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The Initial Post-buckling and
Growth Behavior of Internal
Delaminations in Composite Plates

The initial post-buckling and growth behavior of delaminations in plates is studied
by a perturbation procedure. In this work, no restrictive assumptions regarding the
delamination thickness and plate length are made, i.e., the usual thin film assump-
tions are relaxed. The perturbation procedure is based on an asymptotic expansion
of the load and deformation quantities in terms of the distortion parameter of the
delaminated layer, the latter being considered a compressive elastica. Closed-form
solutions for the load and midpoint delamination deflection versus applied com-
pressive displacement during the initial post-buckling phase are derived. Moreover,
closed-form expressions for the energy release rate and the mixity ratio (i.e., Mode
II versus Mode I) at the delamination tip are produced. A higher Mode I component
is found to be present during the initial post-buckling phase for delaminations of
increasing ratio of delamination thickness over plate thickness, h/T (i.e., delami-
nations further away from the surface). Moreover, the-energy release rate corre-
sponding to the same applied strain is larger for a higher h/T ratio. The reduced
growth resistance of these configurations is verified by experimental results on

unidirectional composite specimens with internal delaminations.

Introduction

Delaminations or interlayer cracks are developed as a result
of imperfections in production technology or due to service
loads which may include impact by foreign objects. As a con-
sequence, structural elements with delaminations under
compression suffer a degradation of their stiffness and buck-
ling strength and potential loss of integrity from possible growth
of the interlayer crack. Besides strength, delaminations can
influence other performance characteristics, such as the energy
absorption capacity of composite beam systems (Kardomateas
and Schmueser, 1988).

Delamination buckling in plates under compression has re-
ceived considerable attention and numerous contributions have
addressed related issues in both one-dimensional and two-di-
mensional treatments (e.g., Chai et al., 1981; Simitses et al.,
1985; Wang et al., 1985; Evans and Hutchinson, 1984; Chai
and Babcock, 1985). However, although the critical point can
be fairly well determined and has been extensively studied,
limited work has focused on the post-buckling behavior, which
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ultimately governs the growth characteristics of the delami-
nation.

The one configuration most thoroughly studied is the one-
dimensional delamination, consisting of a delamination in an
infinitely thick plate. In this model (Chai, Babcock, and Knauss,
1981), which has also been called *‘thin film’' model, the un-
buckled (base) plate is assumed to be subject to a uniform
compressive strain. Closed-form expressions for the energy
release rate from the thin film model were derived by Chai et
al. (1981) by using the strain energy expressions before and
after delamination buckling.

The other configuration most extensively studied is the ax-
isymmetric counterpart to the one-dimensional delamination,
i.e., a circular delamination in a perfectly rigid supporting
plate. The latter relates also to the so-called blister test used
to determine adhesive and cohesive material properties. For
this configuration, Evans and Hutchinson (1984) derived a
formula for the energy release rate by using an asymptotically
valid solution to the system of governing equations for small
buckling deflections. Results for the energy release rate of a
circular delamination were also given by Chai (1990) and cal-
culated through a path-independent integra!l approach by Yin
(1985). In the same context, Stor3kers and Andersson (1988)
derived general potential energy theorems and associated
bounds for composite plates within the kinematical assump-
tions usually attributed to von Karman, and studied in detail
the efficiency of different analytical and numerical means for
this circular delamination case.

For delaminations in plates that cannot fulfill the ‘‘thin
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film'’ model assumptions, both the critical load and the post-
critical behavior are expected to deviate from the predictions
of Chai et al. (1981). To this extent, Simitses et al. (1985)
studied the critical load for a delamination of arbitrary thick-

ess and size in a finite plate. Their results showed indeed a
ange of critical load versus thin film load ratios, depending
on delamination and bar= plate dimensions, as well as base
plate end fixity (simply supported versus clamped). Conceruing
the post-critical behavior of delaminations of arbitrary size,
Kardomateas (1989a) provided a formulation for studying the
post-buckling behavior by using elastica theory for represent-
ing the deflections of the buckled layer; this work resulted in
a system of nonlinear equations rather than closed-form
expressions.

In this paper, the initial post-buckling behavior of delami-
nated composites (with no restrictive assumptions on the de-
lamination dimensions) is studied by using a perturbation
procedure based on an asymptotic expansion of the load and
deformation quantities in terms of the distortion parameter of
the delaminated layer, the latter being considered a compressive
elastica. The analysis will lead to closed-form solutions for the
load versus applied compressive displacement and the near-tip
resultant moments and forces. Subsequently, the bi-material
interface crack solutions for the energy release rate and the
mode mixity in terms of the resultant moments and forces, as
derived by Suo and Hutchinson (1990) will be employed to
study the growth characteristics of the delamination. Numer-
ical results for a range of relative delamination thicknesses and
lengths are presented and discussed. Moreover, the predicted
growth characteristics are compared with experimental obser-
vations from compression tests of unidirectional composite
specimens with internal debonds.

Initial Post-buckling Solution

In a delaminated system, which can be thought of as an
sgregate of constitutive parts such as the delaminated layer,
substrate layer, and the base plate, the conditions of geo-
metrical continuiry at the common sections (i.c., where the
delamination starts or ends) play a particularly important part
in the realization of equilibrium states which follow nonlinear
paths. The exact laws that govern the behavior of single com-
pressive elements elastically restrained at the ends by means
of concentrated forces and moments constitutes the elastica
theory (e.g., Britvek, 1973). Generalized coordinates of de-
formation are the distortion parameter, o, which represents
the tangent rotation at an inflection point from the straight
position, and the amplitude variable $(x). The initial post-
buckling deformations are relatively small, so the exact expres-
sions may be expanded in Taylor series in terms of the dis-
tortion parameter. Exact dependence of the end moments, end
rotations, and the flexural contraction is through elliptic func-
tions; however, the asymptotic expressions that will be given
in this work are in terms of trigonometric functions.
Consider a plate of half-length L (and unit width) with a
through-the-width delamination of half-length £, symmetrically
located (Fig. 1). The delamination is at an arbitrary position
through the thickness 7. Over the delaminated region, the
laminate consists of the part above the delamination, of thick-
ness h referred to as the ‘‘delaminated’ part, and the part
below the delamination, of thickness H=7T- A, referred to as
the ‘‘substrate’” part. The remaining, intact laminate, of thick-
ness 7 and length b= L —(, is referred to as the **base"’ plate.
Without loss of generality, it may be assumed that A< 77/2.
Accordingly, the subscript i=d, s, b refers to the delaminated
~art, the substrate or the base plate, respectively. In the fol-
ings we shall also denote by D, the bending stiffness,
—,—Et/{12(1 = #%)}, 1; being the thickness of the corresponding
part, £ the modulus of elasticity, and » the Poisson’s ratio.
For simplicity reasons, the properties of the material are as-
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Fig. 1 Definition of the geometry

sumed homogencous, linearly elastic, and isotropic (ortho-
tropic properties can be accounted by using v ¥, instead of
»* and E the modulus of elasticity along the x= | axis). Notice
also that in Fig. I the end moments and tangent rotations are
assumed positive clockwise.

The buckled configuration of the delaminated layer is part
of an inflectional elastica with end amplitude ¢, and distortion
parameter €. At the critical state, the end amplitude is 3.
Suppose that in the slightly buckled configuration, ¢, can be
expanded in the form

&=+ Ve + 0P+ O(E%). )

Then the end rotation at the common section, 6, is given by
expanding the relevant expression (Britvek, 1973) in the Taylor
series in terms of ¢ (notice that at the critical state §°=0):

1
6=(sin q>,)e—§z-(sin4>,,cos2¢,,)8+ .. .=(sin ®%e

an
+ (cosdYoPe? + [(cos¢2)¢ff’ —(sin %) %—
1
ey sin &% cos? d>3]e’+ ..

=6+ 622+ 67 + O('). ()

Notice that by the continuity condition, 6 is the same for both
the delaminated and substrate parts as well as the base plate.

The asymptotic expansion for the end moment, M,, is sim-
ilarly found by substituting (1) into the relevant expression
(Britvek, 1973) and subsequently expanding in Taylor series
(again M2=0):

M, $, (1 sin 29,
o (&g cos b)e +~2 |- -4 .
D, (¥, cos &,)¢ 16 (3 2, (cos )¢ + ...
( ny i
=—< J’(+MJ'¢‘+M,}’¢’) +0(eY), (a)
d
where
ey P
2 = &% cos 9% —L = (cos ¢3-S sin %) ¢4, (3b)
Dd Dd

iy @ s
Dd =(cos ¢%— &Y sin Yo7 — | sin ¢+ ?" cos 3| o4 "

d

&% {1 sin 299
+ﬁ (g— e ") (cos %). (30)
d

Likewise, the axial force is given by

er, ., ¢ (1

sin 2¢
= + —
D, 8

2¢

) G4 =07+ 205}
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o7 sin 247\ | ,
8 (l- 203 Lo

= g (Po+Ple+ PPy +0(E). (@)
d

+ [qbf,'” +28%3 +

Finally, the flexural contraction, f,, is
4 sin 2¢4\ , « £ sm 2%,
== {l-———}¢+0 e
Ja=3 ( 28, )‘ () =3 240

. 0 02
! (smqj@d_Z C045>02¢d)¢:’|)(]+. ) .=f2( + 4]’6!4-0((‘).
d d
(%)

+

4

Although the substrate part and the base plate undergo mod-
erate bending with no inflection point, we may also usc the
elastic theory to describe their (nonlinear) deformation; in this
case the inflection points are outside the actual elastic curve.
For the substrate part, we have to expand not only the am-
plitude ¥,, but also the distortion parameter a; in a pertur-
bation series with respect to the distortion parameter of the

delamination layer e:
&, =32+ e + P+ O(P),
m @2

a;=ay €+ oy € +aP6 + O(Y).

(6a)
(6b)

Then the end rotation at the common section 6 is given by
expanding again in Taylor series in terms of ¢:

1
6=(sin ®)a,— 5 (sin &, cos® d)ad+. . .
=6+ 0_‘,2’52 + B?’e] +0(¢Y), (a)

where
64" = (sin ¥9)al"; 67 = (cos )¢l + (sin o,  (Tb)
¢(|)2
6= (cos )s{” s ‘2 ol + (cos e "a®
+(sin #))at’ —2% sin ¢° cos? %™, (70)

In a similar fashion, by using the expressions (6), the asymp-
totic expansion for the end moment, M, is (again M%=0):

M, %, /1 sin2¢
= (®, cos o+ (- T0 2
Tk 7 (3 2%,

) (cos d)a+. ..

¢
= (M‘”e+M‘2’<2+M‘ ! ’) +0("), (8a)
where fM‘
r (¥? cos N, (8b)
£ ]
o 0 a0 cin a0y (1) (1) 0 )
5 =(cos &7 — ¥? sin ¥?) ¢Va!" + (3?0 cos NP, (80)
5
fM‘”
5 ? cos Mot + (cos ¥7— 4? sin ) (6 Pal" + ¢{Mal)
. §
0
(sm ¢°+% cos 4>°) (1241
& (1 sin2¢
4t fio s % o'
16 (3 287 ") (oo oyl (B)
Likewise, the axial force is given by
£P, 5 sin 2¢
=¢]+—= [1-2——=) &+. ..
D, 8 ( 2¢, ) e

(P"+P"’e + PP+ 0(E), 9a)

bl'\.
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where

I r‘#”
o= =24 (9b)
!‘52) 4 289 4’8 (l _fl';_jgg) oM, 90)

Finally, the asymptotic expansion for the flexural contrac-
tion, f;, is found to be

¢ sin 2¢ ¥
== | 1-——] o+ Ota;
x 2( 29, )°+ (o)
=f P2+ fP¢+0(e"), (10a)
where
f'=5' (x-f’;—;ﬁ) o™, (106)

sin 287 2 cos 247
st (2812 g

in 29
+t(1—s'—'2'¢o—) M@, (10c)

The base plate is assumed to be simply supported, so at the
simply supported end, the amplitude = —x/2 and at the
common section ¢ =$,. The amplitude at the common section
and the distortion parameter of the base plate are now ex-
panded in terms of the distortion parameter of the delaminated
part e
(l11a)

(115)

Moreover, the end rotation at the common section 6 is given
by expanding again the relevant expression from Britvek (1973)
in Taylor sertes in terms of ¢:

=83+ ¢ + #P + O(E),

4
ap= a‘,,”e +af+ e+ 0(Y).

; cos ¢ 4
6= [sm ¢b+m:| o+ R($p)ar+. . .
=6+ 60 + 606 + O(¢"), (12a)
where R($,) is defined by
R(® )__7_ cos @, 3 cos ®,sin 2¢, 1 cos’ @,
21T A8 $p4 (2/2) 32 (€p+ (/P 3 [$p+ (x/2)]
1
~54 sin &, cos’ &,. (12b)
In terms of
. .o cos @) 5 o T . .o
f=sin ¢b-m; qg=cos &, — 4>,,+5 sin ®,, (12¢)
sin &9 cos &9
£=cos ¢, - - A 1
08 e G (x/2) (834 (/2))° (124)
_cos & . sin 95 cos ¥ sin &)
X @+ 2D BP0+ (2] 2 "
(12¢)
we obtain
64)=Bap’; 0’ =Edh ey’ + Bad, 12/
o=~ e
+xdh "od + R(¥5) of . (12¢)

Concerning the end moment, M,, use of (11) gives the fol-
lowing asymptotic expansion (again M} =0):

bM,

x l x
Fb = (4>,, + 5) (cos &p)ay + 16 (d>,, + 5)
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_l__ sin 24’6 3
(3 m) (cos $)ap+. . .
=D£ M+ MPE+ MPE) +0(*). (13a)
b
where n
il (¢2+1) (cos e, (13)
D, 2
2)
b—DMbl=q¢L”ag) + (d>‘,’, + ’5') (cos ®P)af’, (130)
3)
bgﬂ’ (¢,+ )(cos 49 )a
b

- [sin 0+ (d>° ;) c0524>¢,] 5 al + g (af o + ¢§ad)

L1 x\ 1 sin 24} .
*T6 (" 2) (3_2[4>2+(r/2)]) (cos &h)ab ™. (13d)

Likewise, the axial force at the base plate (which is also the
applied force) is given by
sin 2¢,

BP (o 2\ (o, ) [1_1 _sin2e
D, *72 °72) |8 16 [dp+(x/2)]

2 b
-%”fis(—j;)],]ai—g (P'+ P+ PY) + 0(€), (14a)
b

where 2 2p0
: b
%2 <¢2+’—;) 1 = 2( )¢“’ (14b)
[ b
bl})(?) x
D, —¢2"’+2<¢Z+5) ¢§
1f., 7\’ sin 249 405’ &) |
= (eg+X) |1- - . (i4c
"8 (¢°+2) [1 2+ (x/2) s raE | 49

Finally, the flexural contraction, f,, between the simply sup-
ported end and the common section is

f=_1g[l_ sin 2¢,  2cos’®, ]a1+
4 2[®p+ (x/2)] [@p+(x/2P| 0 T
=[P+ 0(¥), (15a)
where
/3,”:9[1— sin 2¢) 2 cos” 4§ ]a.,,, )
4 2[8%+ (x/2)]  [80+(x/2))F 7P -

Having obtained the asymptotic expressions for the force
and deformation quantities, we shall discuss the formulation
of the equilibrium and compatibility requirements that will
ultimately define the nonlinear post-cntical path. Force and
moment equilibrium at the common section require

Py+P,— P=0, (16a)

Md+M,+M,,—P,,}-2—1+P,g=O (16b)
The deflections of the delaminated and substrate parts should
be geometrically compatible. Thus, a second condition nec-
essary for a solution involves the compatible shortening of the
delaminated and substrate parts, which consists, in turn, of
the compressive and flexural shortening:

P, Pyt
(fd+2 E’) (f,+2 Ef) +60T=0.

As the compressive load P is applied, the plate remains flat
and a primary state soluuonpgurc compression) is character-
ized by P’=PiT/h and P? /h, which gives

an
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) ’%’; =437 /%T—rﬂ- (18a)

Altiough determination of the critical point is not a primary
objective of this paper and the buckling analysis has been
thoroughly carried out in other works (c.g., Simitses et al.,
1985), we shall briefly describe the equaticns for the crmcal
point (in terms of &%) for the sake of completeness, and because
the formulation for the initial post-buckling naturally follows
that for the critical point.

By cquaunF the ﬁrsl-ordcr rotation at the common section
we obtain of" and af!

&0
m_ sin ¢>4 y_sin P,
sin ¢°' ab g )

Writing the moment equilibrium (165) and the geometric
oompaublhtr (17) for the first-order terms and eliminating the
quantity [PY’H - PV Ieads to the characteristic equation, for
the dctcrmmauon of &%

D .
T"&Z cos &3+ sin ¢ % 37 cot @7

D,, &4 x\ cos - . EThH _o.
b 2 8 4¢
Next, the initial post-buckling behavior is considered.

First-Order Forces. Force equilibrium, Eq. (16a) for the
first-order terms, and use of (4), (9b), and (1454) for the first-
order forces gives

(18c)

- D& & Dy’ o
0+ (x/2) Dof V¢ 7 80+ (x/2) D
=pg09"+ p0".  (19a)

By equating the second-order terms in the expressions for
the slope at the common section, 6, Egs. (2), (7b), and (12/)
we can find o and of® as follows:

0 0
@_cos ¥5 ¢ (cos 3%at

% TSined” ¢ sin &7 &=+ 005" (190)
g 3
0

@_Cos®y ) $of” .
= @5 19¢
b g %3 (19¢)

Using (19a) we can wrile of? in the form
ay' =ngdy’ + 185", (19)

where
n =COS¢2—£LS’UP‘ n=—£—ago (19e)
d ﬂ ﬁ d» s ﬁ Lo

Determination of the first-order forces requires deriving
¢4 and ¢ and this will be discussed next. The moment equi-
librium Eq. (16b) for the second-order terms is

M+ M+ M =2 (P H = PO (20)

The geometric compatibility Eq. (17) for the second-order terms
gives
2 _ @), p 2 )
—f O+ 69T= P~ P§
1978 [ SH) o

Eliminating the quantity [P’k - P{'H] from Egs. (20) and
(21) gives the following first linear equation for ¢4’ and o\":

ey’ +a,¢8" = [!(l _sin N’) oM

(2n

2 299
£
2
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D, . D,
ay =-—’(cos 9 - &Y sin %) + = ¥%cos ¢%v4 + (cos 29)

EhHT D,
4¢ b

[qak' 'oq+ (¢2+ ;) (cos ¢2)n4]. (22b)
DJ (o] o _- (1) 0
2= (cos 92— @7 sin ¥Nal" + #(cos 4%,

D,
+—be [qas:'p, <¢2+—2’5> (cos 4>2)n,]. (220)

The second equation needed to find ¢4’ and &" is the first-
order geometric compatibility Eq. (17) at the common section,
which becomes after the expressions (4) and (9b) for the first-
order delamination and substrate forces, and (2) for the first-
order rotation, are substituted:

D D,
T Sehel) -5 iHe =

T .
T $9. 23)

The foregoing system of two linear Eqs., (22a2) and (23),
allows finding ¢4’ and ¢!, and hence the first-order forces
“D P and the first-order applied force V= P+ P,

Second-Order Forces. Second-order force equilibrium
(16a), together with (4), (9¢), and (14¢), gives

o =08 +000 + o, (24a)

04" 4»2 | _sin 24§
2% 299
¢§I)2 _"1? _ sin 24’? wz| _ oY &
+ Py 5+ -] « e R
24° 7 16 29" 2[4 + (x/2)]

4 ¢>2+1 - sin 249 _ 4 cos 2
16 2 2090+ (x/2)] [#3+ =/ |7
(24b)
By equating the third-order terms in the expressions for the

slope at the common section for the delaminated and the sub-
strate parts, 6%, Eqs. (2) and (7¢), we can find o,

where

o = v + 1 + ver (250)
where . 1s given in terms of the following quantities:
R T T
Ya= — <—2—+§ cos® 4>d> sin $,, (25b)

Q. >

Vo= — ("—+—— ol cos? <l>?) olMsin $?°
+¢MatPlcos 7 (25¢)

as follows:
Ya—¥s
sin <l>°'
In a similar fashion, by equating the third-order terms in
the expressions for the slope at the common section for the

delaminated and the base parts, and using (242) we can write
o’ in the form

Y= (254)

b’ =ng85 + 08 + ne, (260)
where
Bre=va—(Eoc+ x)al - £68 ol - R($3)a} . (26b)

Determination of the second-order forces requires deriving

ot and & and this will be discussed next. The moment equi-
librium Eq. (160) for the third-order terms is

MY+ MO MP=S (POH-PPR. @Ta)

T_hc geometric compatibility Eq. (17) for the third-order terms
gives
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O _ O g 3 )

46T =(POh - POH] —

Jai—S; ( H) Eh 73 Q7b6)
Eliminating now the quantity [PYh - PP H] from Eqs. (27a)

and (27b) gives the following first linear equation for ¢5 an

¢

' ﬂud’m+0u¢§” =Cy, (28)

where the coefficients a;; and a,; are the same as in the first-

order problem, Eqs. (224, ¢), and ¢, is glvcn in Appendix A.
The second equation necded to find ¢5’ and ¢ is the second-

order geometric compatibility Eq. (17) at the common section,

which becomes after the expressions (4) and (9¢) for the second-

order forces, and (2) for the second-order rotation, are sub-

stituted:

D, , @_ D, . @_ sm 2¢d _sin 2%\
F ehol’ - daHd 269 \!7 27 )™

EhH 3 sin 262\ | D+
22 ¢Mcos @° (2 —ee =
I s 5| B [¢ HEIE

e sin 247 D,
= [ M4 (1 ——";4’0 ’)aﬁ"’] —2'4 (29)

The foregoing system of two linear Eqgs. (28) and (29) allows
finding ¢& and ¢?, and hence the second-order forces P2,
P and the second-order applied force P*=PJ + P2,

Displacements. Next we shall discuss the expressions dur-
ing the initial post-buckling stage for two additional quantities,
which are typically needed for correlation with experimental
data: the midpoint deflection of the delaminated layer and the
substrate part, and the applied compressive displacement (or
applied strain).

First, it should be noted that at each point x there corre-
sponds a value of the variable amplitude $(x); the value at the
common section x=~01is $,, i=d, s. Furthermore, at the mid-
point x=0, where the slope is zero, ¢ =0 and at the inflection
point, where the slope is o, ¢ = /2. The deflection increment
on the elastica is given by (Britvek, 1973)

dssed ¥in (—) Dasn o, (30a)
2/ AP,

Integrating between the midpoint (x=0) and the common in-
terface (x =) gives the midpoint deflection

2sin[) [P cos 4,- 1 305
t.vf-,,,— sin{ 3 P, (cos &, 1). (300)

Substituting the asymptotic expansions for the force P, and
for the amplitude ®,, gives the midpoint displacement of the
delaminated layer or the substrate part (i=d, s) as follows:

W =wle + w4 | 3la)

where for the delaminated layer

f
Wi = =5 (cos 3 - 1), 31b)
¢4
, 0| =cos 4>2) .
G= | T sin 49| 8!, 31
Wim 4)2 l: 4)2 ¢ ( C)
and for the substrate part after substitution of (65),
q)o
wil) 7’=(cos - 1at", Gld)
‘b() _ 0
uif,’, g [Q-—%i@—sin@b?] i”ai” QGle)

+(cos ¥ - 1), (3le)

Finally, the previous analysis allows finding a direct expres-
sion for the applicd strain, ¢q, as follows:
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PL | #% P B .
(°L=E+[ET+E+ o0

@ pEe o P H
L TdT L T 1 an| 2
+[2+Eh+jL+ET+20‘ Lt S & 7))

Delamination Growth Characteristics

Before applying the initial post-buckling solution that has
just been presented, the basic interface crack solutions that
are needed in the analysis will be reviewed. For a general bi-
material interface crack, these solutions depend on the Dun-
durs (1969) parameters, &, § and the bimaterial constant .
For the homogeneous system under consideration, & = 8 =
¢=0. Therefore, the formulas of Suo and Hutchinson (1990)
will be presented with the homogeneous material assumption
into consideration.

For the plane-strain interface crack shown in Fig. 1, the
cnergy release rate G is

1-» [P M2 _PM
G= —4+—5+2——si 33
4 [Ah W Y 62
where p is the shear modulus. In terms of
h 61’ H K
n=h/H; Ci=7; G=—3= G= (€2

P° and M" are linear combinations of the loads from the
previous post-buckling solution:
P. = Pd""

CP-G % (35a)

CiM,.

foreover, A and 7/ are positive dimensionless numbers and
.ne angle v is restricted such that v < x/2. These quantities are
given by

M =M,- (35b)

1

£ i I= : sin y=69%(1 + 1) VAL
1440+ 672+ 37 sin y=6n°(1 +7)

1
1200 +17°)

(36)

The preceding formula does not separate the opening and
shearing components. Instead, the following 1wo expressions
give the Mcde 1 and Mode 11 stress imcnsily factors

E0E @+ ——xs

1[\[_ \/_

sin w—

\F[J_ \/—

Accurate determination of w, which depends only on 7 (for a
fixed set of Dundurs constants &, B), requires the numerical
solution of an integral equation and has been reported in Suo
and Hutchinson (1990). The extracted w, however, varies slowlv
with n in the entire range O0<n=<1, in accordance with the
approximate formula (Hutchinson and Suo, 1991)

sin (w+ -y)] (37a)

cos (w+ 'y):l . (37b)

w=152.1°-3%. (38)
The mode mixity is defined by
A sin w—
Y=tan""(Ky/K) =tan™' | 2SM@COS (@) g,
A cos w+sin (w+7)
where A measures the loading combination as
TAA M (

Substituting the asymptotic expressions for the forces and
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moments from the post-buckling solution already presented,
gives
P =P M4 P P4, M =M M4 (40a)
where the first and second-order terms (i.¢., k= 1,2) are (notice
that the zero-order quantities in the expression for P* cancel
out)

P — P(k) P(“ 6;’4” b ' (40b)
M“’=M§“-;M§“. (40c)

In the previous relations, the first and second-order forces
and moments, P, PP MP, MI¥, k=1, 2 have already been
found from the initial post-buckling solution described in the
previous section.

Now the energy release rate and the Mode I and Il stress
intensity factors can be written in the form:

G=EGP+ GV + (41a)

Kl. n=eKiy+é z)ll"' (41b)

where K}' . K§2y; are found by subsututmg in (37) the first or
second-order forces and moments, respectively, G is found

from (33) by substituting directly the first-order forces and
moments and

P el [P""P“” M Op@

.+
2u Ah ¥
sin Y

+
JVAIR?

(P"”M'm+P'mM'm)] . (4lo)

Discussion of Results
The thin film model of Chai et al. (1981), which is a closed-
form solution for the initial post-buckling and growth behav-
ior, represents the limiting solution for a very large value of
the ratio h/T, i.e., for a delamination in an infinitely thick
base plate. This solution predicts an energy release rate
1 5

Geo, O =5 Eh(1 — 17)eo— € )(€q + 3€), (42a)

where

a = h?

“Tha-AHR

1s the Euler’s critical strain for the delaminated layer (treated
as a column with built-in ends) and ¢, is the applied strain.
The applied load i1s P= E¢q and the midpoint deflection is

40 2
Wam = "‘; ((0—((7)(l —¥).

For this model, the mode mixity is given by the following
relation (Hutchinson and Suo, 1991):

4 cosu+ \/55 sin @
-4 sin w+ \/52 cos w

Since the thin film model postulates that 5= A/H—0, w = 52.1°.
Futhermore, f is defined by

<[5

These results from the limiting thin film model are a very useful
approximation and a comparison with the present general post-
buckling solution is noteworthy. In applying the formulas pre-
sented in this paper, it should be remarked that in general, the
critical end-amplitude for the delamination (that normally
buckles with an inflection point) is — x/2> %> — x (the thin
film model assumes ¢,= — x), whereas for the substrate part
that normally shows no inflection point, 0 > 4> — /2, and

(42b)

(42¢)

tany = (43a)

(430)
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likewise for the base part, /2> &3> — x/2. Moreover, the
distortion parameter for the delamination is ¢ < 0 (Fig. 1).

For an illustration of the results from the previous analysis
consider a delaminated plate with £= 10 GPa and »=0.3 and
delamination and plate length £=20 mm and L =60 mm, re-
spectively, and delamination thickness £ =0.4 mm. These di-
mensions correspond to our specimen dimensions (a width of
10 mm has been considered and is appropriately accounted in
the results). To keep the critical strain ¢, constant we keep the
delamination length and thickness constant and vary only the
plate thickness to get a varyving ratio h/T; this would ensure
the same thin film model solution. :

Figure 2 shows the energy release rate (QG/ER)10*, as a
function of the applied strain for 4#/T=0.10 and A/T=0.30.
It is seen that for the same applied strain, the energy release
rate for the case of the delamination located further away from
the surface (h/T=0.3) is always higher than the one for the
delamination close to the surface (k/T=0.1). In the beginning,
i.e., for relativelv small applied strain, the curves tend toward
the thin film solution for a decreasing ratio A/ T (as expected);
however, as the applied strain is increased, the thin film model
solution rises even above the A/7T=0.3 solution and predicts
a much higher energy release rate. Experimental results that
have been previously reported by Kardomateas (1989b, 1990)

anfirm clearly the reduced growth resistance of the *‘large

10"’ case, h/T=0.3, versus the “*small ratio’” one, h/T=0.1).
in fact, the small ratio delamination in these studies did not
grow at all despite a very large increase in the applied strain.
Notice that this important difference in growth behavior can-

Joumal of Applied Mechanics

]
b

<

S~

E
b Tein Fibm
= 2t f /
WT = 030
3
WT = 0.10
- L L x N N s N s
1 2 3 4 H L 7 [ ? 10
eof€er
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not obviously be predicted by the thin film model, which,
because of its strongly nonlinearly increasing G —¢q curve,
would predict growth even for the small ratio delamination if
the applied strain would be sufficiently increased.

Another very interesting result is the variation of the mode
mixity (Mode 11 versus Mode I) at the delamination tip. Figure
3 shows the mode mixity ¥ versus applied strain. It is seen that
for the same applied strain the delamination located further
away from the surface (h/T=0.3) shows a higher modec 1
proportion than the one for the delamination close to the
surface (h/T=0.1). As a consequence, the value of the applied
strain at which the delamination tip loading becomes pure
Mode Il (y = —90 deg) is increased. This point for the thin
film model is at ¢p/e, =7.55. The curve show a trend toward
the thin film solution for a decreasing ratio h/7.

Figure 4 shows the midpoint deflection of the delamination,
wam/h, and Fig. 5 shows the midpoint deflection of the sub-
strate part, w,,,/h, both as a function of the applied strain. It
is seen that both curves show a trend toward the thin film
solution for a decreasing ratio A/7 and that the midpoint
deflections are higher for a larger value of 4/T (delaminations
located further away from the surface).

Figure 6 shows the applied load P versus applied strain
curves. It is seen that for the same value of applied strain, the
delamination located further away from the surface (h/¢=0.3)
exhibits a lower applied load and hence a larger loss of stiffness
than the delamination close to the surface (h/t=0.1). Again,

DECEMBER 1993, Vol. 60 / 909



©.004
0003
2
-2
e
0.002
0001
0000 n 4 A " N i i a
1 2 3 a s [ 7 (] ] 10
‘O/Q'r
Fig. 6 Applied load P versus applied strain curves
15
12r Thin Fam
-
S \
o osf
N~
(&
o
os |
o3r \ Lj=3s
Li=3
o0 A s M N " s " N
1 2 3 4 s 6 7 ] ? 10
(0/(t'

Fig.7 Energyrelease rate as a function of the applied strain Ulustrating
the effect of relative plate length

the curves tend to the thin film limit for a decreasing h/7T
value.

Next, the influence of the base plate length is studied by
keeping the delamination length and thickness constant, and
varying only the plate length to get a ratio L/€of 3 and 5. In
this example the plate thickness was chosen so that A/7=0.20.
This effect is mostly evident on the energy release rate, which
is shown in Fig. 7 as a function of the applied strain. It is seen
that the effect of plate length is evident at higher values of
applied strain with the longer plate exhibiting higher energy
release rates (and closer to the thin film solution).
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APPENDIX A

The constant ¢, in Eq. (28) is given as follows:

D, D D,
¢'|=",_dfld+Ts Cl:"'?bclb"'clrv (Al)
where
4)2 0 . (] (1
Crg= 3 cos b +sin b5 oy
° 1 sin 245
~ e s Lo (} 240 d) . (A2a)

4)(: . q’o
a,=al! [ (-2‘ cos &2+ sin 4>§’) ﬂ"‘—é cos ¢?

1 sin2$ \ .
(3— %0——?) a}“‘] —(cos 9 — @7 sin )¢\’
s

+ 7% cos ¥, (A2b)
o= ~q(ab’p + S} o) - (¢2 +§) cos &}

ap
oy,
16

1 sin 249
R R v
3 2{¢,+(x/2)]

4)(! ,
+ [ sin 40 + (¢2+§) °°52 “] &% (A2¢)
and
sin 29" {1102 sin 247 5
C"z[(T}_Z cos 24)?) 44)(:, +{1- 240 ’) Nl
sin 249 oY .1\ EhH
- -2c0s 28] | - | — (A2)
( ¥y ") al ¢ | a ¢
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