
The Initial Post-buckling and 
Growth Behavior of Internal 
Delaminations in Composite Plates 
The initial post-buckling and growth behavior ofdelaminations in plates is studied 
by a perturbation procedure. In this work. no restricti~ assumptions regarding the G. A. Kardomateas 
delamination thickness and plate length are made, i.e., the usual thin film assump­Assoc. Professor. 
tions are relaxed. 1M JH!rturbation procedure is based on an asymptotic expansion School of Aerospace Engineering. 

Georgia Institute ot Technology. of the load and deformation quantities in terms of the distortion parameter of the 
Atlanta, GA 30332·0150 delaminated layer. the latter being considered a compressi~ elastica. Closed-form 

Mem.ASME solutions for the load and midpoint delamination deflection ver$Us applied com­
pressive displacement during the initial post-buckling phase are derived. Moreover, 
closed-form expressions for the energy release rate and the mixi/y ratio (i.e.• Mode 
II vemJS Mode I) at the delamination tip are produced. A higher Mode J component 
is found to be present during the initial post-buckling phase for delaminations of 
increasing ratio ofiklamina/ion thickness over plate thickness. hIT (i.e.• delami­
nations fur/her away from the surface). Moreover. the-#!nergy release rate corre­
sponding to the same applied strain is larger for a higher hIT ratio. The reduced 
growth resistance of these configurations is verified by experimental results on 
unidirectional composite specimens with internal delaminations. 

Introduction 

Delaminations or interlayer cracks are developed as a result 
of imperfections in production technology or due to service 
loads which may include impact by foreign objects. As a con­
sequence, structural elements with delaminations under 
compression suffer a degradation of their stiffness and buck· 
ling strength and potential loss of integrity from possible growth 
of the interlayer crack. Besides strength, delaminations can 
innuence other performance characteristics, such as the energy 
absorption capacity of composite beam systems (Kardomateas 
and Schmueser, 1988). 

Delamination buckling in plates under compression has re­
ceived considerable attention and numerous contributions have 
addressed related issues in both one-dimensional and two-di­
mensional treatments (e.g., Chai et aI., 1981; Simitses et aI., 
1985; Wang et aI., 1985; Evans and Hutchinson, 11984; Chai 
and Babcock, 1985). However, although the critical point can 
be fairly well determined and has bttn extensively studied, 
limited work has focused on the post-buckling behavior, which 
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ultimately governs the growth characteristics of the delami­
nation. 

The one configuration most thoroughly studied is the one­
dimensional delamination, consisting of a delamination in an 
infinitely thick plate. In this model (Chai, Babcock, and Knauss, 
1981), which has also been called "thin film" model, the un­
buckled (base) plate is assumed to be subject to a uniform 
compressive strain. Closed-form expressions for the energy 
release rate from the thin film model were derived by Chai et 
al. (198 J) by using t'he strain energy expressions before and 
after delamination buckling. 

The other configuration most extensively studied is the ax­
isymmetric counterpart to the one-dimensional delamination, 
i.e., a circular delamination in a perfectly rigid supporting 
plate. The latter relates also to the so-call'ed blister test used 
to determine adhesive and cohesive material properties. For 
this configuration, Evans and Hutchinson (1984) derived a 
formula for the energy release rate by using an asymptotically 
valid solution to the system of governing equations for small 
buckling denections. Results for the energy release rate of a 
circular delamination were also given by Chai (1990) and cal­
culated through a path-independent integral approach by Yin 
(1985). In the same COntext, Stor~kers and Andersson (1988) 
derived general potential energy theorems and associated 
bounds for composite plates within the kinematical assump­
tions usually attributed to von Karman, and studied in detail 
the efficiency of different analytical and numerical means for 
this circular delamination case. 

For delaminations in plates that cannot fulfill the "thin 
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film" modd assumptions, both the aitial load and the .post­
criticaf behavior are expected to deviate from the predictions 
of Chai et al. (1981). To this extent, Simitses et al. (1985) 
studied the critical load for a delamination of arbitrary thick­

ess and size in a finite plate. Their results showed ind.:cd a 
ange of critical load versu~ thin film load ratios, depending 

on delamination and ba~,: plate dimensions, as wel1 as ba~e 

plate end fixity (simply supponed versus clamped). Concen.ing 
the post-eritical behavior of delaminations of arbitrary size, 
Kardomateas (1989a) provided a formulation for studying the 
post-buckling behavior by using elastica theory for represent­
ing the deflections of the buckled layer; this work resulted in 
a system of nonlinear equations rather than closed-form 
expressions. 

In this paper, the initial post-buckling behavior of delami­
nated composites (with no restrictive assumptions on the de­
lamination dimensions) is studied by using a perturbation 
procedure based on an asymptotic expansion of the load and 
deformation quantities in terms of the distonion parameter of 
the delaminated layer, the latter being considered a compressive 
elastica. The analysis wil1lcad to closed-form solutions for the 
load versus applied compressive displacement and the near-tip 
resultant moments and forces. Subsequently, the bi-material 
interface crack solutions for the energy release rate and the 
mode mixity in terms of the resultant moments and forces, as 
derived by Suo and Hutchinson (1990) will be employed to 
study the growth characteristics of the delamination. Numer­
ical results for a range of relative delamination thicknesses and 
lengths are presented and discussed. Moreover, the predicted 
growth characteristics are compared with experimental obser· 
vations from compression tests of unidirectional composite 
specimens with internal debonds. 

Initial Post-bUCkling Solution 
In a delaminated system, which can be thought of as an 

J&regate of constitutive parts such as the delaminated layer, 
substrate layer, and the base plate, the conditions of geo­
metrical continuity at the common sections (i.e., where the 
delamination stam or ends) playa particularly important part 
in the realization of equilibrium states which follow nonlinear 
paths. The exact laws that govern the behavior of single com­
pressive elements elastically restrained at the ends by means 
of concentrated forces and moments constitutes the elastica 
theory (e_g., Britvek, 1973). Generalized coordinates of de­
formation are the distortion parameter, Q, which represents 
the tangent rotation at an inflection point from the straight 
position, and the amplitude variable 4>(x). The initial post­
buckling deformations are relatively small, so the exact expres­
sions may be expanded in Taylor series in terms of the dis­
tonion parameter. Exact dependence of the end moments, end 
rotations, and the flexural contraction is through elliptic func­
tions; however, the asymptotic expressions that will be given 
in this work are in terms of trigonometric functions. 

Consider a plate of half-length L (and unit width) with a 
through-the-width delamination of half-length f, symmetrically 
located (Fig. I). The delamination is at an arbitrary position 
through the thickness T. Over the delaminated region, the 
laminate consists of the pan above the delamination, of thick­
ness h referred to as the "delaminated" part, and' the part 
below the delamination, of thickness H = T - h, referred to as 
the "substrate" pan. The remaining, intact laminate, of thick­
ness Tand length b = L - r, is referred to as the "base" plate. 
Without loss of generality, it may be assumed that h < TI2. 
Accordingly, the subscript i=d, s, b refers to the delaminated 
-"n, the substrate or the base plate, respectively. In the fol­

ing j we shalJ arso ~enote b~ D, the bending stiffness, 
~,- £1,1'( 12(1 - If »), Ii being the thickness of the corresponding 
part, E the modulus of elasticity, and If the Poisson's ratio. 
For simplicity reasons, the propertips of the material are as­
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Fig. 1 Definition of the geometry 

sumed homogeneous, linearly elastic, and isotropic (onho­
tropic propcnies can be accounted by using "12"21 instead of 
,,2 and £ the modulus of elasticity along the x- 1 axis). Notice 
also that in Fig. I the end moments and tangent rotations are 
assumed positive clockwise. 

The buckled configuration of the delaminated Layer is pan 
of an inflectional elastica with end amplitude 4>d and distortion 
parameter t. At the critical state, the end amplitude is et>~. 
Suppose that in the slightly buckled configuration, 4>d can be 
expanded in the form 

4>d=4>~+4>~It+cP~)t2+0(t). (1) 

Then the end rotation at the common section, 6, is given by 
expanding the relevant expression (Britvek, 1973) in the Taylor 
series in terms of t (notice that at the critical state (f = 0): 

6 = (sin 4>d)t - ;4(Sin4>~OS24>d)() + ... "" (sin 4>~)( 

cP(1l2 
+ (cos4>~)cP~)t2 + (cos4>~)cP~) - (sin 4>~) T[ 

I .....0 2....0] J - 24 Sin '*'d cos '*'d t + ... 

=trllt +tr1)t 2+tr J)t J + O(t"). (2) 

Notice that by the continuity condition, 6 is the same for bot h 
the delaminated and substrate parts as well as the base plate. 

The asymptotic expansion for the end moment, M d , is sim­
ilarly found by substituting (I) into the relevant expression 
(Britvek, 1973) and subsequently expanding in Taylor series 
(again M~=O): 

fMd 4>d sin 24>d) 3
D = (4)dcos4>d)t+ 16 

(1
3-~ (COS4>d)t + ... 

d 

=~d (MJlt + Mjl/ +M,P( 3) +O(t"), (30) 

where 

iMJI 0 0 iM1I 0 o· 0 (II
-D =4>d cos 4>d; --=(cos 4>d- 4>d Sin 4>d) cPd' (3b) 

d Dd 

eM)' = (cos 4>~- 4>~ sin 4>~)<t>:J' - (Sin 4>~ + 4>~ cos 4>~) <t>~I~ 
~ 2 

4>~ (!_sin 24>~) 0+ (3c)16 3 24'~ (cos 4>d). 

Likewise, the axial force is given by 

sin 24')I - --- (2 + =4>02 + 2....0"'(11.
( 24> . .. d '*'cN'd < 
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+ [ ....1112 + 2.0....11l + .~ (I _sin 2.~)] f2 + 
'#'d 4'#'d 8 2.~ ... 

=D
r 

(~+P')lf +/1l(2) +O(fJ
). (4) 

d 

Finally, the nexural contraction, Id, is 

r t ( sin 24>4) 2 0'(f) =-t ( 1----sin 24>~ (2Jd=- 1---- (+

2 24>4 2 24>~
 

t (sin 24>~ 2 cos 24>~2) (II J .;(2) 2 1.31 ] ,+- --:;:0-- ....0 4>d f +".=Jd{+tl t + O (f). 
4"'*'d "'*'d 

(5) 

Although the substrate part and the base plate under-go mod­
erate bending with no inOection point, we may also use the 
elastic theory to describe their (nonlinear) deformation; in this 
case the inOection points are outside the actual elastic curve. 
For the substrate part, we have to expand not only the am­
plitude 4>., but also the distortion parameter o. in a pertur­
bation series with respect to the distortion parameter of the 
delamination layer t: 

4>. = 4>~ + 4>~llf + 4>~i+ O(f]), (60) 

o. = 0~1){ + 0?){2 + a?lt l + O({'). (6b) 

Then the end rotation at the common section (J is given by 
expanding again in Taylor series in tenns of {: 

(J = (sin 4>.)0. - bsin 4>. cos2 • .>0: -i: •.. 

= ~I)t +~2)t2+ ~lltl + O(t'), (70) 

where 

~II = (sin 4>~0~1); ~21 = (cos 4>~~I)a~1) + (sin 4>~~. (7b) 

[ 
~IP]

~3) = (cos 4>~4>~21 - (sin 4>~ T a~11 + (cos 4>~~1la?1 

+ (sin 4>0..001 - -.!.- sin 4>0 cos2 4>0",(\)3 (7c).J. 24 ' ....,.. 

In a similar fashion, by using the expressions (6), the asymp­
lotic expansion for the end moment, M. is (again M~=O): 

eM, 4>, (I sin 24>.) 3-D = (4),cos 4>.)0.+- ----- (C054>,)o,+ •.. 
, 16 3 24>. 

=~, (At,IIt + At,21t2+ At,;1(3) +O(t'), (80) 

where 

(8b) 

(Be) 

_ (Sin 4>0 + 4>~ cos 4>0) ....(Il~ (II'2 • '#', a, 

+ 4>~ (!_sin 24>~ (cos 4>~ ~113. (8d) 
16 3 24>~) 

Likewise, the axial force is given by 

, 2 (iP, = 4>~ + 4>, _ sin 24>,) 2 
D, ' 8 I 24>, t + ... 

=~ (l~+~I)t +~~)t2) +O(f), (90) 
.• 
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where 

rp: 01 rP'.1I ° 
- = 4>, ; -'- = 2.4>(1 1 (9b)
D, D,' • , 

'Poll 4>02 ( . ~ ~ = 4>1112 .. 24>04>(2J + _' I _ san 2.. (112 (9c)
D. ' "8 24>~ a,. 

Finally, the asymptolic expansion for the Oexural contrac­
tion,./,. is found to be 

where 

I c, = ~ (I _sin 24>~ liP (lOb)
'2 24>° a"• 

I (])_~ (Sin 24>~ _ 2 cos 24>~ (I) (IP
• - 4 4>02 4>0 4>, a,, . 

sin 24>~) (II (2)+ 1---0 - a a,. (10e)t( 
24>. 

The ~ plate is assumed 10 be simply supported, so at the 
simply supported end, the amplitude 4> = - T/2 and at the 
common $«Iion 4> = 4>b' The amplitude at the common section 
and the dislortion parameter of the base plate are now ex­
panded in tenns of Ihe distortion parameter of the delaminated 
part t: 

4>b = 4>~ + 4>~IJt + 4>~lt1 + 0«(3), (lID) 

ab=Q~I)t+Qf)t2+a~)t3+0(t'). (lIb) 

Moreover, the end TQlation at the common seclion () is given 
by expanding again the relevant expression from Britvek (1973) 
in Taylor series in lerms of (: 

()= [Sin 4>b+ cos 4>b ] ab+ R (4)b)ol+- .• 
4>b+(..-I2) 

= ~I)t + trl't
2+ tJbll(3 + OCt'). (l2a) 

where R(4)ol is defined by 

R(4)b)=.!- cos4>. _~cos4>bsin24>b! COS
3 

4>b 
484>b+(11"/2) 32 l4>b+(..-12)]2 314>b+(T/2)]) 

I 2 
- 24 sin 4>b cos 4>b- (12b) 

In lerms of 

· ....0 cos 4>~{3 = Sin",*, - . (l2c) 
b 4>~ + (..- /2>' 

(1M) 

cos 4>~ sin 4>~ cos 4>g sin 4>2 
X = (4)~ + (:.-12)))) + (4)~ + (11" /2))1 - 214>~ + (..-12)] 2 

(12R) 

we obtain 

ti}}1 = /3u~'I; (J'b~) = ~4>~llo~I' + (3a~), (l2j) 

fill = (30~1-+ H4>~)o~) + O~2Ia~l, 

+x4>~'~a~)+R(4)2) a~ll3. (l2g) 

Concerning the end moment, M b , use of (II) gives the fol­
lowing asymptotic expansion (again NIl, =0): 

b;:b= (4)~+~) (COS4>b)ah+/ (4)~+~)
6 
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I sin 24>0) • \_J 
x ( 3-2(4)~+( ...12)) (cos t"'t+··· 

=.!!-. (~lIt+~)f2+~ltJ)+O(f·). (130) 
Do 

where 
b-;;:Il = ( 4>~ + ~) (cos 4>:>a~II, (l3b) 

b;;:) =q<p~I)a~11 + (4)~ +~) (cos 4>g)a~2), (l3c) 

bMb
ll 

= (4)g + ~) (cos 4>~)a~) 
Do 2 

_ [sin 4>g+ (4)~+~) c~ 4>~] <Il~I)2a~1)+q(a~l)a~)+<Il~la~I) 

1 (0 T) (I sin 24>~) 0 (I)l
+1"6 4>0+2." "i-2[4>g+(TI2») (cos 4>0)a1> . (l3d) 

Likewise, the axial force at the base plate (which is also the 
applied force) is given by 

~: = (4)o+~r + (4)o+~r [~-116 [4>:i:::~») 
2

_! cos 4>0 2]a~=~ (p!l+PI)t+p(2)f2)+O(f l ), (l4a) 
2 [4>0+ (T/2») Do 

where 

b;:= (4)~+~) \ b~l) =2(4>~+~) <Il~I', (l4b) 

b 
2
P2) =<P~I)2+2(4)g+~) <Il~1 

Do 2 

! (0 ~) 2 [_ sin 24>~ 4 cos
2 
4>~ ] a(l)2 14c 

+8 4>0+ 2 I 2[4>~+(TI2») [4>~+(T/2)f b' ( ) 

Finally, the flexural contraction,lb, between the simply sup­
ported end and the common section is 

2
b [ sin 24>b 2 COS 4>b ] 2 

1="4 I 2[4>b + (TI2») [4>b + (TI2»)2 ab+ ... 

=J1,2lf 2 + O(~3), (150) 

where 

~2) b [ sin 24>~ 2 cos 
2
4>~ ] (1)2 (l5b) 

JI> =4" 1-2[4>~+(TI2)] [4>~+(iI2»)2 ab . 

Having obtained the asymptotic expressions for the force 
and deformation quantities, we shall discuss the formulation 
of the equilibrium and compatibility requirements that will 
ultimately define the nonlinear post-critical path. Force and 
moment equilibrium at the common section require 

Pd + Ps- P=O, (160) 

H h 
Md+Ms+Mb-Pd2+Ps2=0. (l6b) 

The deflections of the delaminated and substrate parts should 
be geometrically compatible. Thus, a second condition nec­
essarv for a solution involves the compatible shortening of the 
dela~inated and substrate parts, which consists, in turn, of 
the compressive and flexural shortening: 

~d+2 ;;;j -0+2 ;~) +8T=O. (17) 

As the compressive load P is applied, the plate remains flat 
and a primary state solution (pure compression) is character­
ized by pIl=P1tTlh and p;=P'r/ilh, ""hich gives 

o 00 JD.,H 0 bJDdT 
4>.=4>d D,h; 4>O=-4>d t D"h-"'n.· (l8a) 

Altilough determination of the critical p.:>int is not a primary 
objective of this paper and the buckling analysis has been 
thoroughly carried out in other works (e.g., Simitses et aI., 
1985), we shall briefly describe the equatiLns for the critical 
point (in terms of 4>:> for the sake of completeness. and because 
the formulation for the initial post-buckling naturally follows 
that for the critical point. 

By equating the first-order rotation at the common section 
we obtain c1,l f and all): 

• 4>0 . 4>0 
(1)_ Sin d. (11_ Sin d (18b) 

a. - . ...0' al> - R • 
Sin .... fI 

Writing the moment equilibrium (l6b) and the geometric 
compatibilitx (17) for the first-order terms and eliminating the 
quantity [~)H - Psl)h) leads to the characteristic equation, for 
the determination of 4>~: 

~~ cos 4>~ + sin 4>~ [Ds 4>~ cot 4>~ 
t t
 

Db (0 T) cos 4>~ EThH]

+t; 4>b+2." -f3-+~ =0. (1&) 

Next, the initial post-buckling behavior is considered. 

First-order Forces. Force equilibrium, Eq. (160) for the 
first-order terms, and use of (4), (9b), and (14b) for the first· 
order forces gives 

(I) 4>~ D~2 (I) 4>~ D/l (I) 

<PI> 4>g + (T/2) Dti <Ild + 4>~ + (TI2) D~ <Ils 

=Pd¢~' + pS¢~I). (190) 

By equating the second-order terms in the expressions for 
the slope at the common section, em, Eqs. (2), (7b), and (12j) 
we can find cJ;1 and a~2) as follows: 

(2) cos 4>~ (cos 4>~a~1) (I) (II (19b)(I) (I) 
as = ---=--:;:0<1> d - ....0 ¢s = I'dcPd + <l>s<i>s , 

Sin '*'s Sin '*'s 

(2) cos 4>~ (I) ~abl) (I)
ab =-(3- <Pd - ---;3 <l>b . (l9c) 

Using (19a) we can write ar l in the form 

a~I=",dcP~)+..,set>~I), (19d) 

where 

(1ge) 

Determination of the first-order forces requires deriving 
<I>~11 and <Il~l) and this will be discussed nex!. The moment equi­
librium Eq. (16b) for the second-order terms is 

M)I+,\f,2)+Ml?'=~ (p)' H-P/'h). (20) 

The geometric compatibility Eq. (17) for the second-order terms 
gives 

~2J -f l~) + e{2jT= [P.~'h - P.~'H] ~. (21)
Jd s 'd EhH 

Eliminating the quantity (P/'h - p121H] from Eqs. (20) and 
(21) gives the following first linear equation for 0111 and d.ll ; 

a ....(1'+ a _....(1,= [!(J _sin 24>~) (IlllIVId ll"'s 2 24>0 as 
J 

_! (I _sin 24>~)] EhH (21a) 
2 24>~ 4f ' 

where 

906 I Vol. 60, DECEMBER 1993 Transactions of the ASME 



Dd 0 O· 0 D, 0 o.~ 0 
all = -::=icos 4>d - 4>d Sin 4>d) + - 4>,(COS 4>,nd + (cos 4>d)(	 t 

x E:~T + ~b [ Qa~I)Pd + ( 4>~ + ~) (cos 4>~)'Id] • (22b) 

D, ° 0· 0-. (II ° 0-.01: = r (cos 4>, - 4>, Sin 4>,J'k, + 4>,(COS 4>,1)', 

Db [ (II	 0](0 r)+ b Qab P, + 4>b + 2 (cos 4>b)'I, . (22c) 

The second equation n~ed to find <p~11 and ¢~I) is the firsl­
order geomelric compalibility Eq. (17) at the common seclion. 
which becomes afler Ihe expressions (4) and (9b) for the firsl ­
order delaminalion and subslrale forces, and (2) for the firsl~ 

order rotation. are substituled: 

D. 4>0h",(I) _ D d 4>0'.1'"-(1) = EhHT sin 4>0 (23)f· ...• f d.....d 4t d· 

The foregoing syslem of two linear Eqs.• (220) and (23). 
allows finding <p~1l and <p~I). and hence Ihe firsl-order forces 
P'd". p'1) and the first-order applied force pll = P'dll + p'1l. 

Second-Order Forces. Second-order force equilibrium 
(160). together with (4). (9c), and (l4c). gives 

<p~21 = p~~) + pAJ~21 + Peo (240) 

where 

O~I~ 4>~ 
P<=Pd [ 24>~ +16 

(I+	 [<p~112 + 4>? sin 24>?) (1)2] O~I)2 
P, 24>? 16 - 24>? 0, - 2(4)~ + (,,-12)] 

I (4)0 T) [ sin 24>~ 4 cos:4>~ ] (1)2.

-16 b+ 2 1-2[4>~+(T/2)] [4>~+(AI2)]2 °b . 

(24b) 

By equaling the third-order lerms in the expressions for the 
slope al Ihe common section for the delaminated and Ihe sub­
Slrate pans, e(J), Eqs. (2) and (7c), we can find a/ 3

), 

a~J) ="y~~1 + "YA>~2) + "Yeo (25a) 

where 'y< is given in lerms of Ihe following quantilies: 

c;i}1l
2

I )
-.f,d = - T + 24 cos

2 4>~ sin 4>~, (25b)( 

or = _ (O~ll: +~ a(l)2cos2 4>0) a~')sin 4>? 
'l', 2 24' , 

+ <p~lIa~:)cos 4>? (25c) 

as follows: 
-.f,d --.f,. 

"y<=~. (25d)
Sin "t', 

In a similar fashion, by equaling the third-order terms in 
Ihe expressions for lhe slope at the common seclion for the 
delaminaled and the base parts. and using (240) we can wrile 
a~'\ in the form 

(260) 

.... here 

P'I< = -.f,r (~p< + ),:)ahll - ~<p~lla~2) - R (4)~ )a~'J. (26b) 

Determinalion of the second-order forces requires deriving 
0:,.:' and O~:I and Ihis will be discussed nexl. The moment equi­
librium Eq. (l6b) for the third-order terms is 

MJ'+M;~)+~"=~ [plJIH-P/'h). (27a) 

The geometric compatibility Eq. (17) for the third-order terms 
gi\"cs 
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j ())-j())+fP)T-=(P.J)h-PJIH)..l!- (27b)
d, • d EhH' 

Eliminaling now Ihe quantily IP/'h - ~))H) from Eqs. (270) 
and (27b) gives Ihe following first linear equation for ~~2) and 
<p~2): 

01l<P~) + 01~~21 = CI. (28) 

where Ihe coefficienls all and 012 are lhe same as in the firsl­
order problem, Eqs. (llb. c), and CI is given in Appendix A. 

The second equation needed 10 find <p~) and <p~2) is the second­
order geometric compalibilily Eq. (17) allhe common section. 
which becomes afler the expressions (4) and (9c) for t~ second­
order forces, and (2) for the second-order rolalion. are sub­
stituted: 

D. ° (2) D d 0 (2) [ sin 24>~ ( sin 24>~ (1)2
(2 4>.h<p, -7 4>dH<Pd = 1- 24>~ - 1- 24>~ ) a, 

2T (II ....oJ EhH [ (1)2 4>~ (I sin 24>~)] D~+7 <Pd COS"t'd -8-+ <Pd +8 - 24>~ 2f 

_["'(1)2 + 4>~ (I _sin 24>?) (1)2] D,h. (29) 
.... 8 24>? a. 2f 

The foregoing system of two linear Eqs. (28) and (29) allows 
finding <p~2) and <p~2). and hence the second-order forces P';P. 
p'~l and the second-order applied force pl21= Pj) + p'2). 

Displacements. Next we shall discuss the expressions dur­
ing the initial post-buckling stage for two additional quantities. 
which are typically needed for correlation with experimental 
dala: the midpoint deflection of the delaminated layer and the 
substrate part, and the applied compressive displacement (or 
applied slrain). 

First, it should be noted that at each point x there corre­
sponds a value of the variable amplitude 4>(x); the value at the 
common section x = t is 4>;, i = d. s. Furthermore. at the mid­
point x= 0, where the slope is zero, 4> =0 and at the inflection 
point, where the slope is a;. 4> = T/2. The deflection increment 
on the elastica is given by (Britvek. 1973) 

. (0,) ~.
dw;=2 Sin "2 ~P::'1n 4>d4>. (300) 

Integrating be1ween the midpoint (x=O) and the common in­
terface (x=l'J gives Ihe midpoint deflection 

wim=2 sin(~) J~: (cos 4>,-1). <JOb) 

SubstilUting lhe asymplolic expansions for the force P, and 
for the amplilUde 4>i, gives the midpoint displacement of the 
delaminaled layer or the substrale pan (i = d, s) as follows: 

(310) 

where for thc delaminaled layer 

II) f ....0 I)wdm=-o (cos "t'd- , (3Ib) 
4>d 

(2) f [ (I - cos 4>~) . ...0] (II
"'dm=-o ° Sln"t'd <Pd' (3Ic) 

4>d 4>d 

and for lhe subslralc pan after SUbSlilulion of (6b), 

4>0 
II) ~ = (cos 4>0 _ I )o:UI

W J", t 'J • (310') 

,12, 4>? _ [(I -cos 4>?) ....0] (II (I) 
K.m f - 4>0 Sln"t', <p, a,	 (3le) 

, 
+ (cos 4>?- l)a~2'. (3Ie) 

Finally, I he previous analysis allows finding a direct expres­
sion for the applied strain, (0, as follows: 
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Delamination Growth Characteristics 
Before applying the initial post-buckling solution that has 

just been presented, the basic interfaa: crack solutions that 
are needed in the analysis will be reviewed. For a general bi­
material inter faa: crack, these solutions depend on the Dun­
durs (1969) parameters, 0,13 and the bimaterial constant (. 
For the homogeneous system under consideration, 0 = 13 = 
i=O. Therefore, the formulas of Suo and Hutchinson (1990) 
will be presented with the homogeneous material assumption 
into consideration. 

For the plane-strain interfaa: crack shown in Fig. I, the 
energy release rate 0 is 

1_1' [ p 0

2 lf2 P·lf ]
0=-- --+--+2 --- sin")' (33)

41-' Ah Ih3 ~h2 

where I-' is the shear modulus. In terms of 

h3 

T/=h/H; C1=T; C2 =y; CJ =T3 (34) 
h 6JilH 

pO and If are linear combinations of the loads from the 
previous post-buckling solution: 

o M b
P =Pr C1P- C2 h' (350) 

If = M r C~b- (35b) 

!oreover, A and 1 are positive dimensionless numbers and 
.ne angle")' is restricted such that")' $ 7:12. These quantities are 
given by 

A= 1 3;1= I 3;sin")'=61)2(1+1) .../Al.
I + 41) + 61/2 + 31) 12(1 + 1) ) 

(36) 

The preceding formula does not separate the opening and 
shearing components. Instead, the following two expressions 
give the Mode I and Mode II stress intensity factors 

1 [PO 1-1 ]K[ = h f""':7 cos w + r::-:. sin (u: + ")') (370) 
-.;2 -yAh V Ih3 

[P' ]KI/= Ih ~sinw- Ifr::-:.cos(w+")'). (37b) 
-.;2 -yAh V Ih3 

Accurate determination of w, which depends only on 1) (for a 
fixed set of Dundurs constants Q, In, requires the numerical 
solution of an integral equation and has been reported in Suo 
and Hutchinson (1990). The extracted w, however, varies slowly 
with 1) in the entire range 0$ 1) $1, in accordance with the 
approximate formula (Hutchinson and Suo, 1991) 

w = 52.1° - 3°". (38) 

The mode mixity is defined by 

I - I K /K -I (A sin w - cos (w + ")')] ,., =tan (1/ [) =tan ., (390)
A cos W + Sin (w +,) 

where A measures the loading combination as 

A=$~.
 (39b) 

Substituting the asymptotic expressions for the forces and 
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moments from the post-buckling solution already presented, 
gives 
p' = (polll +(2p.(2l + ... If = (lflll + (2lf121+ _ .. (400) 

where the first and second-order terms (i.e., k = 1,2) are (notia: 
that the ttro-order quantities in the expression for pO cana:l 
out) 

PO(4)=!!.p.!)_!!.pC41_6hH M1,4) (40b)T d T J rJ b. 

l
.~141_ • .ri4·1_ h • .riA) 
/VI -Mil rJMj,. (4Oc) 

In the previous relations, the first and second-order forces 
Al 1and moments, PdA

), PJ , M'dA
), ].fj,4 , k = I, 2 have already been 

found from the initial post-buckling solution described in the 
previous section. 

Now the energy release rate and the Mode I and II stress 
intensity fadors can be written in the form: 

0=(20'2)+(30'31+ , (410) 

KI.II=d..i~IIl+(2J0~)I/+. . _, (4Ib) 

where K'}~l[[, J0~11/ are found by substituting in (37) the first or 
second-order forces and moments, respectively, 0'21 is found 
from (33) by substituting directly the first-order forces and 
moments and 

3 I - I' [P°(lIPOOl If(lllfOl
0' )=-- +--..-- ­

21-' Ah Ih3 

+ sin")' (P·(I)/.1Ol+p.(2)/.1III)]. (4Ic) 
~h2 

Discussion of Results 
The thin film model of Chai et al. (1981), which is a closed­

form solution for the initial post-buckling and growth behav­
ior, represents the limiting solution for a very large value of 
the ratio hiT, i.e., for a delamination in an infinitely thick 
base plate. This solution predicts an energy release rate 

(420) 

where 

E,,= 12(1-1'2)f' {42b) 

is the Euler's critical strain for the delaminated layer (treated 
as a column with built-in ends) and (0 is the applied strain. 
The applied load is P= EEo and the midpoint deflection is 

4r / 2 
Wd", = - - " (EO - E,,)( I - I' ). (42c) 

11" 

For this model, the mode mixity is given by the following 
relation (Hutchinson and Suo, 1991): 

4 cos u: + .J3~ sin w 
tany, = . (430) 

-4 sin w+.J3~ cos w 

Since the thin film model postulates that" = hlH-O. w =52.1°. 
Futhermore, ~ is defined by 

[4( )]In
 (43b)~ = 3 ::, - 1 

These results from the limiting thin film model are a very useful 
approximation and a comparison with the present general post­
buckling solution is noteworthy. In applying the formulas pre­
sented in this paper, it should be remarked that in general, the 
critical end-amplitude for the delamination (that normally 
buckles with an inOection point) is - 7:12 > 4>~> - 7: (the thin 
film model assumes 4>d= - 11'), whereas for the substrate part 
that normally shows no inflection point, 0 > 4>?> - 11'/2, and 
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likewise for the base part, .,.12> 4>~> - .,./2. Moreover, the 
distortion parameter for the delamination is f < 0 (Fig. I). 

For an iIlustration of the results from the previous analysis 
consider a delaminated plate with E= 10 GPa and 1'=0.3 and 
delamination and plate length (= 20 mm and L = 60 mm, re­
spectively, and delamination thickness h = 0.4 mm. These di­
mensions correspond to our specimen dimensions (a width of 
10 mm has been considered and is appropriately accounted in 
the results). To keep the critical strain fer constant we keep the 
delamination length and thickness constant and vary only the 
plate thickness to get a varying ratio hiT; this would ensure 
the same thin film model solution. 

Figure 2 shows the energy release rate (2GIEh)10\ as a 
function of the applied strain for hIT=O.1O and hIT=0.30. 
It is seen that for the same applied strain, the energy release 
rate for the case of the delamination located further away from 
the surface (hIT=0.3) is always higher than the one for the 
delamination close to the surface (hiT = 0.1). In the beginning, 
i.e., for relatively small applied strain, lhe curves tend toward 
the thin film Solulion for a decreasing ralio hiT (as expected); 
however, as the applied strain is increased, the lhin film model 
solution rises even above the hIT=0.3 solution and predicts 
a much higher energy release rate. Experimental results lhal 
have been previously reported by Kardomateas (I989b, 1990) 
"mfirm clearly the reduced growth resistance of the "large 
.tio" case, hlT= 0.3, versus the "small ratio" one, hlT= 0.1). 

In fact, the small ratio delamination in these studies did not 
grow at all despile a very large increase in the applied strain, 
Notice that this important difference in growth behavior can­
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Fig. 4 Mldpolnl deflection of the delamination, -.,/h, as a function of 
the applied strain 
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Midpoint deflection of the substrate part. w...,lh. versus applied 

nOI obviously be predicled by the ihin film model, which, 
because of ilS slrongly nonlinearly increasing G - (0 curve, 
would predict growth even for the small ralio delamination if 
the applied strain would be sufficiently increased. 

Another very interesting result is the variation of the mode 
mixity (Mode 11 versus Mode I) al the delamination lip. Figure 
3 shows the mode mixity t/t versus applied strain. It is seen that 
for the same applied strain the delamination localed further 
away from the surface (hIT=O.3) shows a higher mode I 
proportion than the one for lhe delamination close to lhe 
surface (hiT=0.1). As a consequence, the value of the applied 
strain at which the delamination tip loading becomes pure 
Mode 11 (t/t = - 90 deg) is increased. This point for the thin 
film model is at (o/({"f=7.55. The curve show a trend toward 
the thin film solution for a decreasing ratio hiT. 

Figure 4 shows the midpoint deneclion of lhe delamination, 
K'dn,lh, and Fig. 5 shows the midroint denection of the sub­
strate parr, K'.mlh, both as a function of lhe applied strain. It 
is seen that both curves show a trend loward the thin film 
solution for a decreasing ratio hiT and that the midpoint 
denections are higher for a larger value of hiT (delaminations 
located further away from the surface). 

Figure 6 shows the applied load P versus applied strain 
curves. It is seen that for the same value of applied strain, the 
delamination located furrher away from the surface (hit = 0.3) 
exhibits a lower applied load and hence a larger loss of stiffness 
than the delamination close to the surface (hit = 0.1). Again, 
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the curves tend 10 the thin film limit for a decreasing hiT 
value. 

Next. the influence of the base plate length is studied by 
keeping the delamination length and thickness constant, and 
varying only the plate length to get a ratio Lit of 3 and 5_ In 
this example the plate thickness was chosen so that hiT=0_20. 
This effect is mostly evident on the energy release rate. which 
is shown in ·Fig. 7 as a function of the applied strain. It is seen 
that the effect of plate length is evident at higher values of 
applied strain with the longer plate exhibiting higher energy 
release rates (and closer to the thin film solution). 
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APPENDIX A 

The conslant CI in Eq. (28) is given as follows: 

D d D, Db 
C'=rCld+rCIS+t;Clb+CIC. (AI) 

where 

C1d= (¢~ ",,0 . ""0)
"2COS't'd+SIn't'd 

....(dl)~
'" 

_ ¢? ::os ¢o (~_ sin 2¢~) 
16 d 3 2¢~ , (Ala) 

(~_ sin 2¢f\a(l12] -(cos ¢o_¢o sin ¢?)<J>"'aP1
3 2¢?)' "s , , 

+ i'c¢? cos ¢? (A2b) 

( (I, (\1 (""0 71) ",,011)
C1b= -q Cth (Jc+Ob Cth - 't'b+'2 COS't'b 

x [ ~< + G-2(:;': ~:~2»)) Ct:,~J] 

+[sin ¢~ +(¢~ +~) co~ ¢~] <J>~11Q:,I). (A2c) 
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