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Introduction 
The und rstanding of the stresses induced by moisture in a 

composite structure is es ential for the design and the com
prehen ive study of its response during service in severe hy
groscopic environments. It is well known that a polymeric resin 
absorbs moisture from its environment. Whitney and Husman 
(1978) howed that the absorption of moi ture from severely 
hygroscopic environments reduces the modulu and the str ngth 
of a resin-based composite. Wang and Choi (19 2) uggested 
that an unanticipated failure of a composite tructure, fre
quently initiated at the edges, can be' result of hygroscopic 
stre ses near the edges. 

The hygro copic str 55 field in the vicinity of laminate plat 
bOUIldaries, i,e., the so-called hygroscopic boundary layer 
stresses, which might be primarily responsible for strength 
degradation and failure of compo ites, has been investigated 
by several researcher using different approximate methods 
(e.g., Farley and Herakovich, 1978; Cro sman and Wang, 
1978). The high hygroscopic stresses are also reporte to be 
confined within a localized regi n of several laminar thick
nes es from the edge, and in the boundary layer region they 
cannot be assessed accurately witl c1assicallaminati n theory. 

The behavior of this highly tr ssed boundary layer regioOl 
is of great importance in controlling the complex failure modes 
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and performance of the composite, Accurate quantitative as
se ment of the hygroscopic boundary layer stresses is essential 
to the design, failure analysis, and serviceability of composite 
structures. 

Although the majority of hygroelastic analyses have been 
performed in plate structures, some studies have also be n 
reported in thin shell ge metries. In particular, Lee and Yen 
(1988) showed that the moisture absorption can degrade the 
buckling load in a composite shell structure subjected to 
compression. DOl< and Springer (1989) anaJyzed hygro
thermal stresse and strains in an axisymmetric composit hell 
according to their higher order shell theory. 

In view of the fairly thick construction envi ioned for com
posite shells in marine applications, there is a need to inves
tigate the stres and strain field induced by the joint action 
of moisture absorption and mechanical (pressure) loading in 
a thick composite hell structure. To this extent, an elasticity 
solution would provide accurate result for certain simple con
figurations, but, more importantly, would form a basis for 
comparing v rious shell theories that could be potentially used 
for more complex geometries. 

In thi work, the problem of transient hygroscopic stresses 
in a hollow orthotropic circular cylinder loaded by external 
pressure is examined. It is assumed that both the inner and 
outer surfaces are at constant (but different) concentrations 
of moisture. The material properties are assumed independent 
of the concentration of moi ture. It is also assumed that there 
is only radial dependence of the moi ture concentration field. 
In a related study, Kardomateas (1989, 1990) used a displace
ment approach and aeries xpansion technique to solve the 
transient thermal stres problem in composite cylinders. In this 
pap r, the displacement approach will be used to analyze the 
coupled transient moisture iffusion and mechanical loading 
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(external pressure) problem. Numerical results are presented 
for the stresses with respect to time and the radial coordinates 
for an example case of graphite/epoxy material. The results 
illustrate clearly the nature of the transient hygroscopic bound
ary stress layer. 

Mathematical Formulation 
Consider a hollow cylinder, in general under external pres

sure p, as shown in Fig. I. The cylinder has an inner radius, 
rl and an outer radius, r2' The radial, circumferential, and 
axial coordinates are denoted by r, e, and z, respectively. It is 
assumed that the initial concentration (at t = 0) is Co. For t 
> 0, the boundaries r = r, and r = r2 are kept at constant 
concentrations Cl and C2, respectively. The reference concen
tration is taken as zero. The moisture problem i olved by the 
Fickian diffusion equation 

aC(r, t) =D! ~ (r ac) (Ia)at r ar ar r\ :5r:5r2, 

where C(r, t) is the moisture concentration and D is the mois
ture diffusivity of the composite in the r direction. The initial 
and boundary conditions are 

C(r, t=O)=Co r,:5r:5r2, (Ib) 

C(rl> r) =C j and C(r2, t) =C2 t >0, (Ic) 

where Co, C I , and 2 are constants. Crank (1975) gives the 
general solution for the distribution of the concentration of 
moisture C(r, t) to Eq. (I) in terms of the Bessel functions of 
the first and second kind I n and Ym as follows: 

C(r, t) = bl In (r/rl) + b2 In (r2/r) 
~ 2 

+ L: [cnJo(ran) +dnYo (ran)]e-Danl, (2a) 
n=l 

where 

d 
n 

= -7rC 
o 

JO(rlCi.,,)JO(r2 a,,) 
Jo(r\Ci.n) + JO(r2Ci. n) 

+ 7rJO(r\Ci. n)JO(r2Ci.,,) C2~~~rlCi.,,; 
o r\Ci.n 

- ~1:0(r2~"), 
- 0 rJCi. n 

(2d) 

and Ci. n are the positive roots of 

Jo(r\Ci. n) Yo (r2Ci. n) -JO(r2Ci. n) YO(rlCi.n) =0. (2e) 

The hygroscopic stress-strain relations for the orthotropic 
body are 

arr C\I CI2 C\3 0 0 0 Err {3AC 

aee CI2 Cn Cn 0 0 0 Eee  {3e LlC 

all C\3 C23 C33 0 0 0 El: - {3lLlC 

Tel 0 0 0 C44 0 0 "fel 

Tn. 0 0 0 0 C55 0 "fn. 

Tre 0 0 0 0 0 C66 "friJ 

(3) 

where cij are the elastic constants and {3; the swelling coefficients 
(1,2, and 3 represent r, e, and z, respectively). The geometry 
(Fig. I) is axisymmetric. Since the moisture concentration is 
assumed to depend only on the r direction, the stresses are 
independent of 0 and Z and the hoop displacement is zero. In 
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Fig. 1 Thick cylindrical shell under constant boundary concentrations 
01 moisture 

addition to the constitutive Eq. (3), the equilibrium equations 
have to be satisfied; since Tre = Tr7. = Te: = 0, only one 
equilibrium equation remains: 

aarr + arr - aee = O. (4) 
ar r 

In this work the displacement field derived by Lekhnitskii 
(1981) for time-independent problems and modified by Kar
domateas (1989) for time-dependent thermal stress problems 
(which are analogous to the time-dependent moisture-induced 
stress problems) is used: 

Ur= VCr, I) +z(wy cos 0- Wx sin O)+uo cos O+vo sin e, 
Ue= -z(wy sin 0+ Wx cos e)+ wlr-uo sin O+vo cos IJ, 

u,=zj"(t)-r(wjcosO-wxsinO)+wo, (5) 

where the function VCr, t) represents the radial displacement 
accompanied by deformation. The constants Uo, vo, and IVO 

denote the rigid-body translation along the x, Y, and z direc
tions in the Cartesian coordinate system, respectively, and 11'." 

wy, and w: denote the rigid-body rotation in the x, Y, and Z 
directions (these may also be functions of time, but since they 
do not appear in the strain expressions, such a dependence 
would not affect the expressions that follow in this section). 

The parameter J(I) is obtained from boundary conditions, 
as discussed later. The strains are expressed in terms of the 
displacements as follows: 

aVer, t) VCr, t)

Err = ar
 Eee=---, Ell=J(t), 

r 

"fez ="f:r ="fre =O. (6) 

Substituting Eqs. (6) and (3) into the equilibrium Eq. (4) 
gives the following differential equation for VCr, t): 

2
a v(r, t) I aVer, t)] cn V 

CII a 2 +- a -2 (r, t)[ r r r r
 

aC(r, t) C(r, t) J(t)
 
=q, +q2 ---+ (C23- CI3) --, (7a) 

ar r r 

where 

q\ = C\I{3r + C\2{3e + C\3{3l' (7b) 

q2= (C\I-C\J){3r+ (CI2- C22){3e+ (C\3-C23){3l' (7c) 

Now setJ(t) in the form 

J(t) =Jo+ L:Jne-Da~l. (8) 
II_I 

Transactions of the ASME 

Mo 

u 
fol 
2, 

CII 

Fe 
a I 
th. 
o 

In 

fc 

fa 
cc 

w 

L 



Moreover, to solve Eq. (7), set 
00 2 

V(r, I) = Vo(r) + ~ R"(r)e·-Dc,,,l. (9) 
n=1 

Substituting Eqs. (2), (8), and (9) into Eq. (7a) yields the 
following equations to be satisfied for Vo, and R" for n = 1, 
2, ... , 00: 

" CII' cn C2J - CIJ
CIIUO(r) +- Vo (r) -2 Vo(r) =---!o 

r r r 

b, -b2 In (rlr,) In (r2/r) 
+ ql-- + q2b l + q2b2 , (lOa) 

r r r 

" CII' Cn C2J - cl3
cIIR" (r) +- R" (r) -2 R,,(r) =---!" 

r r r 

+C"l q2 Jo(~a,,) -qla"Jdm,,)J 

Yo 
+d"lq2 (;a")- ql a"YI(ra,,)J n=I, ... ,<XJ. (lOb) 

For each of the previous equations, the solution is the sum of 
a homogeneous solution and a particular one. The solution of 
the homogeneous equation is in the form G I(I)?-I + 
G2 (I)r~2 with 

fq 2= ±,)C22lcll. (lOc) 

In a similar fashion to the parameter !(I), set Gi(t) in the 
2 

form: Gi(t) = G iO + f.Gi"e- Oa
"'. i = 1,2. 

S' Cf' t.he CQnSIlillL~.r.r and G.j' are yet unkoow we shall 
indicate the places where they enter in the expressions that 
follow (these constants are found later from the boundary 
conditions). For CI' 7" Cn, the solution of (lOa) for Vo(r) is 

(lla) 

where 

,q2b l q2b2
Vo(r) =--- r In (rlr,) +--- r In (r2/r)

CII - C22 CII - Cn 

[ql(CII-C22) -2q2CI']
+ ( )2 (b l -b2 )r. (lIb)

CII - C22 

For CII = C2~, the corresponding solution of (IDa) is 

G20 C2J - CIl ' 
Vo(r) =G lOr+-+---!or In (rlrl) + Vo (r), (l2a) 

r 2CII 

where 

, q2b , 2 q2b2 2
Vo (r) =- r In (rlr,) -- r In (r2Ir)

4CII 4cII 

+(2q l -q2)(b l -b2) rln (rlrl)' (l2b) 
4cII 

To solve (lOb) we use the series expansions of the Bessel func
tions to obtain a series expansion of the right-hand side, as 
given in Appendix A. In the following, 'I stands for the Euler's 
constant (:= 0.577215 ...). 

For CII 7" C22, the resulting Eq. (A3) in Appendix A leads 
to the solution of (lOb) for R", n = I, ... , <XJ, as follows: 

(l3a) 

00 

+ L: BI"krk +J In (m,,/2) +B2"krk+ J, (l3b) 
k~O 

where 

c"q2+ d,,(2hr)(ql +'1Q2) 4CIIQ2d" 
Bo" = - 2' (13c)

CII- C22 1f«('I,-C22) 

The coefficients in the sum over k are given in terms of 

ik,,= rC,,- 2d" (I +!+ ... +_I_-'1)JL 1f 2 k+1 

2d"q,

(l4a) 

x[q2+2ql(k+I)]+--,
1f 

(l3d) 

as follows: 

B _ 2d,,(  I)k+ la~k+2[q2 + 2ql (k + I)] 
I"k- 1f22k +2[(k+ 1)!]2[CII (2k+ 3)2_ c221' 

2 (_I)k"la~+2 

B2"dCII (2k + 3) - C22] = 22k +2[(k + I)!f !k" 

-BI"k2cII(2k+3). (l4b) 

In the (unlikely) event that for a certain k, CII (2k + 3)2 = 
C22, the term in the sum for this k is replaced by the one in 
Appendix B. 

For CII = C22 the solution of (lOb) for R" is 

G2" C2J - CIl * 
R,,(r) = G,,,r+-+---!,,r In (rlr,) + R" (r), (15a) 

r 2cl' 

* ~~ 2
R,,(r) = Bo"r In (m"I2)+--rln (m"l2)

21fcll 

(l5b) 

where 

1fC"q2 + d" (2ql + 2'1q2 - q2)
Bo,,= . (l5c)

21fC, I 

The series expansion for the Bessel functions cannot be used 
for large arguments; hence, the requirement of including an 
increasing number of terms and therefore large arguments 
necessitates finding a particular solution for the "large ar
guments" domain. This is achieved by using the Hankel asymp
totic expansions of the Bessel functions of the first and second 
kind (see Appendix A). Employing the substitution 

p=m,,; R;'(p)=R;(r), (16) 

gives the following equation for R:'(p) 

2( '*" R;" (P») 2R;*(p)
Clla" R" (p) + P 1- C22Ci" -p-2

= ~ (- IlCi"lfl(k) 
k;O (2k)!(8p)2kp...[;p 

X (c,,+d,,)(Q2 sin P-al,kP cos p+a2,kp2 sin p) 

+ (c,,-d,,) (q2 cos p+al.kP sin p+a2,kp2 cos p)), (17) 

where 

4k+ I 16k 16kql 
al,k=ql 4k-I-Q2 (4k-I)2; a2,k= (4k-I)(4k-3)' (18) 

and lfl(k) is defined in Appendix A. 
The solution of the above equation for the function R: *(p) 

is found to be 
00 

R;' (p) = ~ PZ.IP -2k-112 cos P +.s1,IP -2k-112 sin p 
k~O 

J12 Jl2 sin p.+PZ.2P- 2k - cos p+.s1,2P- 2k - (l9a) 

The coefficients Pk.I' 4." Pk,2, 4.2 are determined by onsid
ering the terms in the sum that contribute to the terms 
p-2k-112 cos p, p-2k-112 sin p, p-2k-JI2 cos p, p-2k-JI2 sin pin 
the right-hand side of (17). Define 
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(19b) 

We obtain the following recursive formulas for Pk.l, Sk,l: 

Pk.,c, 1= Pk-I,I[CII (2k- 312)2 - Cn) 

-sk_I.2CII(4k - 2) + D,;-Q,.dcn+ dn}, (20a) 

sk.ICII = sk-I.I [CII (2k - 312)2 - Cn) 

+ Pk-I.2CII (4k - 2)- D,;-QI,dcn - dn), (20b) 

and for Pk.2, S'k.2: 

Pk.2CII =Pk-I.2[CII (2k - 112)2 - cn)- sk.IC 11 4k 

-(Dkq2+Dk+la2,k+I)(Cn-dn), (20c) 

sk,2CII =sk-I.2[CII (2k - 112)2 - cn) + Pk,ICII4k 

-(Dkq2+Dk+la2.k+l) (cn+dn)· (20d) 

The process starts from k = 1 and the starting values for k 
U are from (17) and (18) as follows: 

n qdcn+dn ) n qt<cn-dn)
PO.I = - ; SO.I = ,(2Ia) 

CIIOin";; CIIOin";; 

An important issue regarding this analysis will be discussed 
now. he solution (19) is a particular solution of Eq. (17) 
derived b considering the Hankel asymptotic expansions of 
the Bessel functions for values of the argument P = ran ~ Ptr 
= 18.0 (see Appendix A), whereas the solution (13b), which 
will be denoted by R;s(r), had been derived based on a series 
expan ion for the Bessel functions, for values of the argument 
P s; Ptr. Since for a given root Oin the argument P ranges from 
rlCX" to r20in, there may be a transition point from one solution 
to the other for R~(r) in the expression (15a). Both solutions 
are particular ones and may be different. Therefore, at that 
transition point a homogeneous solution term should be added 
to (19) so that 

R;: (Ptr) =R; .(Plr/Oin ); R;:- (Plr)Oin =R;; (Ptr/Oi,,). (22b) 

where hi" and h 2" are determined from the condition of equal 
value and slope at the transition point 

R;t (Ptr) = R;s(ptr/Oin); R;:' (Plr )Oi" = Rr~s' (Ptr/Oin)' (22b) 

Thus, the expression for V(r, t) satisfying the equilibrium 
equations is obtained with the unknown coefficients GIO , G20 , 
fo; GIn> G2n and fn for n = I, 2 .... These coefficients are 
determined from the following boundary conditions: 

arr(r" t) = 0, arr(r2, t) = - P; 

Tre(r;, t) = Tn: (ri, t) =0, i= 1.2 (23) 

where P is the external pressure. Only those for the stress arr 
are not identically satisfied. The stress arr on the boundaries 
i ritten in terms of the displacement field: 

V(ri, t)
arr(ri. t) =cIIV,,J...rj, t) +C12 +CI3[(I) -qIC(rj, t), 

r 

i= 1,2. (24) 

Substituting Eqs. (2), (8), (9) into (24) for Vo(r) gives the 
foUowing two linear equations for GIO, G20 , and fo: 

(CII t-I + CI2 )1;'1 - I G IO + (CII t-2 + cd1;'2 - IG20 + Aofo 

., V; (ri) 
= - CIIVO (ri) -C12 --+ ql[b\ In (r;lrl)

ri 

+b2 ln (r2/rd)+Pi i= 1,2, (25a) 

where 
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(25b) 

and Pi = 0, at i = I; Pi = - P at i = 2. 
In a similar fashion, by substituting the expressions for R (r),n 

there correspond two linear equations for Gin, G 2n , fn> for n 
= 1, ... ,00, as follows: 

(CII t-I + C12)1;'1 -I Gin + (CII t-2 + C12) 1;'2- IG 2n + Aufn 
•• , R n (ri) 

= -CIiRn (ri) -C12 --+ql[CnJO(riOin) +dnYo(r,-Oln»);
ri 

i= 1,2. (25(') 

Now let us consider the conditions of resultant forces and 
moments. Since the stresses do not depend on z, these con
ditions exist in any cross-section. It can be proved (e.g., Lekhn
itskii, 1963, although hygroscopic effects are not included) that 
the conditions of zero resultant forces along the x and y-axes 
of a Cartesian coordinate system are satisfied identically. The 
conditions of zero resultant moment along x and y-axes (and 
that ofzero twisting moment) are also satisfied by the symmetry 
of the problem. Therefore, it remains only the condition of 
resultant axial force, P" arising in a hydrostatic field: 

J
rr2 

au.(r, t)2-TrTdr=P,(t) = -P7r(~-rf). (26) 
rl 

This gives the last set of equations that are needed to determine 
the constants Gij, /j. In terms of 

qJ = CIJ{3r + C2J{30 + cJJ{3" (27) 

Eq. (26) gives 

C13t-1 + C2J) ). + I). + I 
t-I + I (T2 1 - Til )G IO + A IG 20 + Alio = (CIJ - C2J)/o( 

+ fJl [(~-rf) 1 J2 --2- (b2- b l ) + (r22b l - r l b2) In (r2/r ,) 

-£(d-d)+clJ 2: (-ly+lrjV;(r;), (28a) 
2 i= 1,2 

and for n = I, ... 00, 

C IJ t- I +C2J) ('>;I+I_~I+I)G +A G +A' 
( t-I + I 2 I In 1 2n 21 n 

i+I'=(ClJ-C2J) I n+CIJ "" (-I) riRn (r;)~ 
i= 1,2 

where 10 and In are given in Appendix C. The coefficients A" 
A 2 are defined as 

A I = (CIJ t-2+C2J) (~2+1_~2+1) for CII~C22 
t-2 + 1 

= (C2)-ClJ) In (r2/rd for CII =C22 (29a) 

d-d ( c1J-d3)A 2 =-- C33+--- for CII~C22 
2 CII-C22 

(d-rf) 2 
= 8 [4C))CII - (C2J - CIJ) ) 

CII 

d3-d)+--- r2
2 

In (r2/rl) for CII = Cn. (29b) 
4CII 

Therefore, the constants /j. Gij and hence the displacement V 
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Fig.2 Radial distribution 01 the concentration G(" I) at dillerent times. 
The nondlmensional time is delined by i = 011(" - "f. The nondimen· 
sional radial distance is deli ned by ; = (, - ")1(,, - ,,). 

can be found by solving (25) and (28). After obtaining the 
displacement field, the stresses can be found by substituting 
in (6) and (3). 

Results and Discussion 
First, a significant observation is that due to the slow rate 

of moisture diffusion, many terms, i.e., roots Ctn of the char
,'M'J~"";Sti\!:E!t. '2..')\ d\~l ,\ti\:'r illl: 11 Han et'a ymp
totic regime very important. In the results presented in this 
section, 15 terms were used. 

As an illustrative example, a T300/5208 GriEp circular cyl
inder of inner radius fl = 20 mm and radii ratio fzlfl = 1.50 
was considered. The fibers are oriented along the circumfer
ential direction. The typical values of moduli in GN/mz and 
Poisson's ratios are as follows: £1 = 9.9, £z = 140, E3 = 
9.1, GZ3 = 4.3, G IZ = 4.7, G31 = 5.9, /lIZ = 0.020, /123 = 
0.30, "31 = 0.49, where I is the radial (f), 2 is the circumferential 
(0), and 3 is the axial (z) direction. The typical values of hy
groscopic expansion coefficients (e.g., Hahn, 1976) are (3, = 
{3, = 6.67 x 10- 3/wt percent, (3e = O. For this material, the 
moisture diffusivity in the radial direction is D = 2.145 X 

10- 13 mZlsec. This value was obtained by substituting a tem
perature of 50·C to the equation for the temperature-de
pendent moisture diffusivity in Hahn (1976). 

To illustrate the results, the nondimensional radial distance 
1 = (f - fl)/(fZ - fl), and normalized time t = DlI(fz 
f,)Z are used. The initial concentration (at t = 0) is taken Co 
= 0.1, whereas the concentrations at the ends for l > 0 are 
C\ = 0.5 and C2 = 1.5. 

Figure 2 shows the spatial distribution of the concentration. 
Two time values, t = 0.002 (corresponding to about 10 days) 
and t = 0.01 (corresponding to about 50 days), are used. The 
major stresses are the hoop, Uee, and the axial one U,;:, and 
these are shown in Figs. 3 and 4. The boundary layer effect 
is more clearly shown in the axial stress. Notice that these plots 
illustrate the cases with no mechanical load present, i.e., these 
stresses are induced purely from the hygroscopic effects. Al
though a normalization of the stresses would be generally de
sirable in presenting the results, it is our opinion that for this 
particular hygroelastic problem, absolute values give a more 
clear description of the resulting effects. It should also be 
mentioned that longer time scales are used because the equi
librium process of moisture absorption or desorption takes 
much longer than that of temperature. 

The coupling of mechanical loading and hygroscopic effects 
is illustrated in Figs. 5 and 6 which show the hoop stress, Uee, 
and the axial one, U w for (a) applied external pressure only 
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Fig. 5 Distribution 01 the hoop stress "'" lIIuslraling the coupling of 
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and (b) applied external pressure with consideration of the 
hygroscopic effects at time i = 0.01. The stress distribution 
for hydrostatic pressure only is taken from Lekhnitskii (1981). 
It is seen that the hygroscopic effects result in an increase in 
the absolute value of the hoop stress at both the inner and 
outer boundaries. Again, the hygroscopic boundary layer is 

MARCH 1994, Vol. 61 f 165 



~~

-------- - - - - --- ---

to 
T' = 20 MPa, t = 0.01 

-10 I 
Q -20 

I0... 
::E 

-30 

p = 20 MPa, no hy!~ro,c:oric df"ets'" -40 

-50 

-60 

-70 
0.0 0.2 0.4 0.6 0.8 1.0 

nadial DistHll<:C, i: 

Fig. 6 Distribution of the axial stress am illustrating the coupling of 
mechanical loading (external pressure) and hygroscopic effects 

more clearly seen in the axial stress (Ju> which shows a large 
increase near the outer surface. In this example, a value of the 
external pressure p = 20 MPa was taken. Other values of the 
hydrostatic pressure would affect mainly the mean value and 
not the existence of the boundary stress layer. More specifi
cally, Fig. 7 shows the effect of coupled applied pressure p, 
and hygroscopic fields, on the axial stress, for p = 0 (only 
hygroscopic effects), p = 5 and p = 20 MPa at time t = 
0.002. 

Notice also that for the example considered the reinforce
ment is along the periphery, thus the axial direction is a di
rection of weakness. Therefore, the boundary layer effect on 
the axial stress may have more important implications for 
failure initiation than a similar one on the hoop component. 

Applications of thick composite shells in marine environ
ments may actually involve a larger size than the one considered 
in these examples. For an insight into these size effects, the 
results for the transient stress profiles were derived for a shell 
made out of the same material with the same fiber orientation, 
and of inner radius rl = 4 m and radii ratio r2/rl = 1.25. A 
time value of 50 days with no mechanical loading and the same 
initial and boundary moisture concentrations were used. It 
turns out that the same boundary layer effect on the axial stress 
(J" appears (as in the present, smaller size example, Fig. 4, t 
= 0.01) with a similar range of negative values; however, the 
boundary layer was confined to a smaller 1 range near the 
outer surface. A much smaller effect exists for the hoop stress 
(Jee, with smaller positive and less negative values than in the 
small size example, Fig. 3. 

A noteworthy observation is that the classical shell theory, 
in which the radial displacement U(r) is assumed constant, 
would not be capable of capturing these boundary layer stresses. 
Finally, it should be mentioned that in this paper moisture
independent material constants (stiffness) were assumed, but 
the moisture absorption may affect these constants as well. 
Moreover, the moisture di ffusion process is accelerated or 
decelerated by temperature. In the future, it is desirable to 
consider these additional effects caused by coupled moisture 
and temperature fietds. It is also desirable to examine the extent 
to which higher-order shell theories (e.g., Whitney and Sun, 
1974; Librescu, 1975; Reddy and Liu, 1985) can predict this 
boundary layer stress field. 
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APPENDIX A 
The Bessel functions of first and second kind of order zero 

and one have a series expansion of the form (see, e.g., Wylie, 
1975) 

co (-Il,i!k co (_l)k,i!k+1 
Jo(X)=~ 22k(k!)2; JI(X)=~22k+lk!(k+I)!' (AI) 

2 ( X) 2 co (-I)',i!k 
Yo(x)=;: Irl2:+'Y Jo(X)-;:~ 22k(k!)2 if;(k) , (A2a) 

Transactions of the ASME 

In tl 
stan 

The 
sel" 
18. 
the 

l 
in I 

wi 

p~ 

51 

'I 
c 



2( X) 21Yt(x)=- In-+, fl(x}--
71" 2 71" X 

00 k 11	 I)
(_I)kx2 + ( 
(A2b)-;~22k+l(k!)(k+I)! 21/t(k+I)-k+1 . 

In the above expressions, = 0.577215 ... is the Euler's con
stant and I/t(k) is defined as 

(A2c) 

The above series expansions can be used to calculate the Bes
sel's functions up to a value of the argument of about x = 
18. They are rapidly convergent especially for small values of 
the argument. 

Using the series expansion, we obtain the following equation 
in place of (lOb): 

CII (R~' (r) +R~ (r») _ cZ; Rn(r) = (CZ3- CIl)!n
 
r r r
 

Cnq2 + (2/71")(ql + -yq2)dn 2d"q2 In (m,,/2)+	 +-- ---'---'---'
r 71" r 

2d" ~ (- I)k+ la;k+2[qz + 2ql (k + I)J ?k+ I 
+--:;- k~ i k + 2 [(k+ 1)!)2 In (ran/2) 

00 (_ Il+ ICX ;k+2!k" k+ I 

+~ 22k +2[(k+ I)!f? , (A3) 

where!k" is defined in (13d). 
For large arguments we can use the Hankel asymptotic ex

pansions for the Bessel functions (see, e.g., Abramowitz and 
Stegun, 1970) to obtain the following expressions: 

fo(x) =Ao(x) sin x+Bo(x) cos x; 

fdx) =Bdx) sin x-AI (x) cos x, (A4a) 

Yo(x) =Bo(x) sin x-Ao(x) cos x; 

Y, (x) = - A dx) sin x- Bdx) cos x. (A4b) 

The functions Ao(x), AI (x). Bo(x), B I (x) are given in terms 
of 

I/tl(k) = 12.32.52 ... (4k-I)2, k=l,oo; 1/t,(0) = I, (AS) 

as follows: 

(Ma) 

(A6b) 

(Mc) 

(A6d) 

In this way, the above series of the Hankel asymptotic ex
pansion can be used to calculate the Bessel functions for values 
of the argument X ~ 18. The series converges rapidly and the 
number of terms required in the summation over k is at most 
13 at x = 18.0, being smaller for larger values of the argument. 
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APPENDIX B 
In the event that for a certain k, CII (2k + 3)2 C22, the 

term in the sum in (l3b) and (15b) for this k is 

BlllkrZk+3ln2 (rcxn/2)+B2I1kr2k+3 In (mnI2), (Bl) 

where now 

B _ 2d1l ( - l)k+ Icx~k+Z[q2 +2q, (k + I)J 
(B2a

Ink - 7I"22H Z[(k + 1)!124cll (2k + 3) , 
_ I)k + 1 2k T 2(B = CXII 

2nk 22k +2[(k + 1)!)22clI (2k+ 3) 

xl. _2dn[qz+2ql(k+I)J(. 
(B2b)CAli 27r(2k+3) j 

APPENDIX C
 
For CII ~ C22, the expression for 10 in (28a) is
 

qz(bld - b2rT)
10 In (r2Irl)

2(CII- C22) 

+ [	 (2ql-qz) _ qzclI 2] (bl- b,) (d-rf), (CI) 
4(CII - (22) (CII - (22) 

and the expressions for I,,, n = I, ... , 00, in (28b), for the 
small arguments domain, are 

(C2a) 

(C2b) 

For CII = C22' the expression for 10 is 

810CII=q2(bld+b2rT) In2 (rzlrl) 

+ (q2 -ql) (b t - b2) (d-d) + [(2ql -q2) (bl - b2)d 
+q2(b2rT-b l d») In (r2Ir,), (C3a) 

and tbe expressions for I,,, n = I, ... 00, again in the small 
arguments domain, are 

In =	 L: (- 1/ dnq2 rf In2 (rjan/2) 
i~ 1,2 7I"4CII 

i (Bon d"qz) 2+(-1) ---- riln(r,fXn/2) 
2	 7I"4CII 

nq2)+(_li+I(Bon _ d Q+Sn. (C3b) 
2	 7I"4CII 2 

For large arguments with Pi = rian, 

a"lll = i~2 (- 1/ k~ (P'k., + 2k:'~/2) Ic,k(p,) 

+ (Sf. _ PA',2 ) I ( .) _ Pk,2 :-2k-1/2 C . 
.1',1	 2k+l/2 s,k P, 2k+II2P, osp, 

s'i...2 - 2k -112 sin (C4) 
2k+ 1/2 P, P" 

where Ic.k(P) and Is,k(P) are defined by the recursive formulas 
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(2k - 1/2)(2k - 312)Ic,k = 

(2k - 112)(2k - 312)/s,k = 

The process starts from k 

Ic,o(p) = } p-1/2 cos pdp; 

(2k  312)p -2k + 1/2 COS P 

+p 2k1312 sin P-Ic,k-I, 

(2k  312)p -2k+ 1/2 sin p 

_p-2k+J!2 cos p-Is,k-I' 

(C5a) 

(C5b) 

= 0, and initiallY, 

I"o(p) = } p-1/2 sinpdp. (C5c) 

Notice that the integral of tae homogeneous solution (2la) 
(due to continuity requirements at the transition point of the 
two partial solutions) should be added to I", i.e., for ell ;Ie 

en, the foll wing term should be added: 

b (- IY(h[ p~1 + I + h
2 
P~2+-1) . (C6) 

i. [.2 }..[ + I }..2 + I 

For ell = en, the term multiplying 112 in the previous relation 
(C6) is In Pi' 
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