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Bifurcation of Equilibrium in
Thick Orthotropic Cylindrical
Shells Under Axial Compression

The bifurcation of equilibrium of an orthotropic thick cylindrical shell under axial
compression is studied by an appropriate formulation based on the three-dimensional
theory of elasticity. The results from this elasticity solution are compared with the
cnitical loads predicted by the orthotropic Donnell and Timoshenko nonshallow shell
formulations. As an example, the cases of an orthotropic material with stiffness
constants typical of glass/epoxy and the reinforcing direction along the periphery or
along the cylinder axis are considered. The bifurcation points from the Timoshenko
formulation are always found to be closer to the elasticity predictions than the ones
from the Donnell formulation. For both the orthotropic material cases and the isotropic
one, the Timoshenko bifurcation point is lower than the elasticity one, which means
that the Timoshenko formulation is conservative. The opposite is true for the Donnell
shell theory, ie., it predicts a critical load higher than the elasticity solution and
therefore it is nonconservative. The degree of conservatism of the Timoshenko theory
generally increases for thicker shells. Likewise, the Donnell theory becomes in general

more nonconservative with thicker construction.

Introduction

The buckling strength of composite structural members is
an important design parameter because of the large strength-
to-weight ratio and the lack of extensive plastic yielding in
these materials. Fiber-reinforced composite materials can be
used in the form of laminated shells in several important
structural applications. Although thin plate construction has
been the thrust of the initial applications, much attention is
now being paid to configurations classified as moderately
thick shell structures. Such designs can be used, for example,
in the marine industry, as well as for components in the
aircraft and automobile industries. Moreover, composite lam-
inates have been considered in space vehicles in the form of
‘circular cylindrical shells as a primary load-carrying structure.

Stability equations for cylindrical shells have been avail-
able in the literature mainly for isotropic material (e.g.,
Fliigge, 1960; Danielson and Simmonds, 1969) and a number
of analyses have been performed for the buckling strength,
based on the application of the cylindrical shell theories (e.g.,
Simitses, Shaw, and Sheinman, 1985). The relatively simple
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equations suggested by Donnell (1933) have formed the basis
for stability analyses in the literature more than any other set
of cylindrical shell equations. Besides the original first set of
Donnell equations, a second, more accurate set of cylindrical
shell equations that are not subject to some of the shallow-
ness limitation of the first set is also well quoted in the
literature (Brush and Almroth, 1975). The latter one will be
used in the comparison studies in this paper. Furthermore, in
presenting a shell theory formulation for isotropic shells,
Timoshenko and Gere (1961) included an additional term in
the circumferential displacement part of the second equation
(these equations are briefly described in Appendix I1). Both
the isotropic “nonshallow” Donnell and Timoshenko and
Gere formulations can be readily extended for the case of
orthotropic material.

In view of possible structural applications of anisotropic
shells with sizable thickness, it is desirable to conduct a
comprehensive study of the performance of both the readily
available Donnell and Timoshenko orthotropic shell theories
with respect to the shell thickness. An accurate solution for
the stability characteristics of moderately thick shells is also
needed in order to enable a future comparison of the accu-
racy of the predictions from various improved shell theories
(e.g., Whitney and Sun, 1974; Librescu, 1975; Reddy and Liu,
1985; see also Noor and Burton, 1990 for a review of shear
deformation theories).

Elasticity solutions for the buckling of cylindrical shells
have been recently presented by Kardomateas (1993a) for the
case of uniform external pressure and orthotropic material; a
simplified problem definition was used in this study (“ring”
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assumption), in that the prebuckling stress and displacement
ficld was axisymmetric. and the buckling modes were as-
sumed twa-dimensional. i.c.. no z component of the displace-
ment ficld, and no z-dependence of the r and @ displace-
ment components. It was shown that the critical load for
external pressure loading, predicted by shell theory can be
highly nonconscrvative for moderately thick construction. A
morc thorough investigation of the thickness effects was
conducted by Kardomatcas (1993b) for the casc of a trans-
verscly isotropic thick cylindrical shell under axial compres-
sion. In that work, a full dependence on r, 6, and = of the
buckling modes was assumed. The reason for restricting the
material to transverscly isotropic was the desire to produce
closed-form analytical solutions.

Rcgarding numerical treatments of this problem, Bradford
and Dong (1978) performed an analysis of laminated or-
thotropic cylinders using semianalytical finite elements, with
the modeling occurring in the thickness direction. Although
the main focus was on natural vibrations, the case of elastic
buckling was also discussed. Results for the isotropic and
transversely isotropic case, based on that finite eclement
model, were computed by Dong (1994) and compared with
these in Kardomateas (1993b), with good agreement.

In the present work, a generally cylindrically orthotropic
material under axial compression is considered. Again, the
nonlinear three-dimensional theory of elasticity is appropri-
ately formulated, and reduced to 2 standard eigenvalue prob-
lem for ordinary linear differential equations in terms of a
single variable (the radial distance r), with the applied axial
load P the parameter. The formulation employs the exact
elasticity solution by Lekhnitskii (1963) for the prebuckling
state. A full dependence on r, 6, and z of the buckling
modes is assumed. The work by Kartomateas (1993b) in-
cluded a comprehensive study of the of the
Donnell (1933), the Fligge (1960), and the Daniclson and
Simmonds (1969) theories for isotropic material. These theo-
ries were all found to be nonconservative in predicting bifur-
cation points, the Donnell theory being the most nonconser-
vative. In addition to considering general orthotropy for the
material constitutive behavior, the present work extends the
latter work by investigating the performance of another clas-
sical formulation, i.c., the Timoshenko and Gere (1961) shell

theory. In this paper specific results will be presented for the

critical load and the buckling modes; these will be compared

with both the orthotropic “nonshaliow” Donnell and Timo-
shenko shell formulations. As an example, the cases of an
orthotropic material with stiffness constants typical of
glass/epoxy and the reinforcing direction along the periphery
or along the cylinder axis will be coasidered.

Formulation

Let us consider the equations of equilibrium in terms of
the second Piola-Kirchhoff stress tensor X in the form

le(:-FT) =0, (la)
where F is the deformation gradient defined by
F =1 + gradV, (1b)

where ¥ is the displacement vector and [ is the identity
tensor.
Notice that the strain tensor is defined by

1
E=- (FTF-1). (1¢)
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More specifically, in terms of the linear sirains,

du lov u ow
€= s G Tt T €= (2a)
1 du v v du aw
A
au 10
B (20)
and the linear rotations,
1 dw v u wn
=T T a T T
zw-ﬂ)..,.g_.l_fi‘ (2¢)
* 9r r r o8
the deformation gradient F is
l+e, Ieo—w 3. +a,
Felle 4w, l+ey 16.-ol 3)
ie,.~w 3¢, +w, l+e,

At the critical load there are two possible infinitely close
positions of equilibrium. Denote by uy, vg, wy the 7, 8, and 2
components of the displacement corresponding to the pri-
mary position. A perturbed position is denoted by
)

where a is an infinitesimally small quantity. Here,

U=uy+au;, v=ys+av; w=ws+aw,

" au(r, 0,2), avfr, 8, 2), aw(r, 8, 2) are the displacements

to which the points of the body must be subjected to shift
them from the initial position of equilibrium to the new
equilibrium position. The functions u(r, 8, 2), v(r, 6,2},
w(r, 6,z) are assumed finite and a is an infinitesimally
small quantity independent of r, 6, 2.

Following Kardomateas (1993a), we obtain the following
buckling equations:

d
0 ]
;(0,',- 1w, + 75 a)

19

+;5(1’,'."%3W;+ ”l:"’;)"’—(fn flx“’ +a"w,)

1
+—(ar'r - 00'0 + 712‘”0 + 70: 27r0 ) - 0' (Sa)

_(7'0+arr“ - 0“';)

kAT

a ' a
0 0
+; ”(al'l"' Td“’; - "n"’;) + az(fn + 7!:"’:

1
+=(2n0+ o la; ~ 90 + 730, — 73]) = 0, (5b)
) {
9 ’ [ 0,0
;(frz - o,at fn"’r)
14

P
{ I 0 y 7
+-;--—(”(-r,’x — 19wy + gpul) + —az(af‘ - 13+ 10 a))

1
+= (7~ oy + 196) =0 (5¢)

In the previous equations, o,? anda.:, are the values of o;;
and w; at the initial equllibnum posmon, ie., for u -uo.
V=, "and w = wq, and o; and o] are the values at the
perturbed position, i.c., foru-u,,u-v,andw-w,
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The boundary conditions associated with (1a) can be ex-
pressed as

(F.XT).N =¢(V), (6)
where ¢ is the traction vector on the surface which has
outward unit normal A" = (/, ., n) beforc any dcformation.
The traction vector ¢ depends on the displacement ficld
V= (u, v. w). Again, following Kardomatcas (1993a), we
obtain for the lateral and end surfaces:

(o, -

Thw + 10w, )i+ (70 ~ G} + 75, )11
+(7 = 12w, + 0wy)i = 0. (Ta)

(7 + a0, = 120) + (04 + 19w, — 7))
+ (5 + 70, = 02l)i = 0, (7b)

(7. + 19w, = 0wy ) + (7: + Ggw] ~ 15wy )

+(0 + Rlo) - 1wy} = 0. ()

Pre-buckling State. The problem under consideration is
that of an orthotropic cylindrical shell compressed by an axial
force applied at one end. The stress-strain relations for the
orthotropic body are

= = -

o, ¢‘ll CIZ CIJ 0 o 0 1 -6"1

O0 €2 € €3 0 0 0 |le,

O, - €3 €3 €3 0 0 0 €, (8)

T, 0 0 ¢ O O %: |’

T 0 0 0 0 ¢ O}

[ 70 | L 0 0 0 0 0 cyl|]
where ¢;; are the stiffness constants (we have used the

notation i mr2=0,3=2)

Let R, be the internal and R, the external radius (Fig. 1).
Lekhnitskii (1963) gave the stress field for an applied com-
pressive load of absolute value P, in terms of the quantities:

_ 2
ayd33 — aj;

k= —————, 9
@xa3 — a3, (a)
- (@33 — ay3)as;
h = . 9
@ —apan + (G-at) 0D
2wh
T= w(R% -R,’) e
R2_R2 Rk-H_Rk-Hza + ka
x| ’(“13"‘“2.1)"( 22& lu) = =
R2 b R’ k + l

- _1\2
_ (R'i - Rf l) (R1R2)2 ayy — kax (%)
R - R} k-1 |

Notice that the formula quoted in Lekhnitskii (1963) for T
bhas a slight error in the last term.
The stress field for orthotropy is as follows:
0, = P(Cy+ Cir*~1 + Cyrtt), (10a)

02 = P(Cy + Cylr* ™' = Colr™*=1),  (10b)
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Fig. 1 Cylindricel shell under axial compression

P a, +a, ayy + ka
ol = -= —P(Co S 2 40—
T as; as;
@y, — ka,
+C,—2—2p%-1] (10¢)
a3
o= T3= T =0, (104)
where
A RE*V —RE+V
Co=—Fi C'-T§“-_R,"‘_?' (10¢)
Ry™' - RY™! ko1 B
C= w(R:Rz) 7 (101)

Notice that for general orthotropy, both 0,2 and 0,3 are
nonzero. For an isotropic or transversely isotropic body,
these two stress components are zero.

In the previous equations, a,; are the compliance con-
stants, i.e.,

- - - - -

€rr a, a; a; 0 0 0 a,,
€9 a, an an 0 0 O g
€| |93 91 a3y 0 0 0 ||a . qan
Yo 0 0 0 a 0 O llq,
Yo 60 0 0 0 a5 O ||+,
T | 0 0 0 0 0 agllne

The prebuckling solution just described is an exact elastic-
ity solution based on the assumption that the stresses do not
vary along the shell axis. Hence, this solution does not take
into account the end effects. Recent work by Kollar (1994)
has focused on including an axial variation. However, any
end effects, being of local nature, would not affect the
(global) buckling behavior.

Perturbed State. Using the constitutive relations (8) for
the stresses oy in terms of the strains ¢j;, the strain-dis-
placement relations (2) for the strains ¢/; and the rotations
o] in terms of the displacements u,, v,, w,, and taking into
account (10), the buckling Eq. (5a) for the problem at hand is
written in terms of the displacements at the perturbed state
as follows:
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a.:.')u,., +d, Pri=tt 4 dPrkc3e]

1
+ YW+ P!

[}] 0
v -
+(r“¢%)u,_::+(r,:+cﬂ.—% _"1 I":‘. ] o
2 Pro T+ Pt -
(c + Con + 0.2)”"0 + (r +c 0:?)..- ' : RysrsR,. (140
i TSN TT 1 s T 5 Wi
r The sccond differential Eq. (12b) gives
w, . - -4 -
+en =)= = 0. (120)  V()|(8us + 80sP) + R Pr* " + gunPrt ]
The second buckling Eq. (5b) gives + t V)80 + 8PP + g P +g Pri)
( %?)( Ui, U (Q?'”cg) L, Uy e 1
cwt— Nyt — -S4+ |—Y—+—= .
R A AN + DU (b + hyPIF*
i=0
v o) a?\u
ﬂ.::_:.’: * ‘c“ * f)u"“ * (c“ e = T)% +hyPri=3 4 by Pt
. +W too + tyP)r ! +tgaPrt=2 4+ 1o Prot=2] = 0
00(0’ uI.O O;: | Wie: (’)[( o o )’ 02 o ]
+CM+C2+-§- 7"’ C1\+C“"TT R]S’SR:- (14b)
1 da® In a similar fashion, (12¢) gives
+-—"(u,_, + 2o ——) 0. (12b) 2 |
2 & W(r)go + L WO (g + 9uPYr™?

In a similar fashion, the third buckling Eq. (5¢) gives i=0
+qi2Prk-3oi + quh—k-s.il
1 .
+ LU (sio + s PYr' " + 5o Pri=2+i 4 sy Prt-2+1]

T
0,,)":.: i=0

+Cawy,, t (tll + €55 — 2 )“l nt (c?.'l +c55 - T -f_ +V(’)[( B + BmP)’—l + Bozprk-l + Bmpr-k—ll -0

9,9\ Uy 0: . 1dg? —o. (12 R, srsR,. (14c)
Heoteu= 3|5 377 Mem i) =0 (12¢) Ly e previous three Egs. (14) are lincar, homogeneous.

. . . ordinary differential equations of the second order for U(r).
In the perturbed position, we seck equilibrium modes in  1/(r) and W(r). In these equations, the constants b,;, d,;, f,;-

the form g hip tij» 4ij» Sij» and B,; are given in Appendix I and
,60,2) = 6 sin Az; , _ . depend on the material stiffness coefficients ¢,; and & as well
y(r, 6, 2) = U(r)cos nfsin Az as the buckling mode constants n and A.
r(r,6,2z) = V(r)sin nésin Az, Now we proceed to tbc boundary conditions on the lateral
surfaces r = R;, j = 1, 2. These will complete the formula-
w(r, 6,2) = W(r)cosné cos Az, (13)  tion of the cigénvalue problem for the critical load.
where the functions U(r), W(r), W(r) are uniquely deter- From (7), we obtain for /= +1, i = 4 = 0:
mined for a particular choice of n and A. 0, =0; 7+ 0lw,=0; 7,-0c%/=0,
Notice that these modes correspond to the condition of
“simply supported” ends since w, varies as sin Az and at r=R; R, (15)
du, Substituting in (8), (2), (13), and (10), the boundary condition
ul-zz—-o at Z-O,l- . q;-Oalr-R,,j-l.Zgives
. . €12
Denote now UXr), VUXr) and WOXr) the ith derivative U'(R;)cy + [U( R)) +nV(R))] ﬁ' - c;3AW(R;) =0,
of W(r), V(r). and W(r), respectively, with the additional 1
notation U(°)(r) - U(r), V(o’(f) bd V(r) and W@’(r) - W(f) ] =12 (l6ﬂ)
Substituting in (124), we obtain the following linear » ’
homogeneous ordinary differential equation: The boundary condition 7, + 6,)w, =0 at r=R;, j=1,2
gives
U(rYey + U(rY =+ Cu C c c
! V'(Rj)[(c“ + 7°P) + PRI+ 72PR,~‘*“]
+U(r)[(b,Jo + b P)r~2 + by Pr*=> +
C
+b03P’—k-3 + (bu + bOSP) + b“P’k-l + me’—k-I] +[V(Rl-) + RU(RI)][ —Ces + -2—0P)Rl,‘l
LI o2 C, C,
+ L VO(r)[(do +d,P)r- +-2—PR}' + —E-PR‘* 2], j=1,2. (16b)
i=0
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In a similar fashion, the condition 7/, - g,/ey = O at r = R,
J = L2 gives

! » G | ¢ k-t
AU(R,) c“———l 2I’R, ——2-PR, +

C

C,
+ W'(R, )[((‘“- —P 'PR‘ '+ 2'PR,“ '],

j=12. (l6c)

Equations (14) and (16) constitute an cigenvaluc problem
for diffcrential cquations, with the applied compressive load
P the paramcter, which can be solved by standard numerical
methods (two-point boundary value problem).

Before discussing the numerical procedure used for solv-
ing this cigenvalue problem, onc final point will be ad-
dressed. To completely satisfy all the clasticity requirements,
we should discuss the boundary conditions at the ends. From
(7), the boundary conditions on thc ends arc

%~ 0lw =0 g =0,
at z=0,¢ (17)
a’, = 0 on both

7.+ 0w =0

Since o.. varics as sin Az, the condition

the lower end 2z = 0, and the upperend z = f is satisfied if
mn 8
oy (19

In a cartesian coordinate system (x, y, z), the first two of
the conditions in (17) can be wrilten as follows:

7:-. - 6,2 "" 0.

(19)
It will be proved now that these remaining two conditions are
satisfied on the average.

The lateral surface boundary conditions in the cartesian
coordinate system (analogous to (7)), with N the normal to
the circular contour are

0 .
7, + 0fa) = 0;

(o7, — 18w )cos (N, x) + (1, - gdw;)cos (N, y) = 0,
(204)

(7;y+it;',’,w;)eos(l\7,x)+(a +1 w')cos(N y) = 1.
(205)

Using the equilibrium equation in cartesian coordinates
(analogous to (5)), gives

a
;][ (72: + o2w})an
a a
- -'{L[—a;(a,'x - 1:,@;) + }7(1;, - 0,39;)]&4.

(21a)
Using now the divergence theorem for transformation of an

area integral into a contour integral, and the condition (20a)
on the contour, gives the previous integral as

+Ll(a,', - 15 @) cos (N, x)
+(, - q,‘;w;)cos(ﬁ,y)]ds =0,
where A4 denotes the area of the annular cross-section and y

the corresponding contour.
Therefore

fj(? + gl
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,)dA = const. (21b)

: f L[ x(17,;

Sincc hascd on the buckhng modcs(l*) and (18). 7., w. 1,
and , and hence 17, @), 7. and o}, all have a cos(mmr2, 1)
variation, they become o at 2 = {A2m). Therefore, it is
conciuded that the constant in (214) is zero. Similar argu-
ments hold for 7,,.

Morcaver. it can also be proved that the system of resul-
tant stresses (19) would produce no torsional moment. In-
deed,

%][A[X(ﬁ: - ote) = y(vl: + ofal)|aa
--ff{[""“ — "”'")]

_,.[ (e, - — “) , ”“d)]}au

Again, using the divergence theorem, and taking mto account
(20), the previous integral becomes

—fv{x[(-r + gl w;)cos (N, x)
whet)cos(N.y)] - y(a, -
+(%y - oya})cos (N.x)] Jds = 0. (220)

+(a; + w;) cos (N.x)

hence
- a:':w;) -~ y('r,', + a;.:u;.)]d/l = const, (22b)

and this constant is again zero since 7,. = 7, = @, = w, = 0
at z = A2m).

As has already been stated, Egs. (14) and (16) constitute
an cigenvalue problem for ordinary second-order linear dif-
ferential equations in the r variable, with the applied com-
pressive load P the parameter. This is essentially a standard
two-point boundary value problem. The relaxation method
was used (Press et al., 1989) which is essentially based on
replacing the system of ordinary differential equations by a

-set of finite difference equations on a grid of points that

spans the entire thickness of the shell. For this purpose, an
equally spaced mesh of 241 points was employed and the
procedure turned out to be highly efficient with rapid conver-
gence. As an initial guess for the iteration process, the shell
theory solution was used. An investigation of the conver-
gence showed that essentially the same results were pro-
duced with even three times as many mesh points. Finding
the critical load involves a minimization step in the sensc that
the eigenvalue is obtained for different combinations of n.
m, and the critical load is the minimum. These resuits are
discussed in the following.

Discussion of Results. Results for the critical compres-
sive load, normalized as

P P R
w(R3—R}) Esh’

were produced for a typical glass/epoxy mategial with moduli
in GN/m? and Poisson’s ratios listed below, where 1 is the
radial (r), 2 is the circumferential (), and 3 the axial (2)
direction: El - 14.0, Ez - 57-0, E, - 14.0, GIZ - 5.7, G;:
- 5-7' G’] - 5.0' vlz - 0.%8, Vn - 0-277, v’l - o.m. lt
has been assumed that the reinforcing direction is along the
periphery.

In the shell theory solutions, the radial displacement is
constant through the thickness and the axial and circumfer-
ential ones have a linear variation, ic., they are in the form

MARCH 1995, Vol. 62/47



Tabie 1

Comparison with shell theories

Orthotropic with circumferentia) reinforcement. ¢/R; = 5

Critical Loads, P';(_R!_-—I_ZT)E_,A

Modub in GN/in?: By = 87, E, = E3 = 4. Gy = 8.0, Gy = Gyy = 5.7

Ry

Poson’s ration: 13 = 0.066. 193 = 0.277, 4y, = 0.400

R;/R,  Elasticny Donnell Shellt Timoshenko Shell!
(n,m) {(n,m) (% Increare: (n.m) (% lncrease)
1.05 0.6764 12.1) 0.7904 (4.9) (16.9%) 0.6735 (2,1) (-0.4% )
1.10 0.6641 (2.2) 0.7883 (3.6) (16.7%) 0.6461 (2.2) (-2.T%)
1.15 0.6284 (2.2) 0.7716 (23) (22.8%) 0.6218 (2.3) (-1.1%)
120 0.6134(2.3) 0.7505 (2.3) (22.4%) 0.5559 (1,1) (-9.4%)
125 0.5186 11.1) 0.7560 (2.4) (45.6%) 0.4549 (1,1) (-12.3%)
130 0.4429 (1.1) 0.7771 (1,1) (75.5%) 0.3876 (1,1) (-12.5%)

Tabie 2 Comparison with shell theories
Lsotropic. £ =14 GN/m?, v = 03, ¢(/R, = §

N r R,
Critical Luads, r R = R.)ﬁ

Duonell!

} See Appendix 11

u,(r,8,z) = Uycos n@sin Az,

v(r,6,2) = [Vo + . ;R(Vo + nUo)] sin n@ sin Az.
(23q)
wy(r, 0,2) = [W,— (r = R)AUy]cos n6cos Az (23b)

where U,, V,, W, are constants (these displacement field
variations would satisfy the classical assumptions of e,, = e,
=¢, =0).

A distinct eigenvalue corresponds to each pair of the
positive integers m and n. The pair corresponding to the
smallest eigenvalue can be determined by trial. It should be
noted that for isotropic material, some additional shallow-
ness assumptions lead to the well known direct and simple
formula: P, = Ewh%/ \/3(1 — »?); the performance of this
formula with moderate thickness in isotropic shells was dis-
cussed in Kardomateas (1993b).

As noted in the Introduction, there are two sets of the
Donnell equations that are most widely used for shell theory
solutions. The original first set has been referred as the
“shallow” shell formulation, whereas, a second, more accu-
rate set of cylindrical shell equations that are not subject to
some of the shallowness limitations of the first set has been
referred as the “nonshallow” formulation. The latter has
been also called the “nonsimplified” Donnel theory in Kardo-
mateas (1993b). The other benchmark shell theory used in
this paper is the one described in Timoshenko and Gere
{1961). In this theory, an additional term in the circumferen-
tial displacement part of the second equation is included.
This additional term is the RNS, ,. = —=P°v,,/2% where P°
is the absolute value of the compressive load at the critical
point. In the comparison studies we have used an extension
of the original, isotropic Donnell and Timoshenko formula-
tions for the case of orthotropic material. The linear alge-
braic equations for the eigenvalues of both the Donnell and
Timoshenko theories are given in Appendix I1.

Concerning the present elasticity formulation, the critical
Joad is obtained by finding the solution P for a range of n
and m, and keeping the minimum value. Table 1 shows the
critical load and the corresponding n, m, as predicted by the
present three-dimensional elasticity formulation, and the crit-
ical load and the corresponding n, m, as predicted by both

48/ Vol. 62, MARCH 1995

R;/R, HEastienty Tumwhenko! l'luu" Danselson?
{(n.m (n.m) {n.m) (n.m} & Summonds
(n,m)

X Increase X Increan X Increane % lncrease

1.03 04426 (2.1) 05474 (2))) 0.4348 (2.1) 04528 (2.1 0433 (2.1)
23.7% -1 8% 22% 30%

1.10 03910 (2.1) 04871(2.1) 0.388% (2.1) 0.4019 (2.1 04088 (2.1)
24 6% 12% 2.8% 4.6%

115 04547 (2.1) 03488 (22) 04373 (22) 04710(2.)) 0.4814 (2.))
20.7% -3.6% 36% 3.9%

1.20 04371 (22) 08272(22) 0.4184 (2.y 04620 (2.0 0.4708 (2,2)
206% 4.3% STR 76%

1.25 04426 (2.2)  0.5403 (2.2) 0.4269 (2.2) 04726 2.2 0.4837 (2,2)
22.0% -3.5% G.8% 9.3%

1.30 0.4487 (1)) 05709 (22) 0.3885 (1.1) 04915 (1. 11 0.4967 (1,1)
27.2% -13.2% 9.5% 11.1%

! See Appendix 11

! From equations (24).

the “nonshallow” Donnell and Timoshenko shell equations.
A length ratio £/R, = 5 has been assumed. A range of
outside versus inside radius, R,/R, from somewhat thin,
1.05, to thick, 1.30, is examined.

Tables 1 and 2 give the predictions of the Donnell and
Timoshenko shell theories for the orthotropic and isotropic
material, respectively, in comparison with the elasticity one.
It is clearly seen that

(1) the bifurcation points from the Timoshenko formula-
tion are always closer to the elasticity predictions than the
ones from the Donnell formulation.

(2) For both the orthotropic material cases and the
isotropic one, the Timoshenko bifurcation point for the Don-
nell shell theory, is always higher than the elasticity solution,
which means that the Donnell formulation is nonconserva-
tive. Moreover, the Donnell theory becomes in general more
nonconservative with thicker construction.

(3) On the contrary, the Timoshenko bifurcation point is
lower than the elasticity one in all cases considered, i.c., the
Timoshenko formulation is actually conservative in predicting
stability loss. The degree of conservatism of the Timoshenko
theory generally increases for thicker shells.

Furthermore, the bifurcation load for the isotropic case
(Table 2) is smaller than the corresponding one for the
circumferentially reinforced orthotropic case (Table 1), the
difference becoming increasingly smaller for thicker con-
struction. This conclusion is true for either the elasticity or
the shell theory results (with one exception: for R,/R, = 1.30
the Timoshenko prediction is larger for the isotropic case by
1.3 percent). More specifically, based on the elasticity solu-
tion, for R,/R, = 1.10, the orthotropic case shows a 70
percent higher bifurcation load than the isotropic material,
whereas for R,/R, = 1.25, the orthotropic material shows
only a 17 percent higher bifurcation load than the isotropic
case. Therefore, the effect of the circumferential reinforce-
ment in raising the critical load relative to the isotropic case
is diminished with thicker construction.

For isotropic materials, two other shell theories, namely
the Fliigge (1960) and the Danielson and Simmonds (1969)
can easily produce results for the critical loads in shells and
should, therefore, be compared with the present elasticity
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solution. The expression for the cigenvalues derived from the
Fliigge (1960) equations, P} and the morc simplificd but just
as accurate one by Daniclson and Simmonds (1969), P arc

QF. DS

B Eﬁlz[(rﬁ: +n’) + n"]

”(‘;.lm . (24a)

where the numerator for the Fliigge theory is

wh’

22 L a2 2 2, e
—eeeee (1 + m-+n-1) +m°,
M“__",)( )¢ )

Ops =
(24¢)

where R is the mean radius and A the shell thickness Again,
a distinct cigenvalue corresponds to cach pair of the positive
integers m and n. the critical load being for the pair that
renders the lowest eigenvalue.

A comparison of the data in Table 2 shows that the values
of n, m a1 the critical point for the clasticity. as well as the

’rh] - a8 - Y
o= ———-——3—{(m‘ +n°) - 2[a-m‘ + 3m“n-
6R() - »°) Teble 4 Results 10r thin shells
R Ta . Crnieal Loads, P = r R
+(4 - v)mn' + n"] + 22 - v)ire” + n‘} + i, b T- R Bk
(24b)
and for the Daniclson and Simmonds cquations, 1. Orthotropic wish circumfereptial reinforcesmant
Ry/R,  Blasticity Donnell Shellt Timoshetho Shellf
Table 3 Comperison with shell theories (n.m) (m,m) (% Increasc) {n,m) (% Increasc)
Orthotropic with axial reinforcempent. ¢/R; = 5 104 06872(20) 0.9049 (4.8) (17.1%) 0.6811 (2.1) (-0.9%)
P R 102 0782 (61D 0.7957 (6,13) (L7%: 0.7786 16.13) (-0.5%)
Critical Loads, P = ARFES
L " 101 0.7904 (9.20) 0.7971 (9.20) (0.9%) 0.7885 (9.20) (-0.1%)
Moduli in GN/m?. £ = 57, E; = Ey = 14, Gy, = Gy = 5.7, Gy; = 5.0
Poisson’s ratios: ¥y, = 0.400. sy = 9.088, sy, = 0.277 2. Jestropic
Ri/R.  Elssticity  Donnell! Tunoshenko!  Flagge’ Danicison!
Ry{R, Elssticity Donocl! Shell! Timoskenko Shelt! ' (n.m) (n.m) (n.m} (n.m & Simmonds
(n,m) (n,m) (n,m) (n.m)
% Increase % Increnee % % & %1 %1
108 0.7686 (4.4) 0.7913 (44) (3.2%) 0.7517 (4.4) (-1.9%)
1§¢ 03034 (211 05723(32)  04N021)  0.5143 21) 05170 (2.1)
110 06T (2)) 0.7879 (3.3) (16.0%) 0.6473 (1) (-4.T%) 13.7% -18% 22% 2%
115 08578 (2)) 0.7877 (2.1) (19.8%) 0.0287 (2.1) (4.4%) 102 04999 (31) 03548(31) 04983 31)  05033.31)  0.3052 (3.1)
1n.0% 0.3% o.1% 11%
120 0.0686 (22 0.7547 12.9% 06157 (2.2) (-79%
@2) @1 ) @ ) 1.0 05517 (3.1) 0.8077 (78) 0.5493(3.1)  0.5%49:3.1) 038559 (3.1)
135 06648 (22) 0.7583 (2.2) (13.8%) 0.6140 (2.2) (-78%) 3% 4% 0.6% 0.5%
10 06801 (22) 0.7823 (2.2) (15.0%) 0.6318 (2.2) (-7.1%) 1 See Appendia 1}
1 See Appandix 11 { From equations (24).
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Fig. 2(s) Elo‘n'me‘on U(r) versus normaiized radisi distance r/R,, for the
orthotropic with circumierentisl reinforcing direction case and the lsotropic one
(sheil theory would have a constant value throughoir, U(r) = 1 for both cases)
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Fig. 2(b) Elgomncuon V(r) versus normaiized radial distance r /R, from the
olasticity and the Donnell sheit theory, which would show linear variation.

The resuits are for the orthotropic with circumferential reinforcing direction case.
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Fig. 2(c) * Eigentunction” W(r) versus normalized radial distance ¢ [ R,, from the
elasticity solution and the Donnell shell theory (the latter has a linear variation). The
resuits are for the orthotropic with circumferential reinforcing direction case.

Fliigge and the Danielson and Simmonds theories show per-
fect agreement, and that both Fliigge, and the Daniclson and
Simmonds theories are nonconservative, the degree of non-
oonservatism increasing with thicker shells. We may now
rank these theories for isotropic materials by concluding that
the best estimates are provided by the Timoshenko theory,
followed by the Fliigge and the Daniclson and Simmonds
theories and finally the Donnell theory. Of these, only the
Timoshenko theory is conservative.

Table 3 presents the results for the bifurcation load in the
case of the same orthotropic material (typical of glass/epoxy),
which is now positioned so that the reinforcement is axial. To
be able to perform direct comparisons, the load has now
been normalized with E,, which is the same as E, in the
other two cases (Tables 1, 2). It can be seen that the bifurca-
tion load now is in general higher than both the isotropic and
the orthotropic with circumferential reinforcement cases.

50/ Vol. 62, MARCH 1995

Again, based on the elasticity solution, for R,/R, = 1.10, the
axially reinforced case shows a 74 percent higher bifurcation
load than the isotropic material, whereas for R,/R, = 1.25,
the axially reinforced material shows a 49 percent higher
bifurcation load than the isotropic case. Therefore, the effect
of the axial reinforcement in raising the critical load relative
to the isotropic case is much less sensitive to the thickness
than with circumferential reinforcement. Another interesting
observation is that in all cases, n, m at the critical load for
the elasticity theory are always less or equal to the corre-
sponding values of the Donnell shell theory.

It should also be mentioned that the elasticity results of
Table 2 for isotropic material that were produced through
the present formulation, confirm the results from the closed-
form analytical isotropic solution of Kardomateas (1993b)
Moreover, this work complements the latter by including a
comparison with the Timoshenko and Gere shell theory,
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which is actually found to be the only shell theory that results
in conscrvative estimates of the critical load.

Althouth the focus of this work is the study of moderately
thick shells, one would expect buckling to be even more
important for very thin shell construction. Therefore. Table 4
shows the bifurcation load from the three-dimensional clas-
ticity analysis for thin shells in order of decreasing thickness
(thickness over mean radius, A/R. up to 1/100), in compari-
son with these shell theories. The results are for the mildly
orthotropic glass/cpoxy material. as well as the isotropic
case. In all cases. it is scen that the Timoshenko theory
renders conservative estimates for the critical load. and it is
again much morc closer to the clasticity prediction than the
Donnecll theory. Morcover, the values of (n, m) at the critical
point for both the elasticity and the Timoshenko theory agree
perfectly for the thin shells of Table 4, unlike the Donncll
theory. For the isotropic matcrial. the Fliigge and Daniclson
and Simmonds thcorics have also been examined and are
shown to provide much better (although nonconservative)
cstimatcs than the Donnell theory, with perfect agreement
with the elasticity results on the values of (n.m) at the
critical point.

Finally, to obtain more insight into the displacement field,
Figs. 2(a,b.c) show the variation of U(r), V(r), and W(r),
which define the eigenfunctions. for R./R, = 1.2, as derived
from the present elasticity solution. and in comparison with
the Donnell shell theory assumptions of constant L(r), and
linear V(r) and W(r). These values have been normalized by
assigning a unit value for U at the outside boundary r = R,.
These plots illustrate graphically the deviation of U from

constant and the deviation of V and W from lincarity. -

Although the Donnell shell theory eigenfunction has been
plotted for ¥(r) and W(r), the Timoshenko theory line would
nearly coincide with the latter.
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APPENDIX 1
For convenicnce define
] a, +a-,

Dy =~ =~ Co="— (AD
D= -t p e feTln
' 'oay ° T ey

The coefficicnts of the first differential Eq. (144) are
by = =(Ca + Cpn?); by = —n"Cy20:
boz - -C'k’lzﬂ; b03 - C:k’l:/::
bo‘ - "Css‘z: bos - -DQ‘:/::
by, = —D,A%2; by = —D,A°/2, (A3)
dig=n(cy +c); dy = —nCo/2; d\3= —nkC,/2;
dyy = nkCy/2; dogg= ~n(cp +cy); dy = -nCy/2;
doz - 'IlkC.ﬂ; d":g - Ilkc:ﬂ. (A4)
Jio= —A(cyy +¢55)i fiy=ADo/2; fia=AD\/2;

fis=ADy/2; fog=Mecn—cp3)i for =foz=Jos = 0.
(A5)

The coefficients of the second differential Eq. (14b) are
given as follows:

82 =Ce: 8n=Co/2; g=C/2: gn=C/2
810™ Ces> 8 =Co/2; 812=C\/2: 83 =Cy2
00 ™ "'(sz"z + Cu); g = —Co/2: 8= —-C\/2;
w = —Co/2i Bou™ —Cud?; gos = —DoAY/2;
80 = ~DN/2; gy = —D:A/2, (A6)
hyg= —(ce + ci)n; by =nCo/2; hyy=nC\/2;
hyy=nCy/2; hoy= —(cp+ cge)n; hy = =nCyo/2;

hgy = =nCy/2; hgy = —nC./2, (A7)
tog™ (Cny +c)nA; 1y, = —nADy/2;
1= =nAD./2; 1o = —nAD,/2. (A8)

Finally, the coefficients of the third differential Eq. (14¢)
are

90 =Cssi gn=Co/2; G =C\/2; qun=Cy/2
Gro=Css; qu=Co/2; @12=kC,\/2; gy3= ~kC,/2
G0 = —Cun’; goy = —Con’/2; qu = —kn’C,/2;
9o = kn’Cy/2; go = —cyuA, (A9)
0= (s +cp)A; sy = =ACo/2; 1= —AC,/2;
S13= —ACy/2; 590 = (cpy + Css)A; Sp = —ACy/2;
Sp= ~kAC,/2; Sg3 = kACy/2, (A10)
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Buo = (cxy + cu)nA; By = —niCy/2;

By = —knAC,/2; Boy = knAC,/2. (All)

APPENDIX 11

Eigenvalues From Nonshallow Donnell and Timo-
shenko Shell Theories

In the shell theory formulation, the displacements are in
the form

u, = U,cos n@sin Az, v, = V,;sinn6sin Az,

w, = W,cos nfcos Az,
where U, V,,, W, are constants.
The cquations for the nonshallow (or nonsimplificd) Don-

nell shell theory for N = N5 =0, N'= —P%Q2#R) are
(Brush and Almroth, 1975)

RN, ; + Ny y=0
M.,.
RN, + No.l + T + Mxo,x =0

My o0
R

The Timoshenko shell theory has the additional term RN,
in the second equation. We have denoted by R the mean
shell radius and by P° the absolute value of the compressive
load.

In terms of the “equivalent property” constants

Cp = E3h/1 = vy3vy,); Cyy = Esh/(1 — vyyvyy)

N, - RN:ou.u - RM,,, - = 2M,q,0= 0.

Com B2t o DK
B 1- l’nl’az. “ = Unt i ij12’

the coefficient terms in the homogeneous equations system
that gives the eigenvalues are
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apy = Chdi apy = (Cyn + C)ni;

GL\ - -(C:‘_\RAz + C“nz/R)-

C;y Dpn® Dy A? , D A?
-] —= +
2 R*TRY TR rR)™
Caun? . Dan® DA
Q= - + CuRX + —— 42— |,
ay = (Cy + C)nA,
Cx Dpn* _DyAA* D A’n?
ay = o + s + R + DyA'R + 4 R
Cn D_nz"z D:SAI D“Az
ay = (T + RJ + R + 4 R n,

Qyy = ’CnA.

Notice that in the above formulas we have used the curvature
expression x,4 = (v, — u_,,)/R for both theories.

Then the linecar homogeneous equations system that gives
the cigenvalues for the Timoshenko shell formulation is

(B1)

a“UO -+ auVo + a|3Wo - 0.

AZ
aylp + (a,, + EP°)V0 + apWy =0, (B2)

AZ
(a,, - ‘z—ﬂpo)Uo + anVo + a”wo = (. (83)

For the Donnell shell formulation, the additional term in the
coefficient of V, in (B2) is omitted, i.e., the coefficient of V,
is only ay,. The cigenvalues are naturally found by equating
to zero the determinant of the coefficients of Uy, V,, and W,
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