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moisture concentrations on the inner and outer surfaces. The material properties
are assumed moisture independent and a displacement approach is used. Since the
moisture diffusion process is relatively slow, the hygroscopic stresses are confined

JSor practical time values to a boundary layer region near the surfaces. lllustrative
results are presented for graphite-epoxy material regarding the boundary layer hy-
groscopic effect on the stress field with respect to time and the coupling of mechanical
loading (external pressure) and moisture diffusion. For this material, it is shown
that this effect is more pronounced for the axial component of stress.

Introduction

The understanding of the stresses induced by moisture in a
composite structure is essential for the design and the com-
prehensive study of its response during service in severe hy-
groscopic environments. It is well known that a polymeric resin
absorbs moisture from its environment. Whitney and Husman
(1978) showed that the absorption of moisture from severely
hygroscopic environments reduces the modulus and the strength
of a resin-based composite. Wang and Choi (1982) suggested
that an unanticipated failure of a composite structure, fre-
quently initiated at the edges, can be a result of hygroscopic
stresses near the edges.

The hygroscopic stress field in the vicinity of laminate plate
boundaries, i.e., the so-called hygroscopic boundary layer
stresses, which might be primarily responsible for strength
degradation and failure of composites, has been investigated
by several researchers using different approximate methods
(e.g., Farley and Herakovich, 1978; Crossman and Wang,
1978). The high hygroscopic stresses are also reported to be
confined within a localized region of several laminar thick-
nesses from the edge, and in the boundary layer region they
cannot be assessed accurately with classical lamination theory.

The behavior of this highly stressed boundary layer region
is of great importance in controlling the complex failure modes
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and performance of the composite. Accurate quantitative as-
sessment of the hygroscopic boundary layer stresses is essential
to the design, failure analysis, and serviceability of composite
structures.

Although the majority of hygroelastic analyses have been
performed in plate structures, some studies have also been
reported in thin shell geometries. In particular, Lee and Yen
(1988) showed that the moisture absorption can degrade the
buckling load in a composite shell structure subjected to
compression. Doxee and Springer (1989) analyzed hygro-
thermal stresses and strains in an axisymmetric composite shell
according to their higher order shell theory.

In view of the fairly thick construction envisioned for com-
posite shells in marine applications, there is a need to inves-
tigate the stress and strain fields induced by the joint action
of moisture absorption and mechanical (pressure) loading in
a thick composite shell structure. To this extent, an elasticity
solution would provide accurate results for certain simple con-
figurations, but, more importantly, would form a basis for
comparing various shell theories that could be potentially used
for more complex geometries.

In this work, the problem of transient hygroscopic stresses
in a hollow orthotropic circular cylinder loaded by external
pressure is examined. It is assumed that both the inner and
outer surfaces are at constant (but different) concentrations
of moisture. The material properties are assumed independent
of the concentration of moisture. It is also assumed that there
is only radial dependence of the moisture concentration field.
In a related study, Kardomateas (1989, 1990) used a displace-
ment approach and a series expansion technique to solve the
transient thermal stress problem in composite cylinders. In this
paper, the displacement approach will be used to analyze the
coupled transient moisture diffusion and mechanical loading
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(external pressure) problem. Numerical results are presented
for the stresses with respect to time and the radial coordinates
for an example case of graphite/epoxy material. The results
illustrate clearly the nature of the transient hygroscopic bound-
ary stress layer.

Mathematical Formulation

Consider a hollow cylinder, in general under external pres-
sure p, as shown in Fig. 1. The cylinder has an inner radius,
r; and an outer radius, r;. The radial, circumferential, and
axial coordinates are denoted by r, 6, and z, respectively. It is
assumed that the initial concentration (at ¢t = 0) is Cy. For ¢
> 0, the boundaries r = r, and r = r; are kept at constant
concentrations C; and C,, respectively. The reference concen-
tration is taken as zero. The moisture problem is solved by the
Fickian diffusion equation

oC(r,t) 19 [ 3C
o Pror (’ 6r> "SET (e

where C(r, ) is the moisture concentration and D is the mois-

ture diffusivity of the composite in the r direction. The initial
and boundary conditions are

C(r,t=0=Cy r=sr=n, (1)

C(ri,r)=C; and C(ry, t)=C, >0, (1c)

where Cy, C|, and C, are constants. Crank (1975) gives the

general solution for the distribution of the concentration of

moisture C(r, ¢) to Eq. (1) in terms of the Bessel functions of
the first and second kind J, and Y, as follows:

C(r,t)=b,In (r/r))+ by In (ry/r)

e 2
+ 3 [endo(ra) +d, Yo(ray)le™ ",  (2a)

n=1

where
C2 Cl 5
T ———-- ¥ S —————— ‘_b
b In (ry/ry)’ b In (ry/ry)’ (20)
P Jo(riam) Yo(raan)
"0 Jo(rien) + Jo(raa)
CaJo (riay) — CirJo(ray)
—wdo(rya) Yol ra, , (20
SN =50~ Rlra)
Jo(riow)Jo(nan)
d,= -G
0 Jo(ricn) + Jo(ractn)
n 7C-1 n
+ (i) Jo(racey) SN —Crblad)

J(ZJ(rlan) - Jg(rlan)
and «, are the positive roots of
Jo(rie) Yo(raa,) — Jo(raa,) Yo(ries) =0. (2e)

The hygroscopic stress-strain relations for the orthotropic
body are

[o,] [ecn e en 0 0 07[e~BACT
) Cn O € 0 0 || ep—BoAC
Oz 3 € Cn 0.0 €. — B AC
T | 0 0 cu 0 0 . e b
T 0 0 0 o¢5 O Yo
9] LO 0 0 0 0 ¢l 7 I

(3)
where ¢;; are the elastic constants and §; the swelling coefficients
(1, 2, and 3 represent r, 6, and z, respectively). The geometry
(Fig. 1) is axisymmetric. Since the moisture concentration is
assumed to depend only on the r direction, the stresses are
independent of ¢ and z and the hoop displacement is zero. In
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Fig. 1 Thick cylindrical shell under constant boundary concenirations
of moisture

addition to the constitutive Eq. (3), the equilibrium equations

have to be satisfied; since 74 = 7,, = 75, = 0, only one
equilibrium equation remains:

89y , Im—0m _ (4

ar F

In this work the displacement field derived by Lekhnitskii

(1981) for time-independent problems and modified by Kar-

domateas (1989) for time-dependent thermal stress problems

(which are analogous to the time-dependent moisture-induced

stress problems) is used:

u,=U(r, t) +z(w, cos 0 — w, sin 0) +ug cos 6+ vg sin 8,
ug= —z(w, sin 0 + w, cos 8) + w.r —ug sin 6 + v, cos 8,
u, =zf(t) —r(w; cos 0 — w, sin 6) + wy, (5)

where the function U(r, ¢) represents the radial displacement
accompanied by deformation. The constants u,, vy, and wy
denote the rigid-body translation along the x, y, and z direc-
tions in the Cartesian coordinate system, respectively, and w,,
w,, and w, denote the rigid-body rotation in the x, y, and z
directions (these may also be functions of time, but since they
do not appear in the strain expressions, such a dependence
would not affect the expressions that follow in this section).

The parameter f(¢) is obtained from boundary conditions,
as discussed later. The strains are expressed in terms of the
displacements as follows:

aU(r, t) U(r, t)
- y €= ’
ar r

Yor=Yor=Yr= 0. (6)

Substituting Egs. (6) and (3) into the equilibrium Eq. (4)
gives the following differential equation for U(r, f):

€rr

ex=/(1),

FU(r, 1) 13U, 0] en
cll[ ar? +r ar } 2 v o
aC(r, t C(r, t (1)
=q f} )+<]2 )+(C23_C13)f—s (7a)
r r r
where
Gy =B+ ¢ 12Bs+ €138, (7b)

2= (e —cp) B+ (€2 —€0)Be + (€13~ C23) Be- (7¢)
Now set f(¢) in the form

SO =fo+ D) fre™ 2o, ®)
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Moreover, to solve Eq. (7), set
= 2
U(r, 1) =Up(r) + > Ry(r)e” =, ©)
n=1

Substituting Egs. (2), (8), and (9) into Eq. (7a) yields the
following equations to be satisfied for Uy, and R, forn = 1,

., 00!
" C ’ C: —C
B () +— Uo(f)*_zz2 Uo(ry=—2—2 1,
r r r
by—b fn (2 ./
g By p OO g BB e
r r r
euRy (1) + L Ry (r) =2 R, (r) =21 .
r r r
+c,| G2 —JO(ran)—qlanjl(’an)il
Y y
+d,,[qz 70(:“ )—q.a,,Yl(ra,,):l n=1, ..., . (10b)

For each of the previous equations, the solution is the sum of
a homogeneous solution and a particular one. The solution of
the homogeneous equation is in the form G, (O +

G,(1)r™ with
)\[.2=:t\/C22/C|1. (10(_’)

In a similar fashion to the pargmeter f(1), set G;(¢) in the
form: Gi(1) = Go + LGe 2, i = 1, 2.

Since the constants f. and G are vet unknown, we shall
indicate the places where they enter in the expressions that
follow (these constants are found later from the boundary
conditions). For ¢|; # ¢y, the solution of (10a) for Uy(r) is

Us(r) = GioP + G2 4= f +Us(r), (l1a)
1—c
where
* q2b,
th(r)= rin (r/ry) + rin (ry/r)
Ci —Cn Cii—Cn
-2
[Ql(Cn ) qa2c11] (by—by)r. (11b)
(Cll—"CZZ)
For ¢;; = ¢, the corresponding solution of (10q) is
G
Uo(r):Glor+Tzo+C232 B ein (r/r) + Us (7)), (124)
Cyy
where
qb>
Uo( )— rln (r/r,)— g r In? (ry/r)
Il 11
P e —
20D ozl o)
4C”

To solve (10b) we use the series expansions of the Bessel func-
tions to obtain a series expansion of the right-hand side, as
given in Appendix A. In the following, v stands for the Euler’s
constant (=0.577215 ...).

For ¢, # ¢, the resulting Eq. (A3) in Appendix A leads
to the solution of (10b) for R,, n = 1, ..., o, as follows:

Ry(r) =GP +Gay2+ BB £ L R (7)., (13a)
Cn—C
" 2¢.d,
R, (r) =BO,,r+q—2~ rin (ra,/2)
w(C11—Cx)
+ 2 Bu™ Y In (ra,/2) + By, (13b)
k=0
where
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4¢19:d,
=
—€5)

The coefficients in the sum over k are given in terms of

Sin= o2 [ ks
R PR T

Car + dn (2/7r)(ql s 'Y(IZ) n
Cli—Cx

By, = (130)

w(cy

2d,
x1g:+ 21 (k+ DI+ =28, (13d)
as follows:
2d,(— 1) 2**2[qz+2ql(k+1)1
\nk = 2k+2 2 » (140)
w2 [(k+l)'] [e11 (2k+3) =]
) ( I)L+I 2k+2
Byulc (2k +3)° — ] = mﬁm
—Bl,lk»2C1|(2k+3). (14b)

In the (unlikely) event that for a certain k, ¢, (2k + 3)* =
¢y, the term in the sum for this & is replaced by the one in
Appendix B.

For ¢;; = ¢, the solution of (10b) for R, is

R,(r)= Glnr+Gr +C“2””fn In (/r) +Ro(r),  (15a)
R, (r) =By, In (re/2) 43 20 dudt> rln (reey/2)
+ Z Bior™ 0 (ra,/2) + By ™ 3, (15b)
k=0
where
= TCrgy+dn (2, + 2vq2 — ) (150

21['('“

The series expansion for the Bessel functions cannot be used
for large arguments; hence, the requirement of including an
increasing number of terms and therefore large arguments
necessitates finding a particular solution for the *‘large ar-
guments’’ domain. This is achieved by using the Hankel asymp-
totic expansions of the Bessel functions of the first and second
kind (see Appendix A). Employing the substitution

p=raz R, (0)=R;(n), (16)
gives the following equation for R“(p)
Cllﬂgy(R;*”(D)‘l'Ri" p(p)) 22“31 R,, (p)
_ < _(=Dfanhik)
= (2080 om0
X {(¢c,+dy) (g2 sin p—a, 4p COS p +02,k02 sin p)
+(¢n—d,) (g2 €OS p+ay 4p sin p+ar4p” cos p)}, (17)
where
4k +1 16k 16kq,
N1 Pyt T ak—nak—3

and (k) is defined in Appendix A.

The solution of the above equation for the function R, *(p)
is found to be
-2k-1/2 Sin 0

* % d .
Ry (p)=D Pho "2 cos p+57,p

n o —2k-3/2 ~2k~3/2

+ Dk 2P
The coefficients pg\, St.1, Pk, Sk, are determined by consid-
ering the terms in the sum that contribute to the terms
p—Zk—l/A. cos p, p*Zk*l/Z sin 0, p— x—-3/2 cos p, p—2k-—3/2 sin 0 in
the right-hand side of (17). Define

cos p+ Sk o0 sin p.  (19q)
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We obtain the following recursive formulas for pf ,, si.:
piacn=pi-1len (26372 —cx)
—Sk12001(8k =2) + Diay k (¢, +dy), (20a)
skacn =sk_11len (2k—3/2)* — ey
+Pk 12011 (4k —2) = Dya, i (c,—d,), (20b)

(19b)

and for p} ,, sk
P2 =pi-120c1 (2k — 1/2)*~ el —siacdk
—(Dkqa+ Dy 1@ 441) (Ca—d,),  (20¢)
skacn =Sk_ialen (2k— 172" — ) + P c11dk
—(Dig2+ Dy 1@ i41) (C+dy). (20d)

The process starts from & = 1 and the starting values for &
= i are from (17) and (18) as follows:

_QI (Cn+du). S" _ql(cn"dn)'

p". = ’ il y (21(1
o Cllan\/; o Cllan\/; )
7 (Cn_dn)
=(—-8¢q,+3q)) ———;
Po2=( q> + 34, 8(.‘“0(,,\/;
cp+d,
2= (—Bges 3 Lt 21b)

8(‘11(],-,\/;

An important issue regarding this analysis will be discussed
now. The solution (19) is a particular solution of Eq. (17)
derived by considering the Hankel asymptotic expansions of
the Bessel functions for values of the argument p = ro,, = p,,
= 18.0 (see Appendix A), whereas the solution (1354), which
will be denoted by R,s(r), had been derived based on a series
expansion for the Bessel functions, for values of the argument
p < p,. Since for a given root «, the argument p ranges from
e, to rya,, there may be a transition point from one solution
to the other for R,(r) in the expression (154). Both solutions
are particular ones and may be different. Therefore, at that
transition point a homogeneous solution term should be added
to (19) so that

Rur (0ir) = Rus(0u/en);  Raz (pi)etn=Ros (pu/ctr).  (22b)
where Ay, and h,, are determined from the condition of equal
value and slope at the transition point

Rut (pir) = Rus(0i/0n);  Rar’ (0r)atn=Rys’ (pu/ety).  (220)

Thus, the expression for U(r, ¢) satisfying the equilibrium
equations is obtained with the unknown coefficients G, Gy,
Joi Giny Gy, and f, for n = 1, 2 .... These coefficients are
determined from the following boundary conditions:

0, (11, ) =0, 0a,(ry, t)=—p;
7,9(",‘,[):7',«((";, t):O) i=112 (23)
where p is the external pressure. Only those for the stress o,,

are not identically satisfied. The stress o, on the boundaries
is written in terms of the displacement field:

U(rh t)
r

o lriy 1y =c, U,Ar;, 1) +cpp +cf(t) —q,C(riy 1),

i=1,2. (29)
Substituting Egs. (2), (8), (9) into (24) for Uy(r) gives the
following two linear equations for Gy, Gag, and fy:
(Cn>\1+012)'?\1_l610+ (C11>\2+C12)'7\2_]Gw+'4uf0
Us (r)

1

+by In (ry/r)1+pi i=1,2, (25a)

=—enlp () —cp +q\[by In (ri/ny)

where
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cu+en
Ao:“—(_I' (cn—cn)+en foren##ep
Clyu—Cn
cpn—cC
=% i+ (eni+¢2) In (ri/r)] +c¢1z for ey =cn
n
(25b)
and p; = 0,ati =1;p, = —pati = 2.

In a similar fashion, by substituting the expressions for R, (7},
there correspond two linear equations for G,,, Gi,, f,, for n
=1,..., o, as follows:

(enhi+ ) G+ (enha+€12)12 7 'Gop + Agf

*

R, (r)

=—cyR, (r)—cp +qileado(ricy) +d, Yo(riayl;

r
i=1,2. (25¢)

Now let us consider the conditions of resultant forces and
moments. Since the stresses do not depend on z, these con-
ditions exist in any cross-section. It can be proved (e.g., Lekhn-
itskii, 1963, although hygroscopic effects are not included) that
the conditions of zero resultant forces along the x and y-axes
of a Cartesian coordinate system are satisfied identically. The
conditions of zero resultant moment along x and y-axes (and
that of zero twisting moment) are also satisfied by the symmetry
of the problem. Therefore, it remains only the condition of
resultant axial force, P, arising in a hydrostatic field:

n
S 0. (ry )27rdr=P,(t) = —pr(ri—r}). (26)

n
This gives the last set of equations that are needed to determine

the constants G, f;. In terms of

Gy =138, + 2389 + 3385, (27)

Eq. (26) gives

Cii\y + ¢ + +
(ﬁ)(’%' L= AT Gro+ A1Go+ Asfo= (crs—en)
1

Rz [M

S (by—by) + (r3b,—riby) In (fz/fn)}

3]

SRk

(r=r)+en D) (=D*'rUs(r),  (28a)

i=1,2

and forn =1, ... oo,

A+
=(en—e)lp+en ) (=1 'R, (r)

i=1,2

+(gs/en) (= 1Y [earidy (ricy) +dori Y1 (rix)],  (28D)

<M) (AT =21 Y)Gy+ A,Goy + Aof,

where [ and 7, are given in Appendix C. The coefficients 4,,
A, are defined as

Cia\+C +
A RN ta A2 '=r2tYy  for ¢ #cm
Az‘f‘l

=(cxn—cp) In (/) forcy=cn (29a)

g .3 & 2
n—-rn 23— C13
Ay= Cy3+ for ¢ #¢
2 2 (33 c“—cn) TEXSP)
("%_r%) 2
= e [dessen — (e —c13)°]
€
5—d
% o b
+% r3In (ry/r))  for c;y=cy. (29b)
1

Therefore, the constants f;, G; and hence the displacement U
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Radial Distance, 7

Fig.2 Radial distribution of the concentration C{r, f) at different times.
The nondimensional time is defined by f = Dt/r, — r,*. The nondimen-
sional radial distance is defined by ¥ = (r — r)i(r, — ny).

can be found by solving (25) and (28). After obtaining the
displacement field, the stresses can be found by substituting
in (6) and (3).

Results and Discussion

First, a significant observation is that due to the slow rate
of moisture diffusion, many terms, i.e., roots «, of the char-
actamstic By, oy, avemeeulad, winicl aradey e ffankef asymp-
totic regime very important. In the results presented in this
section, 15 terms were used.

As an illustrative example, a T300/5208 Gr/Ep circular cyl-
inder of inner radius r; = 20 mm and radii ratio r,/r; = 1.50
was considered. The fibers are oriented along the circumfer-
ential direction. The typical values of moduli in GN/m? and
Poisson’s ratios are as follows: E, = 9.9, E, = 140, Ey =
9.1, Gz] - 43, Glp_ = 47, G]l = 59, Py = 0020, Va3 =
0.30, »3; = 0.49, where 1 is the radial (), 2 is the circumferential
(6, and 3 is the axial (z) direction. The typical values of hy-
groscopic expansion coefficients (e.g., Hahn, 1976) are 3, =
B, = 6.67 X 107%/wt percent, By = 0. For this material, the
moisture diffusivity in the radial direction is D = 2.145 X
10~ m*/sec. This value was obtained by substituting a tem-
perature of 50°C to the equation for the temperature-de-
pendent moisture diffusivity in Hahn (1976).

To illustrate the results, the nondimensional radial distance
F= (r—r)/(r, — ry), and normalized time { = Dt/(r, —
r)? are used. The initial concentration (at ¢ = 0) is taken Cg
= 0.1, whereas the concentrations at the ends for ¢+ > 0 are
G = 05and & = 1.5,

Figure 2 shows the spatial distribution of the concentration.
Two time values, ¢ = 0.002 (corresponding to about 10 days)
and ¢ = 0.01 (corresponding to about 50 days), are used. The
major stresses are the hoop, gg, and the axial one o, and
these are shown in Figs. 3 and 4. The boundary layer effect
is more clearly shown in the axial stress. Notice that these plots
illustrate the cases with no mechanical load present, i.e., these
stresses are induced purely from the hygroscopic effects. Al-
though a normalization of the stresses would be generally de-
sirable in presenting the results, it is our opinion that for this
particular hygroelastic problem, absolute values give a more
clear description of the resulting effects. It should also be
mentioned that longer time scales are used because the equi-
librium process of moisture absorption or desorption takes
much longer than that of temperature.

The coupling of mechanical loading and hygroscopic effects
is illustrated in Figs. 5 and 6 which show the hoop stress, oy,
and the axial one, g, for (a) applied external pressure only

Journal of Applied Mechanics

o9, MPa

Radial Distauce, 7

Fig. 3 Distribution of the hoop stress ¢4 (no mechanical loading)

Oz MPa

-30

-40

Radial Distance, 7

Fig. 4 Distribution of the axial stress s, (no mechanical loading)

40

20

-20

g8, MPa
&

-100
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-140
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-180 —i
0.0 . ’ 3 . . 1.2

Radial Distance, 7

Fig. 5 Distribution of the hoop stress g, illustrating the coupling of
mechanical loading (external pressure) and hygroscopic effects

and (b) applied external pressure with consideration of the
hygroscopic effects at time ¢ = 0.01. The stress distribution
for hydrostatic pressure only is taken from Lekhnitskii (1981).
It is seen that the hygroscopic effects result in an increase in
the absolute value of the hoop stress at both the inner and
outer boundaries. Again, the hygroscopic boundary layer is
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p =20 MPa, t =0.01

MPa

Oz,

p = 20 MPa, no hygroscopic cffects

-50

Radial Distance, 7

Fig. 6 Distribution of the axial stress o,, illustrating the coupling of
mechanical loading (external pressure) and hygroscopic effects

more clearly seen in the axial stress o,,, which shows a large
increase near the outer surface. In this example, a value of the
external pressure p = 20 MPa was taken. Other values of the
hydrostatic pressure would affect mainly the mean value and
not the existence of the boundary stress layer. More specifi-
cally, Fig. 7 shows the effect of coupled applied pressure p,
and hygroscopic fields, on the axial stress, for p = 0 (only
hygroscopic effects), p = S and p = 20 MPa at time ¢ =
0.002.

Notice also that for the example considered the reinforce-
ment is along the periphery, thus the axial direction is a di-
rection of weakness. Therefore, the boundary layer effect on
the axial stress may have more important implications for
failure initiation than a similar one on the hoop component.

Applications of thick composite shells in marine environ-
ments may actually involve a larger size than the one considered
in these examples. For an insight into these size effects, the
results for the transient stress profiles were derived for a shell
made out of the same material with the same fiber orientation,
and of inner radius 7, = 4 m and radii ratio r,/r; = 1.25. A
time value of 50 days with no mechanical loading and the same
initial and boundary moisture concentrations were used. It
turns out that the same boundary layer effect on the axial stress

o,, appears (as in the present, smaller size example, Fig. 4, 7

= 0.01) with a similar range of negative values; however, the
boundary layer was confined to a smaller 7 range near the
outer surface. A much smaller effect exists for the hoop stress
ogs, With smaller positive and less negative values than in the
small size example, Fig. 3.

A noteworthy observation is that the classical shell theory,
in which the radial displacement U(r) is assumed constant,
would not be capable of capturing these boundary layer stresses.
Finally, it should be mentioned that in this paper moisture-
independent material constants (stiffness) were assumed, but
the moisture absorption may affect these constants as well.
Moreover, the moisture diffusion process is accelerated or
decelerated by temperature. In the future, it is desirable to
consider these additional effects caused by coupled moisture
and temperature fields. It is also desirable to examine the extent
to which higher-order shell theories (e.g., Whitney and Sun,
1974; Librescu, 1975; Reddy and Liu, 1985) can predict this
boundary layer stress field.
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5 p=0,f=0002 (hygroscopic effects only)

MPa

[

p =35 MPa, t = 0.002
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Radial Distance. 7

Fig. 7 Distribution of the axial stress ¢,, illustrating the effect of vari-
able mechanical loading (external pressure) coupled with the hygro-
scopic effects
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APPENDIX A

The Bessel functions of first and second kind of order zero
and one have a series expansion of the form (see, e.g., Wylie,
1978y 1. Ay

] A k 2k+ 1
5 (= 1)*?
Jo(x) = kz(‘,) 22A(k,)z ;X)) = Z L E gAY
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In the above expressions y = 0.577215 ... is the Euler’s con-

stant and (k) is defined as

\l/(k)=l+l+...+1. (A2¢)

2 k

The above series expansions can be used to calculate the Bes-
sel’s functions up to a value of the argument of about x =
18. They are rapidly convergent especially for small values of
the argument.

Using the series expansion, we obtain the following equation
in place of (104):
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where f;, is defined in (13d).

For large arguments we can use the Hankel asymptotic ex-
pansions for the Bessel functions (see, e.g., Abramowitz and
Stegun, 1970) to obtain the following expressions:

Jo(x)=Ay(x) sin x+ By(x) cos x;

Ji(x)=B(x) sin x— A, (x) cos X, (Ada)

Yo(x)=Bp(x) sin x—Ay(x) cos x;
Yi(x)=—A,(x) sin x—B;(x) cos x. (A4b)

The functions Aq¢(x), A,(x), By(x), B,;(x) are given in terms
of

Vitk)=1232.5% ... dk—1)%, k=1,0; Y (0)=1, (AS)
as follows:
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In this way, the above series of the Hankel asymptotic ex-
pansion can be used to calculate the Bessel tunctions for values
of the argument x = 18. The series converges rapidly and the
number of terms required in the summation over k is at most
13 at x = 18.0, being smaller for larger values of the argument.
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APPENDIX B

In the event that for a certain &, ¢;;(2k + 3)* = ¢y, the
term in the sum in (13b) and (15b) for this & is
Biur**310? (roy/2) + Byr ™ 1In (ray/2), (B1)
where now
Zdn( ) l)k‘ la,l,k+z[q7+ 2([1 (/\’+ l)]
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APPENDIX C
For ¢,; # ¢y, the expression for /y in (28a) is
CI:(bl’z*bzﬁ)
ly==—"—""—"""—"In (ry/r
’ 2(e— ) /1)
Cgi—q2) YEYE s 3
& - 3| (b =b2) (r2—r7), (Cl
[4(011—@2) (e —en)” : 1), (CD)

and the expressions for 7,, n = 1, ..., oo, in (286), for the

small arguments domain, are

" dnq’
I,= —1y =+ [ By, ——2—
:.Zz ( ) ( " w{cn—¢cx2))
doqs
(-1 -2 2y e /D48, (Ca)
w(cp—C2)
2 > 7/,+4
S,= 1)'B,,, In (rice,/2
2}];})( ) .ka 7 In (riea/2)
+ (= 1) [ By — Dt L (C2b)
I\B =2k 1a) kv a
For ¢, = ¢3,, the expression for [ is
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and the expressions for 7,, n = 1, ... o, again in the small

arguments domain, are
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where I, (o) and I; (o) are defined by the recursive formulas
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(k—1/2)(2k =3/, = —(2k—3/2)p F*12 ¢os Notice that the integral of the homogeneous solution (224)
! o o
24372 ) @ (due to continuity requirements at the transition point of the
A Sinp=les-t (G306 partial solutions) should be added to Iy, i.c., for ¢y #
(k= 1/2)Q2k =3/, = — (2k—3/2)p™** " sin p ¢, the following term should be added:
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The process starts from k& = 0, and initially, i=1.2 A+l A+l

i3 703 sasg For ¢); = 3, the term multiplying 4, in the previous relation
Lolp)=1\p" " cospdp; ILp(p)=\p sin pdp.  (C5¢)  (C6) is In p,.

(continued from page 130)

C—Experimental Studies, Operating Experiences, and Failure Analysis

i Residual life prediction, life-time extension, availability
2 Small and large-scale experimental techniques

3 Scale-up approaches

4 Preventive maintenance and repair schedules

5 Feed-back from failure analysis

D—Codes and Standards, Quality Assurance, Nondestructive Testing and Inspection
1 Quality assurance from design to start-up

2 Non-destructive examination techniques

3 Inspection strategies, surveillance and operational monitoring

4 Repair procedures and assessment of integrity

A panel discussion on international developments in standards, rules and codes will be organized independently on the base
of invited papers from panel members.

Authors wishing to offer a paper for presentation at the conference must forward three copies of an abstract to the Regional
Committee relevant to their geographical area (see below), indicating to which group of topics the paper belongs. Abstracts
should be approximately 200 words, and should highlight new findings to be discussed in the paper. The name, complete
mailing address, and FAX number of all authors must be submitted. In the case of several contributors to an abstract, a
corresponding author should be designated.

The European-African Regional Committee (Europe, Africa and Russia) to Mr. Peter J, Willows, Institution of Mechanical
Engineers (IMechE), 1 Birdcage Walk, London SWI1H, U.K.; Fax: (44)-071-233-1654.

The Americas Regional Committee (Canada, U.S.A. and all countries in South America and Central America) to Prof.
G.E.O. Widera, Mechanical and Industrial Engineering Department, Marquette University, 1515 W. Wisconsin Avenue,
Milwaukee, W1 53233; Fax: (1)-4i4-288-1647.

The Asian and Oceanic Regional Committee (Countries in Asia and in the Pacific and Indian Oceans including Australia and
New Zealand) to Prof. I. lida, Department of Mechanical Engineering, Shibaura Institute of Technology; 3-9-14, Shibaura,
Minato-ku, Tokyo, Japan; Fax: (81)-489-78-7796.

Abstracts will be accepted until 31 August 1994.

Authors will be advised of the status of their abstract by 31 December 1994.

Authors selected will be invited to prepare a draft of their compiete paper, which must be sent to the appropriate Regional
Committee by 30 Aril 1995.

Drafts will be reviewed and authors informed by 30 June 1995, of the status of their paper, and whether any modifications
are required,

Authors will be invited to prepare the final manuscript and will receive instructions and guidance on the format, including
figures and diagrams. The final manuscript is required by 30 November 1995.
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