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Abstract. Recent experimental fatigue crack growth studies have concluded an apparent anomalous behavior of short 

cracks. To investigate the reasons {or this unexpected behavior, the present paper focuses on identifying the crack length 
circumstances under which the requirements for a single parameter (K I or t>K I if cyclic loading is considered) 
characterization are violated. Furthermore, an additional quantity, the T stress, as introduced by Rice, and the related 

biaxiality ratio B are calculated for several crack lengths and two configurations, the single-edge-cracked and the 
centrally-cracked specimen. Jt is postulated that a two-parameter characterization by K and T (or B) is needed for the 

adequate description of the strec:s and strain licld around a short crack, To further verify the validity of this postulate, 

the inAuence of the third term of ihc Williams series on the stress. strain and displacement fields around the crack tip 
and in particular on the B parameter is also examined. It is found that the biaxiality ratio would be more negative if the 

third term effects are included in both geometries. The study is conducted using the finite element method with linearly 

elastic material and isoparametric elements and axial (mode I) loading. Moreover, it is clearly shown that it is not proper 

to postulate the crack size limits for 'short crack' behavior as a normalized ratio with the specimen width a/w; it should 
instead be stated as an absolute, or normalized with respect to a small characteristic dimension such as the grain size. 

Finally, implications regarding the prediction of cyclic (fatigue) growth of short cracks are discussed. 

1. Introduction 

The short fatigue crack problem consists essentially of defining an alternative formulation that 
accounts for the observation that small cracks can propagate at rates different from the 
corresponding ones for long cracks at the same nominal stress intensity factors. In general, short 
cracks under cyclic load are observed to grow at stress intensities below threshold; some extend 
with decaying growth rate until arrest, while others propagate quite rapidly to merge with long 

crack behavior as shown in Fig. 1. A resolution of the problem therefore has practical 
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significance. Fir t, it could enhance the present damage tolerance procedures. Furthermore, as 

overall life is mostly ta n up by short crack growth. predicting the accelerated and, ub­

threshold extension of small flaws can lead to alternative, more accurate methods for assessing 

fatigue lire. 

Linear Elastic Fracture Mechanics (LE ) theory is applied when the radius of the plastic 

zone is mall compared to the critical dimensions of the body, as codified in both British and 

American Standards. If O'y is the yield stress. a is the crack length, IV is the width, w - a is the 

ligamcnt and t is the thickness, these standards require: 

(1) 

where K is the stress intensity factor. 

To describe the basis for the above premi 'e, let r, ebe polar coordinate, center d at the tip of 

a crack in a body under plane strain deformation. The small strain linear elastic solution results 

in stresses of the form 

(J,j = K1'.' 1/2!ij(9) + non-singular terms (2) 

near the crack tip, where the set of functionsj'ij is normalized so that the 'ingular part of the 

stress acting ahead of the tip, normal to the plane of the crack, is K(2nr)-1/2. The sm< II scale 

yielding approximation then incorporates the notion that. even though (2) is inaccurate within 

and near a small crack lip yield zone, its dominant singular t rm should still govern the 

dd'c rmation state within that zone. Hence, the actual elastic plastic problem is replaced by a 

probl m formulated in boundary layer style. As is often said, th.:: small yi ld zone i 'urrounded' 

by the dominant elastic singularity. and the applied loading and geometric dimensions and 

shape of the body influence conditions ,vithin the plastic region only insofar as they enter the 

formula for K, as computed elastically. 

A consequencc of this formulation is that the plastic zone dimension, rp and the crack tip 

opening displacement 6" are given by formulae of the type 

(3) 

where E is the elastic tensile modulus. O'u is the yield. lrength, and ex, (J 'In:: dimensionle's factors 

which may, for examplc, depend on Poisson's ratio, strain-hardening exponent, ctc. but are 

independent of the applied load and 'pecimen geometry. 

The plastic zone size from (3) cstablishes a geometric dimension indicating thc region over 

which deviations from ela ·tic behavior occur. Rice [IJ wa" the first to recognize that, sincc the 

crack length is a characteristic geometric dimension associated with the elastic stress field, a 

correction to (3) is required when the length predicted by (3) is comparable to or greater than the 

crack length, i.e. the stres' intensity factor may no longer be expe ted to control the plasticity. 

When the size f the plastic zone becomes large compared to the crack length, which is one of 

the cham t ri tic dimensions, the requirements of LEFM may be invalidated. A imilar question 

obviously exists for i-dominance. In other words, there are conditions under which a sin Ie 
parameter charactcrization of the crack tip Iicld cannot be claimed. Indeed. it is known that for 
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full plasticity the asymptotic plastic field is not unique but is instead (; function of the geometry, 
loading mode and strain hardening rate and single-parameter charaeteriLation models cannot 
account for the differences in propagation rates from fully pla::cir; crack growth tests (Kar­
domateas and McClintock, [2J). 

To further examine this notion, consider keeping the 'non-singular' terms of (2). Recently, 
Carlson and Saxena [3J have calculated the stresses due to the second term. Tn another work, 
using the analyses of Williams [4J, Rice [5J defined the T-stress from the second term of the 
expansion of (2) as follow: 

(J xx IxvJ K [f {Xl'((-))J [1' OJ h' h . h kx ..((-)) . . = - '. + ° ° + terms w IC vanls at crae tip. (4)
[ cyx (Jyy fi I y•.((-)) I yy ((-)) 

Hcre (x, y) is the plane of straining and the crack coincides with the x-axis. so it is een that the 
portion of the non-singular stress field which docs not vanish at the tip amounts to a uniform 
stress au = T acting parallel to the crack plane. 

The above representation rai:es the issue of a two-parameter boundary layer formulation for 
short cracks, in which (2) is replaced by the requirement of an asymptotic approach to the field 
given by the two leading term of (4). 

In the same context, Leev rs and Radon [6J introduced a biaxialit parameter 8 that relates 
the magnitude of tbe T-str ss 

T~
B=--. (5)

K 

In terms of B, the displacem nl field can b written in the form 

K B§;,
Uu = -(I + v) - fxxtG) + (1 - v2 )--Kr cos e, (6a)

E 2n E nu 

K r B 
uvy = E. (1 + v) -2 fvy(G) - \'(1 + v)-=KI'.in G. (6h) 

n . £ na 

The biaxiality parameter B must be calculated for each particular specimen geometry to 
correlate the full field solutions with the two term rcpr sentations. Thc displacements given 
above or the stress fkld expressions (4) can serve in that purp 'e. oncerning the di placements. 
it should be n ted that on the crack Oank. <p = 1[, the angular functions fJ4l) are zero. allow"ing 
the biaxiality parameter to be calculated by direct inspection of the a ymptotic di_ placements 
given by (6) and stress fields given by (4). Such methods have already bet::n used by Bct'gon and 
Hancock [7]. 

The above eli cussion summarizes the work-to-date on extending the applicability of LEF 
to include cases that necessitate Ihe inclusion of corre tion terms such as the present case of 
short racks. 

Elastic-pia tic fracture mechanics, on the other hand. j- based on the HRR 'il1gLIlarity, named 
after Hutchin on [8]. Rice and Rosengr n [lJ, \ hich describes the' ymptotic stress and strain 
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fields in terms of the strain hardening exponent n within the plastic zone under small-scale 

yielding conditions as follows 

J Jl/(n+ 1) 
(Ji) = Y y: [ . (Jij( cP, n), (7a)[ 80 !J. "I 

Ya [ J In/(n+ 1) 

8ij = -E '. Y 1 £i)cP, n), (7b) 
80 !J. "r 

where (Jij(cP, n) and F.ij(cP, n) and [" are tabulated functions. In this context the stresses and strains 
are uniquely characterized by the J quantity. Elastic-plastic asymptotic crack tip fields, being 
single parameter characterizations, would naturally have to be invcstigated regarding their 
extent of validity in the same context as the LEFM, i.e. the question of J-dominance or, in other 
words, that of a single parameter characterization of crack tip fields for short cracks. 

Achieving crack growth prediction capabilities for short cracks can lead to formulations for 
predicting fatigue crack growth. Indeed, fatigue, crack nucleation and growth pass through 
distinct regimes which can be charactcrized by crack length. The relation of thc fatigue failure 

loading boundary to crack length can be very nicely illustrated by use of the Kitagawa diagram 

[10J shown in Fig. 1. In the plot of stress range versus crack length, the boundary is divided into 
three regimes which are depicted as two straight lines in regimes I and In and a curve in regime 
II. Str s range values below the boundary correspond to cases in which cracks are arrested. 
Above the boundary, crack growth occurs. 

The ordinate value of the boundary in regime I corresponds to the endurance limit. The line 
in regime III represents the value of stress range ~(J corresponding to the thrcshold value of the 
stress intensity range tia in the rclation 

(8) 

Y is constant for the given crack configuration and a is the crack length. 
If the dashed lines were extended and used as the boundary in regime II, predictions would be 

nonconservative b cause cracks are observed to grow below these lines. The boundary in regime II 
is, therefore represented by the solid curve connecting the two straight lines. Short crack behavior 
i characterized in Fig. I in regime Tl; hence the primary emphasis here will be on regime II. 

The main objective of this work is to (a) determine the crack lengths at which the K 
singularity cannot predict the asymptotic behavior, (b) determine the Tor B parameter for these 

hort cracks and (c) examine the inl'lu nce of the third term of the asymptotic expansion of the 
stress field on the calculated B values. The Center-Cracked ( C) and Single Edg -Cracked (SEC) 

specimens are LIS d for thi purpose. They are subjected to monotonic tension stress. The finite 
element pr gram, MSC/Na tran is used for this computation. 

2. Formulation of non-singular parameters 

Prediction methodologies in fracture mechanics are mainly based on the proper characterization 
of the crack-tip strcss and strain field. Expanding the stres II Id in cylindrical coordinates (r, (1) 
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about the crack tip, following the work of Williams [4J, 

(9) 

gives the first term singular at the crack tip and the remaining terms being finite and bounded. 

In classical linear elastic fracture mechanics, the characterization is centered around the stress 

intensity factor K, i.e. the first term. Elastic fracture mechanics is thus based on the premise that 
fracture processes which occur close to the crack tip are only determined by the first term in the 

expansion, allowing the asymptotic elastic stress field of a symmetrically loaded mode I crack to 

be expressed in the form 

(10) 

Proposals have been mqde to provide a correction to plastic zone size estimates by extending 

elastic solutions to include non-singular terms of the Williams series [4]. In (4), Rice [5J defined 

the T stress for the second term of the s ries; this equation raises the issue of a two parameter 

boundary layer formulation for short cracks in which stresses are determined by an asymptotic 

approach to the field given by the two leading terms of K and T. 
In the same context, Leevers and Radon [6J introduced a biaxiality parameter B that relates 

the magnitude of the T stress as in (5). In terms of B the stress and displacement field can be 
written in the form: 

K, < 1 l' K j 2 
(J = -- ("-cos -8 - _. cos ....38) + --B cos 8 (11a)

rr r;:::." 2 4 2 r::: ' 
v2~ VM 

(Jee=~( cos 10 + ±cos'138) + ~BSin28, (11 b) 
2nf' V]W 

(Jre = ~ (!sin 1e + tsin 138) - ~B sin 8 cos 8, (11 c) 
2rrr rra 

KI~ KIf' 2 
Urr = 8 [(2K - 1) cos t8 - cost38J + r::: B(cos 8 - v), (120) 

rr~ 2~Vrra 

K,J2rrr. KIf' 
Uoe = - 8 [ -(2K + 1) Sin ~8 + sin 138J - --- B(~ sin 28), (12b) 

~ ~ M 

where II is the shear modulus and K = 3 - 4v for plane strain and K = (3 - v)j(l + v) [or plane 

stress. Furthermore, a model for plane strain yielding by Rice [5J results in the following 
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expressions for plastic zone size and crack opening displacement 

rp = 1srr(~)2 [1 _! J(vI~rJ + ... J (J 3a) 
3ry 

s; _.1.-6 /i(1- V
2 )K?[ _ 

u l - 27 v"3 r; 1 - .I (13b)1(vI~rJ + ...JE(v 3ry) 

where ry is the shear yi ld 'tress. The second terms inside the brackets represent the deviation 

from the small seal yielding approximation. Note that K and T are directly proportional to the 
applied loading. 

The stress intensity factor K which was introduced in (2), defines the magnitude of the local 

stresses near the crack tip. This factor depends on loading, crack SIze, crack shape, and 

geometric boundaries. Closed-form solutions for K have been derived for a number of ~imple 

configurations. For some complex situations, the tress intensity factor can be estimated by 

experiment or numerical analysis. The str ss intensity factor solutions for a single edge-cracked 

(SEC) and a cent r-cracked ( C) configuration under mode I loading, which are the object of 

our investigation. are llJ 

K'SEC = [1.12 - 0.23a/w + 10.6(0/11')2 - 21.7(a/w)3 + 30.4(0/\II)4]o-,~, ( 140) 

and 

_ [1 - 0.5a/w + 0.326(a/\II)2J ~,
K,cc - (f v'W (14b) 

- 1 - a/w 

where w is the specimen width. 

2.1. Numerical analysis and finite element models 

Single-edge-cracked (SEC) anJ center-cracked ( ) bars with (a/w) ratios of 0.02 through 0.1, 
where a is the crack length or half crack length, respectively, and w the width of the. pecimen, 

were consid rcd. Concerning the other geometric dimensions, the specimens had a thickn 's t 

and height h characterized by the dimensionless parameters l/W = 0.08, and h/w = 2.0 for the 
CC specimen and 4.0 for the EC pecimen, respectively. Concerning the absolute specimen size, 

a width of w = 25 mm was used. 

The models were meshed with eight-noded quadrilateral and six-Iloded triangular plane 

strain elements provided by the finite element code MSC-Na tran [12]. Th 2-D finite 

element grids are indicated in Fig. 2. The models were force loaded on the remote boundary 

by a uniform tensile stress in the y-dire lion. The crack tip was modeled by a focused me h 

with initially coincident but ind p ld nt crack tip node. Angular spacing. of 15° and 

minimum radial pacings of 0.05 mm for every sector were used. Linear elastic mat ~rial with 

Young's modulus E = 72 GPa and Poi on's ratio I' = 0.3 was a umed; the yield stre (fl' IS 

taken to be such that E/(fy = 176.0. The mesh configuration for each specimen consi t of a 

total of 235 elements. llrthermore, force balance studies were also conducted to check the 
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Fig. 2. The finite element mesh. For the. ingle-edge-cracked case, a is the crack length, whereas for the center-cracked 
case. a is the half-length. 

applied and reaction forces on each specimen in order to ensure that the mesh is performing in a 

sali factory manner. 

3. Re utI and discu ion 

Tn order to correlate with the re ults of Leevers and Radon [6J we shall give both the ratio 
alp and LI/II' in pr senting the results. Denote by p the typical grain size p = 0.05 mm. The 

slress fields ahead of the crack are shown in Figs. 3 and 4 for alp ratios of 10, 20, 50 and 200 
(alw = 0.02, 0.04, 0.1, OA. re pe ti ely) wher they are compared with the theoretical LEFM 
field, calculated from (10). The stresses are non-dimensionalized with the r mole str SS (j x' 

while the original distance r of a point ahead of the crack is non-dimensionaLized with the 
grain size p. It is seen lhat for these crack lengths the slres e are above the LEFM values, the 
discrepancy increasing wit h the smaller crack lengths. Beyond (lIp = 50 (alw = 0.1), the 
stresses begin to converge to the LEFM prediction. Notice that Leever and Radon [6] resulL~ 

were for al\v values above 0.2; therefore, the pre 'ent work, among others, complement the 
latter one. 
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Fig. 3a. The strCl;S field (Jou directly ahead of the crack tip Fig.3h. The stress field (Joo directly ahead of the crack tip 
for alp = 10,20 in the center-cracked specimen. for alp = 50, 200 in the ccnter-cracked specimen. 
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Fig. 4. The stress field (Joe directly ahead of the crack tip for alp = 20,50 in the single-edge-cracked specimen. 

In order to elucidate the size issue, three center-cracked specimens which have the same 

alw ratio of 0.02 but different absolute sizes have been examined: they consist of a short 

crack (alp = 6) and long cracks (alp = 60 and 300) in respectively smaller and larger speci­

mens that prcserve the ratios of crack length to other dimensions. From Fig. 5 it is clearly 

seen that the stresses follow the L" FM prediction for the long crac S, but there is a distinct 

discrepancy for the short crack, i.e. the E prediction is no longer valid. This example 

shows that a/IV is not the proper quantity to express the size requirements for 'short crack' 

behavior. 

Let us require that the stress ahead of the crack tip must be within 10 percent of the LEFM 

field at a chosen distance from the tip for LEFM dominance criteria; it can be seen that at a 

distance of rip = 2 ahead of the crack tip, Figs. 3a,b show that the crack tip stress field (J88 for 

the center-cracked specimens differs significantly from the results of (10) for short crack lengths; 

but for a longer crack, the stresses from FEM and (10) have a tendency to match, as shown in 

these same figures. A similar situation also occurs in the S C specimens, but the distance ahead 

of the crack tip is shorter (rip = 1.5); they are presented in Fig. 4. 
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Fiy. 5. The stress field (Joo directly ahead of the crack tip for three center-cracked specimens which have the same a/IV 

ratio of 0.02 but different absolute sizes (i.e. a short crack, a/p = 6, and two long cracks, a/p = 60 and 300). 

The biaxiality parameter B (or alternatively, the T-stress) was calculated for each of the 

geometries studied. The simplest and most direct method of calculating the T-stress involves 

inspection of the stress or displacement fields associated with the crack. Leevers and Radon [6J 

have introduced a more refined method for calculating B for the center-cracked specimens; they 

essentially adjusted the centerline traction individually according to the deviation of the 

calculated displacement. In this work the stress field of (4) was used to calculate B from (Jxx' 

Figures 6a,b show that the center-cracked specimens consistently have higher negative B 
values than the singJe-edge-cracked ones. The implied compressive T stresses are induced b I the 

constraint against in-plane bending on the centerline; thcy are responsible for the excellent 

directional stability of intcrnal cracks [6]. By using a linear approximation, for values of crack 

length Jess than 0.1 w or SOp, B can be expressed by 

B = - [1 + 0.082(a/w)],	 (15a) 

or 

B = - [I + 1.65 10- 4 (a/p)]'	 (156) 

The finite-width eFfect does not drastically modify B values, which remain about -I as 2a/w 
goes to zero. Equation (15a) is slightly different than the one in [6] (where there was a factor of 

0.085 instead of the 0.082 here). In [6J a linear approximation was used to determine B values 

for crack-lengths a/w greater than 0.2, but in this research we have considered crack-lengths I ss 

than 0.2 (a/p < 100). 

B values for the single-edge-cracked specimens are quite ditTerent than those of the cent [­

cracked specimens. By using a curve fitting of polynomial third ord T, the B values for the EC 
specimens can be expressed by 

B = - 0.52 - 1.50(a/w) + 12.70(a/w)2 - 20.70(a/w)3,	 (16a) 
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or in term of u. p, it also can be written as 

B = - 0.52 - 4.17 10- J(alp) + 8.91 lO- S (a!pf - 6.25 10- (alp)3 (166) 

Figure 6b shows tha t the B values for the single-edge-cracked ca are almost one-half those of 
the center-cracked specimen (as the crack length aoes to zero). 

Figure 7 shows th s nsilivity with respect to number of elements of the stres biaxiality ratio 
B for both specimens. It can be se n that B has a stable value when the number of elements is 
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above 225. Also [6J has indicated that small values of the height h/w can have an influence on 
detcrmining B; an example for the center-cracked specimen showed that B has the tendency to 
be constant for values of h/w = 1.2 to 2.0 for 2a/w = OS 

Figures 8 show that the crack tip displacement field in the 8-direction for the single-edge­
cracked specimens does not fit with the displacement field given by the K-singularity at the dist­
ance between 0 and 20 grains size behind the crack tip when the crack is short, but for longer cracks 
the displacement field gradually fits. Similar situations also occur in the centre-cracked specimens, 
as shown in Fig. 9. This confirms again the breakdown of the LEFM singularity for short cracks. 

3.1. The effect o[the third term 

An evaluation including the effect of the third term on the biaxiality ratio B can be conducted by 
examining the stress distribution (lee(r, 0) on the plane in front of the crack tip. Specifically, the 
Williams series can be written up to the third term 

(17) 

i.e. (lee includes the third term CJ but not the second, (or B) term. 
On the other hand, up to the third term, 

(18) 

i.e. (Jrr includes the second, (or B) term as well as the third (C J ) term. 
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Fig. 8. The displacement field Ua behind the erack tip for alp = 10, SO in the center-cracked specimen. 
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Therefore, (17) can be used to calculate C 3 (from the finite element data on (Jeo) and then the 

calculated value o[ C3 can be used in (18) to find the biaxiality ratio B with the third term effects 

now included. 

Figure 10 shows the effect of the third tcrm on the biaxiality ratio for the center-cracked 

geometry and Fig. 11 for the single-edge-cracked geometry. It seems that the third term requires 

a larger correction to the biaxiaJity ratio [or short crack length and has a relatively small effect 

for long crack length. The biaxiality ratio would be more negative (higher in absolute value) i[ 

the third term effects are included in both geometries. Figure 12 shows the percentage increase, 

t:.B = (Binc! - Bnot incdlBnot incl, which is seen to increase rapidly as alp -t 0 ([or a typical short 

crack alp = 10 in the center-cracked case this is moderate, about 15 percent). However, it should 

be noted that what constitutes a significant contribution of a neglected term to the fracture 

behavior may depend on factors other than the percentage error. For example, although the 

percentage error due to the third term may appear to be moderate for typical short crack sizes, 
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Fig. 12. Percentage increase in B, !:J.B = (B;ncl - Bool loc,)/B o01 lod in the center-cracked case. 

the fatigue crack growth rate in the near threshold region is drastically affected by very small 

changes in the value of f..K.• 
By using curve fittings from the results of Figs. 10 and II, the stress biaxiality ratio equations 

with the third term effects included can be presented as 

B = - [I + 1.65 1O- 4 (ajp) + 0.49(ajp)-05J, (19a) 

for specimens and 

B = - 0.72 - 1.85 1O- 3(ajp) + 1.05 1O- 6 (ajp)2 - 8.96 1O- 9 (ajp)3 (19b) 

for SEC specimens. These can be compared with (15b) and (16b), respectively, where the third 

term effects are not included. 

3.2. Implications for short fatigue crack growth 

As has been already stated, an extended representation of fatigue crack growth behavior may be 

developed by considering the Kitagawa diagram (Fig. I) for the case in which the minimum 

stress is zero. Then the stress range is equal to the maximum stress, and an upper bound 

boundary corresponding to the fracture toughness can be included as depicted by the upper, 

dashed curve. The map between the boundarics may, in turn, be divided into two regions 

corresponding to a linear elastic fracture mechanics [LEFMJ response and a nonlinear inelastic 

fracture mechanics response [NTFM]. 
Short crack behavior is characterized in Fig. 1 in regime II. Serious consideration of the 

behavior of short fatigue cracks bcgan with rcsults published in 1975 by Pearson [13]. I t should, 

however, be noted that Rice [IJ had predicted earlier that the stress intensity factor may no 

longer be expected to control the local field for crack lengths comparable to the plastic zone size. 

The behavior observed has been described as 'anomalous', because crack growth for short 

cracks was observed to occur at values of tress intensity factor range below the threshold value. 

The results of this paper indicate that the anomalous designation may be inappropriate, and it 

may indeed be a consequence of the use of correlation procedures which are not valid. In fact, a 

clarification of short fatigue crack growth behavior appears to require that two mechanisms 

must be considered. The first one, which was considered in this paper involves the fact that the 
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requirement of small scale yielding for the u e of stress intensity factor range as a correlation 
parameter is not satisfied for short cracks (i.e. M is not valid). he other, which needs to be 

considered in the future, concerns the role of obstruction to closure upon unloading. For a given 

range of stress intensity factor, obstruction to closure is generally I ss for short cracks than for 

long cracks. 
Although most attention has been directed toward consideration of these two mechan;';ms, a 

third potentially important mechanism should be mentioned. It has been found that short 

fatigue cracks in steels subjected to chemically activc environments grow faster than long cracks 

for the same D.K [14, 15]. Since corrosion fatigue failures are often observed in service, this 

behavior should not be ignored. 
A review of the literature on the growth of short fatigue cracks indicates that the research 

studies that have been reported have usually becn motivated by one of two distinct goals. The 

primary goal of material scientists has been to u e the results of their studies to contribute to an 

understanding of the fundamental mechanisms of short crack growth. Mechanics specialists 

have been motivated primarily by the need to develop design codes. There is a need f r more 

colJaboration between resea.rchers from these two groups. The paper by BI m et al. [16J 
examines both mechanic. and metallurgical issues and it provides valuable insight into the 

interacting aspects of the short crack gr wth problem. 
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