the number of circum­
ferential waves, n, is mostly the same. The shell theory predicts 
a higher load than the elasticity approach, the nonconservatism 
increasing with thicker shells. For a ratio of outside/inside 
radius R2/R 1 = 1.20, the simple Donnell shell formula pre­
diction is higher than the elasticity one by more than 50 percent. 
The last column in Table I gives the predictions of the elasticity 
formulation for the same n, m as in the shell theory solution; 
again the elasticity results are lower than the corresponding 
shell theory ones, even for the same n, m values. 

One other point should also be mentioned. In order to pro­
duce a c1osed-fonn expression, the simple Donnell shell for­
mula is based on approximations regarding several terms in 
the final system of the Donnell shell equations, for example 
it neglects h2

/( 12R~). If these approximations are not enforced, 
which would result in a more involved formula, we obtain 
expressions which are referred here as the eigenvalues from 
the "nonsimplified Donnell shell theory," and these are given 
in the Appendix. The minimum values (critical loads) from 
this procedure are compared in Table 2. In general, the dif­
ference between the elasticity and the Donnell shell theory 
becomes smaller for the non-simplified formulas. 

Table 2 gives the predictions of the different shell theories 
for I/R 2 = 5 and isotropic material in comparison with the 
elasticity one. It is clearly seen that: 
(I) the values of n, m (number of circumferential waves and 
number of axial half-waves, respectively, at the critical point) 

Table I Comparison With Classical Donnell Shell Theory
 
Critical Loads, UoR2/(E:II)
 
Isotropic, E = EJ , " = 0.3
 

f/R 2 = 5
 

Rl/R, Elasticity 
(n, m) 

Classical Shell' 
(Simplified 
Donnell) (n, m) 

Percent 
Increase 

[Elasticity, 
at same (n, m) 

as Shell] 

1.15 
1.20 
1.25 
1.30 

0.454 (2,1) 
0.437 (2,2) 
0.443 (2,2) 
0.449 (1,1) 

0.648 (1,8) 
0.660 (2,5) 
0.675 (2,4) 
0.685 (1,6) 

42.7% 
51.0010 
52.3% 
52.6% 

(0.627) 
(0.580) 
(0.545) 
(0.635) 

'From Eq. (30) 

for both the elasticity, and the FIugge, and the Danielson and 
Simmonds theories agree, unlike the Donnell shell theory. 
(2) all shell theories predict higher critical values than the 
elasticity solution, the percentage increase being larger with 
thicker shells. However, both the FIugge and Danielson and 
Simmonds theories predict critical loads much closer to the 
elasticity value than the Donnell theory. For instance, at 
R 2/R I = 1.20, the Flugge theory predicts a 5.7 percent higher 
value and the Danielson and Simmonds theory a 7.7 percent 
higher value than the elasticity solution, whereas the Donnell 
theory gives a 51. I percent and a 20.7 percent higher value for 
the simple and the nonsimplified formulas, respectively. Es­
pecially noteworthy is the good perfonnance of the Danielson 
and Simmonds theory despite its simplicity relative to the FIugge 
theory. 

To further examine the eigenvalues for different n, m, Figs. 
2(0, b) show the solution 0'0 of the determinant of (28) for 
values of m (number of axial half-waves) ranging from I to 
20 and for n (number of circumferential waves) equal to I, 2, 
3. These curves are for R2/R 1 = 1.20, I/R2 = 5 and isotropic 
material. For this case, the minimum 0'0 (critical stress) is ob­
tained for n = 2 and m = 2. 

If the displacements of the elasticity solution are set in a 
fonn analogous to (32), where instead of the constants Vo, Vo, 
Wo, we have functions of r, we can write these r-dependences 
as follows: 

"" ~~ V(r)=Coll-+Don-In Kn LJ Cj [In ]n-+NJjln+1 
r r ;= 1.2 r 

+D{ n ~n-As;Kn+l (340) 

V(r) = - [Co [ n ~+Nlln+ I] +Do[ n ~n -NlKn+l] 

"" In Kn] (34b)+ LJ C;n-+Djn -, 
j=l~ r r 

W(r)=A2: kj(Cln+D;Kn), (34c) 
j= 1,2 

where again the Bessel functions are assumed to be evaluated 
at Asir if they are inside the sum, and hence belong to the 
coefficients of Ci and D i; they are evaluated at Aqr if they are 
outside and hence belong to the coefficients of Co and Do. As 
an illustration, for the critical load of the previous example 
of R2/R 1 = 1.20, Fig. 3 shows the eigenfunction VI (r), which 
seems to be nearly constant (shell theory would have a constant 
value VI = I) 

Concerning the effect of material data, it can be proved that 
for an isottopic material which is characterized by the two 

Table 2 Comparison With Various Shell Theories
 
Critical Loads, UoR2/(E:II)
 
Isotropic, E = EJ , .. = 0.3
 

I/R2 = 5
 
R2/R, Elasticity 

(n, m) 
Classical' 

(Simplified 
Donnell) (n, m) 
Percent Increase 

Non-Simplified2 

Donnell 
(n, m) 

Percent Increase 

FliiggeJ 

(n, m) 
Percent Increase 

Danielson J 

and Simmonds 
(n, m) 

Percent Increase 

1.15 0.454 (2,1) 

1.20 0.437 (2,2) 

1.25 0.443 (2,2) 

1.30 0.4490,1) 

0.648 (1,8) 
42.7% 

0.660 (2,5) 
51.0% 

0.675 (2,4) 
52.3% 

0.685 (1,6) 
52.6% 

0.549 (2,2) 
20.9% 

0.527 (2.2) 
20.6% 

0.540 (2,2) 
21.9% 

0.571 (2,2) 
27.2% 

0.471 (2,1) 
3.7010 

0.462 (2,2) 
5.7% 

0.473 (2,2) 
6.8% 

0.492 (1,1) 
9.6% 

0.481 (2,1) 
5.9010 

0.470 (2,2) 
7.6% 

0.484 (2,2) 
9.3% 

0.499 (1,1) 
11.1 % 

'From Eq. (30) 
lFrom Eq. (AI) 
'From Eqs. (33) 
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stiffness constants CII = C33 and Cjj, (Cll = CI3 

the roots of (14b) are 
1/2 

sl=landsl =q= 
( 
I-~ 

) 
. (35)

2cjj 

For a transversely isotropic material the roots are in general 
complex conjugates. We take as an example case the same 
geometrical dimensions as before, i.e., I/R 2 = 5.0, and a 
transversely isotropic material and with moduli (in GPa): £3 
= 57, £1 = £1 = 14,031 = 0 23 = 5.7, and Poisson's ratios: 

1113 = 1113 = 0.068, 1112 = 0.400 (these data can approximate 
glass/epoxy material with reinforcement along the z-axis). No­
tice that we have used the notation 1 ... r. 2 E 6,3 = z. Table 
3 gives the critical load and the corresponding n, m, as predicted 
by the present three-dimensional elasticity formulation, and 
the critical load and the corresponding n, m, as predicted by 
the nonsimplified transversely isotropic Donnell shell theory 
(Appendix). Again, the shell theory predicts a higher load than 
the elasticity approach. Notice that the critical load for the 
transversely isotropic material (with a reinforced axial direc­
tion) has been normalized with a higher value of £3 with regard 
to the one for the isotropic case (fable I); the non-normalized 
value is actually higher. 
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Table 3 Transversely Isotropic Material
 
Critical Loads, aeRl/(E:JJ)
 

Moduli: (io GPa) £) = 57, £1 = £\ = 14, G)\ = G2) 5.7
 
Poissoo's ratios: lin = 0.400, "2) = "1) = 0.068
 

UR l = 5
 
Elasticity (n, m) Nonsimplified I Percent Increase
 

Donnell (n. m)
 

1.10 0.167 (2,1) 0.193 (3,3) 15.6010 
1.15 
1.20 
1.25 

0.162(2,1) 
0.164 (2.2) 
0.163 (2,2) 

0.194 (2,1) 
0.185 (2,2) 
0.186 (2,2) 

19.701. 
12.8010 
14.101. 

1.30 0.167 (2,2) 0.192 (2,2) 15.0010 

'From Eq. (AI) 
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APPENDIX 023 = (£3"2.3 + G13) nX 

Eigenvalues From Nonsimplified Donnell Sbell Equa­
tions 

In terms of 

h2 £3 £2
0=--2; X=RoX; £3= ; £2=-:::;':"' ­

12R0 I - 11131132 I - "2.3 1132' 

define the following constants that depend on 0, the material 
properties, and the values of n, m: 

201l=E311nX, 012=(E3"2.3+G13)nX; 013= -(E3X2 +Gn n ) 

2021 = - (£2 + E20n + £2/1320X2 + 2G13oX2)n 
2

022 = - (E2n + E20~ + G13X2+ 2G13oX2); 

031 = (£2 + £30X4 + 2.E2/1320X2n2 + E20n4 + 4G13oX2n2) 

032 = (£2 + E2/1320X2 + E20n2 + 4G230X2)n; 033 = - £3/123 X , 

The eigenvalues for a transversely isotropic material are then 
given by 

where 

0Il 012 013 
D£T= 021 022 On 

031 032 033 

CALL FOR PAPERS
 
SYMPOSIUM ON MATERIAL INSTABILITIES
 

1994 ASME Winter Annual Meeting 
November 13-18, 1994 

Material instabilities are a very important feature of plastic deformation, and have a direct effect on deformation processing 
and dynamic deformation. Their initiation and evolution is determined by the thermomechanical response of the material, 
stress rate, and rate, as well as by microstructural effects. A broad appraisal of the state of the art in the theoretical, experimental, 
and numerical aspects of material instability will be carried out. 

A symposium of about 30 papers is planned. Full-length papers will be published in a book. Authors of accepted papers 
will be requested to submit full-length papers by June 30, 1994. 

One-page abstracts typed single-spaced on white 8Yz-by-ll inch bond paper with I Y. -inch margins on all four sides are due 
by March I, 1994. The authors' names and affiliations should follow a brief title. 

Send abstracts to one of the co-organizers of the symposium: 

Professor R. C. Batra Professor H. M. Zbib 
Department of Mechanical and Aerospace Department of Mechanical 

Engineering and Engineering Mechanics and Materials Engineering 
University of Missouri-Rolla Washington State University 
Rolla, MO 65401-0249 Pullman, WA 99164-2920 
Telephone (314) 341-4589 Telephone (509) 335-7832 
Fax (314) 341-4607 Fax (509) 335-4602 

Journal of Applied Mechanics JUNE 1993, Vol. 60/513 


