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Abstract. The stability of growth of intemal delaminations in composite plates subjected to compressive loading 
is investigated. Due to the compressive loading, these structures can undergo buckling of the delaminated layer 
and subsequently growth of the delamination. The study does not impose any restrictive assumptions regarding the 
delamination thickness and plate length (as opposed to the usual thin film assumptions). The growth characteristics 
of the delamination under monotonic compressive loading are obtained on the basis of a combined delamination 
buckling/postbuckling and fracture mechanics mode.I. The postbuckling solution is derived through a perturbation 
procedure, which is based on an asymptotic expansion of the load and deformation quantities in terms of the 
distortion parameter of the delaminated layer, the latter being considered a compressive elastica. The closed form 
solutions for the energy release rate at the delamination tip versus applied compressive strain during the initial 
postbuckling phase are used to define the combinations of delamination length and applied strain that lead to 
unstable growth. This would practically cause either contained "jump" growth or complete (catastrophic) growth 
of the delamination. Estimates for the lower and upperbounds of the jump distance (unstable growth) are provided. 
Moreover, a study of the influence of the mode dependence of interface toughness on the conditions of initiation 
and extent of delamination growth is performed. 

1. Introduction 

Laminated composites have a high strength in the direction of the reinforcing fibers but are 
very sensitive to delamination-type defects. Indeed, the manufacture of composites requires 
involved procedures which may potentially result in the existence of defects in the finished 
product [1]. Therefore, in these composite panels, local spalling or debonding may occur due 
to manufacturing imperfections or due to service loads which include impact, and vibrations 
excited by the propulsion systems. 

Delamination buckling in plates under compression has received considerable attention 
and numerous contributions have addressed related issues in both one-dimensional [2-7] 
and two-dimensional treatments [8-10]. Moreover, the Griffith-Irwin concept has already 
been used in these works when the stable growth of thin delaminations in plane elements is 
investigated. 

The growth characteristics of the delamination can be investigated once a post-buckling 
solution is available. Therefore, a combined fracture mechanics analysis and delamination 
post-buckling solution is needed. This subject makes for a non-traditional problem of fracture 
mechanics since the determination of the postbuckling deflections of a thin debonded layer 
when a plate element is subjected to cyclic compression is geometrically nonlinear and 
includes the explicit presence of additional parameters with the dimension of the length (e.g. 
the thickness of the separated layer or the plate length). To this extent, some fundamental 
features of the energy release rate characterization at the tip of delaminations have already 
been published. In fact, one particular result that is used within, namely the closed form 
expression for the energy release rate from the thin film model of Chai et al. [2], is directly 
extracted from that earlier article. 

The criterion for the initiation of delamination propagation (fracture criterion) does not 
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foUow from the equations of equilibrium and motion of continuum mechanics; it is rather 
an additional boundary condition in the solution of the problem of the limiting equilibrium 
for the delaminated body. This additional condition is postulated a-priori, and in this paper 

mode-dependent condition will be examined in addition to the classical mode-independent 
critical energy release rate criterion. 

After the body reaches the limiting equil ibrium state, the delamination growth may be either 
stable or unstable. In a stable state, the delamination is stationary under constant external load 
and the delamination extension over a small distance requires a small increment of the applied 
external loading parameter. Conversely, in an unstable equilibrium state, the delamination 
begins to move after the load reaches the critical value determined from the fracture criterion 
and may even propagate under constant load. Naturally, dynamic effects are involved in the 
latter case. As far as the prevention of integrity loss is concerned, it is important to know the 
kind of equilibrium to which the limiting state belongs. If the limiting equilibrium state is 
stable, there is no danger of immediate uncontrollable propagation of the delamination. 

A delaminated layer loses stability at a critical point, the determination of which is first 
needed. In a fundamental paper, Chai, Babcock and Knauss [2] presented a one-dimensional 
model by assuming essentially adelamination in an infinitely thick plate. In this model (which 
has also been called 'thin film' model), the unbuckled (base) plate is assumed to be subject to 
a uniform compressive strain. Calculation of the strain energy of the buckled layer, the one 
for the layer prior to loss of stability and the work performed by the applied load are used 
in the calculation of the energy release rate, i.e. the energy released when the delamination 
grows by a unit of length. Energy release rate and delamination length curves for a constant 
applied strain can reveal the regions where the delamination growth is stable or unstable. 

In the general case, the finite plate length and thickness is expected to influence the 
bifurcation point and post-critical behavior of the delamination and subsequently its growth 
characteristics. An additional influence may also arise from the end fixity conditions of the 
base plate. To this extent, Simitses et a1. [7] studied the critical load for a delamination of 
arbitrary thickne s and size in a finite plate; their results showed a range of critical load vs. 
thin film load ratios, depending on delamination and base plate dimensions, as well as base 
plate end fixity (simply-supported vs. clamped). 

In a recent paper, Kardomateas [11] studied the initial postbuckling behavior of general 
delaminated composites (i.e. with no restrictive assumptions on the delamination dimensions) 
by using a perturbation procedure based on an asymptotic expansion of the load and defor­
mation quantities in terms of the distortion parameter of the delaminated layer, the latter 
bing considered a compressive elastica. The analysis lead to closed form solutions for the 
load versus applied compressive displacement and the near tip resultant moments and forces. 
This postbuckling solution is used in this paper to study the stability of growth of internal 
delaminations as well as some other important characteristics of the growth process. For this 
purpose, the bimaterial interface crack solutions for the energy release rate and the mode 
mixity in terms of the resultant moments and forces, as derived by Suo and Hutchinson [12] 
will be employed. A primary objective is to define the combinations of delamination length 
and applied strain that lead to unstable growth; this would practically cause a 'jump' growth 
(mo ·tly contained) of the delamination. Results that reveal under what conditions growth 
becomes unstable will be presented for a variety of delamination locations through the thick­
ness and will be compared with the thin film model theory. Another objective of this paper is 
to include the mode dependence of interface toughness and study its qualitative influence on 
the conditions of initiation and extent of delamination growth. 
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2. Stable and unstable delamination growth 

The stability of delamination growth will be studied next. In order to better illustrate the 
combined post-critical and fracture mechanics procedure for obtaining the conditions for 
unstable or stable growth, the simple relations from the thin film model will be used. For 
simplicity reasons, the properties of the material are assumed homogeneous, linearly elastic 
and isotropic with modulus of elasticity E and Poisson's ratio v (orthotropic properties can be 
accounted for by using Vl2V21 instead of v2 and E the modulus of elasticity along the x == 1 
axis). 

For a delamination of thickness h and half-length e, the thin film model of Chai et al. [2] 
predicts an energy release rate 

(1) 

where 

(2) 

is the Euler's critical strain for the delaminated layer (treated as a column with built-in ends) 
and EO is the applied strain. A Griffith-type fracture criterion is employed, and it is assumed 
that whether further delamination occurs depends on the magnitude of the fracture energy, 
defined as the energy required to produce a unit of new delamination. Thus, delamination 
growth occurs when 

C(EO, e) = f o = const. (3) 

Let us assume that the delamination growth is governed by the external 'loading' quantity 
EO( e) (i.e. the applied strain). In a stable state, the delamination is stationary under constant EO 

and the delamination extension over a small area (or through a small distance) als requires a 
small increment of the applied strain EO. Consequently, in the expression between the applied 
strain and the delamination length EO = EO( e) found from the fracture criterion C(EO, e) = f o, 
for a stable delamination 

dEo) o. (4a)( de G > 

An inequality expression for the energy release rate for stable growth can also be found as 
follows. While the delamination growth proceeds, G( EO, e) satisfies (3), and thu 

dC (OC) dEo (OC) (4b)de OEo edI + 8i go = o. 

Since it can generally be assumed [see e.g. (1)] that (oC / oEo)e > 0, it follows that for stable 
growth 

(4c)(~~) go < o. 

The stable and unstable equilibrium branches corresponding to this condition are illustrated 
in Fig. 1. 
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Fig. I. Equilibrium branches for stable and unstable Fig. 2 Equilibrium branches for stable and unstable
 
delamination growth (for a given applied compressive delamination growth for a given critical energy release
 
strain), illustrating the contained 'jump' growth of a rate.
 
delamination loaded on the unstable branch.
 

In an unstable equilibrium state, the delamination may propagate under constant applied 
strain EO (Fig. 2), and in this case the following inequality expressions define the range of 
unstable equilibrium states 

( ~£O ) G ~ 0; or ( ~~) cO ~ O. (5) 

Now, applying G(EO, £) = fo in (1) and solving for EO, we find 

2 2fo 
EO = -Eer + (6)4Eer + Eh(l _ v2 )' 

The transition from stable to unstable growth occurs when 

(7a) 

which gives 

EO = 3E er . (7c) 

Therefore, we have stable crack growth if 

(8a) 

and unstable growth if 

EO < 3E er · (8b) 

The same conclusion is reached if we use the criterion in terms of the energy release rate from 
(5) 

dG) 2 dEer 
( di cO = Eh(l - V )(EO - 3Eer ) d£ = O. (8c) 
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Let us assume that at length £I, the delamination falls on an unstable branch (Fig. 1). 
Then, growth will take place to a new delamination size £2. The lower bound of the new 
delamination size £2L corresponds to the equation G( EO, £2L) = f 0, i.e. it is determined from 
the position of the stable branch, since for any size smaller than that G > fo. The upper bound 
to the new delamination size £2U can be found from an energy balance as the delamination 
increases from £I to £2. Indeed, the energy that must be expended for an infinitesimal growth 
(fracture energy) is fod£, whereas the energy released and attributed to the fracture process 
is G(EO, £)d£ - dT, where dT is the (undetermined) kinetic energy. Therefore, the lowest 
possible value of the difference [G( EO, £) - fo]d£ is zero, corresponding to zero kinetic energy 
dT = O. Hence, the upper bound is found from 

(9) 

In this case of unstable growth, the difference [G( EO, £) - fo]d£ represents the kinetic energy 
dT, assumed to be zero for quasistatic growth. Notice that G(EO, £)d£ represents the total 
energy released in the process due to the work done by the external forces l¥ and the change 
in the elastic strain energy dU i.e. G(EO, £)d£ = W - dUo 

This relationship is shown schematically in Fig. 1; the areas indicated by different shadings 
are of equal size. 

For the thin film model, a nonlinear equation for the upper bound of the unstable delami­
nation growth can be derived (this has also been discussed by Bolotin [4]). Indeed, using (l) 
for the energy release rate, we find 

(lOa) 

therefore, using (9), the upper bound, £2U, is found from the nonlinear equation 

(lOb) 

3. Growth characteristics for a delamination of arbitrary thickness 

A closed form solution for the initial postbuckling solution in the general case (arbitrary 
delamination thickness or plate length) has recently been derived by Kardomateas [11]. The 
latter will be briefly described first and then it will be used to determine the stable and unstable 
growth conditions of an arbitrary delamination. 

Referring to Fig. 3, consider a plate of half-length L (and unit width) with a through-the­
width delamination of half-length £, symmetrically located. The delamination is at an arbitrary 
position through the thickness T. Over the delaminated region, the laminate consists of the 
part above the delamination, of thickness h referred to as the 'delaminated' part, and the part 
below the delamination, of thickness H = T - h, referred to as the 'substrate' part. The 
remaining, intact laminate, of thickness T and length b = L - £, is referred to as the 'base' 
plate. Accordingly, the subscript i = d, s, b refers to the delaminated part, the substrate or 
the base plate, respectively. 

The solution in [11] is based on considering the buckled configuration of the delaminated 
layer as part of an inflectional elastica with end amplitude <I>d and distortion parameter E. At 
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/ Fig. 3. A compressively loaded one-dimensional delamination configuration in the post-critical state. 

the critical state, the end amplitude is <I>~. Suppose that in the slightly buckled configuration 
<I>d can be expanded in the form 

(11 ) 

Then the end rotation at the common section () is given by expanding the relevant expression 
[13] in Taylor series in terms of [ (notice that at the critical state ()o = 0) 

() = (sin <I>d)[ - 2~(sin <I>d cos2 
<I>d)t: 3 + ... = (sin <I>~)[ + (cos <I>~)¢~1)[2 + 
¢}l)2 ]+ (cos <I>~)¢~2) - (sin <I>~)+ - -14 sin <I>~ cos2 <I>~ [3 + ... = [ 

= ()(l)[ + ()(2)[2 + ()(3)t: 3 +0([4). (12) 

Due to the continuity condition () is the same for both the delaminated and substrate parts as 
well as the base plate. 

The asymptotic expansion for the end moment Md is similarly found by substituting (1) 
into the relevant expression [13] and subsequently expanding in Taylor series (again MJ = 0) 

(13a) 

2where D d = Eh3/[12(1 - v )], is the bending stiffness, and 

(13b) 
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(cos <I>~ - <I>~ sin <I>~)</>~2) - (sin <I>~ + ~~ cos <I>~) </>~1)2 + 

<I>~	 (1 sin 2<I>~) ( 0)+- - - cos <I> d .	 (I3c)
16 3 2<I>~ 

Likewise, the axial force Pd and the flexural contraction fd can be found in an asymptotic 
expansion form. 

Although the substrate part and the base plate undergo moderate bending with no inflection 
point, we may also use the elastica theory to describe their (nonlinear) deformation; in this 
case the inflection points are outside the actual elastic curve. For the substrate part, we have 
to expand not only the amplitude <I> s, but also the distortion parameter as in a perturbation 
series with respect to the distortion parameter of the delaminated layer c 

(14a) 

(I4b) 

The base plate is assumed to be simply supported, so at the simply-supported end, the 
amplitude <I> = -Jr /2, and at the common section <I> = <I>b. The amplitude at the common 
section and the distortion parameter of the base plate are now expanded in terms of the 
distortion parameter of the d laminated part c 

(ISa) 

(ISb) 

The end rotation at the common section (), the end moments M s , 1vJb, the axial forces, 
p.~ and P and the flexural contractions fs and fb can be found by expanding again in Taylor 
series in terms of c. 

Having obtained the asymptotic expressions for the force and deformation quantities, the 
equilibrium and compatibility requirements that ultimately define the non-linear post-critical 
path are the force and moment equilibrium at the common section and a condition that 
involves the compatible shortening of the delaminated and substrate paJ1S. These conditions 
are imposed for the first order, second and third order tenns separately and lead to: 

(a)	 one nonlinear equation for the zero order terms, which defines the critical point (charac­
teri tic equation) and 

(b)	 two linear algebraic equations for </>~l) and </>~l) that determine the first order forces and 

two linear algebraic equations for </>~2) and </>~2) that define the second order forces [11]. 

The initial postbuckling solution that has just been briefly described is used now in conjunc­
tion with the interface crack solutions summarized by Hutchinson ar,u ;,uo [14]. For a general 
bimaterial interface crack, these solutions depend on the Dundurs [J 5] parameters, a, ~ and 
the bimaterial constant E. For the homogeneous system under c::::1sideration, a = ~ = [ = O. 
Therefore these formulas will be presented with the homc;;::::1eous material assumption taken 
into consideration. 
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For the plane-strain interface crack shown in Fig. 3, the energy release rate, G, is 

1 - V [P*2 111*2 P* 111* . ]
G = -- -- +-- + 2 SIn, . (16)

4fL Ah Ih3 VAlh2
 

where fL is the shear modulus. In terms of
 

rt=h/H; (17) 

P* and 111* are linear combinations of the loads from the previous postbuckling solution 

(l8a) 

(18b) 

Moreover, A and I are positive dimensionless numbers and the angle, is restricted such that 
, :::; 1f /2. These quantities are given by 

A- 1 . 1= 
1 

. (19) 
- 1 +4rt +6rt2 + 3rt3 ' 12( 1 + rt3), 

\ The preceding formula does not separate the opening and shearing components. Instead, the 
following two expressions give the mode I and mode II stress intensity factors: 

1 111*[p* ]
1(, = ~ r:tL cos w + ~ sin(w +,) , (20a)

v2 yAh vIh3
 

1 111*
[p* ]
1(11 = ~ fAL sinw - ~ cos(w +,) . (20b)

v2 yAh vIh3 

Accurate determination of w, which depends only on rt (for a fixed set of Dundurs constants 
0:; ~), requires the numerical solution of an integral equation and has been reported in Suo 
and Hutchinson [12]. The extracted w, however, varies slowly with rt in the entire range 
0:::; rt :::; 1, in accordance with the approximate formula (14] 

(21) 

The mode mixity is defined by 

of, _ -1 (T.( / T.( ) _ -1 [~ sin w - cos(w +,)]
'f/ - tan .1' II .1" - tan ~ , (22a)

A cos w + sin(w +, ) 

where A measures the loading combination as 

~ = Ii P*h. (22b)VA M* 

Substituting the asymptotic expressions for the forces and moments from the postbuckling 
solution already presented, gives 

(23a) 
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where the first and second order terms (i.e. k = 1, 2) are (notice that the zero order quantities 
in the expression for P* cancel out) 

p*(k) = H p(k) _ !!.- p(k) _ 6hH M(k) (23b)T d T S T3 b' 

(23c) 

In the previous relations, the first and second order forces and moments pik), plk) , Mdk), 

M;k), k = 1,2 have already been found from the initial postbuckling solution of [11], which 
was also briefly described in this section. 

Now the energy release rate and the mode I and II stress intensity factors can be written in 
the form: 

(24a) 

/' (1) 2 (2)
A I,ll = E!(I,lI +C K I ,lI + ... , (24b) 

where Kg(, Kg; are found by substituting in (20) the first or second order forces and 

moments, respectively, G(2) is found from (16) by substituting directly the first order forces 
and moments, and 

The other quantity that is needed to assess the stability of delamination growth is the 
applied strain cO which is the external 'loading' quantity. This is given as follows 

(25a) 

where 

(0) _ pO. (I) L _ P(I)b pille H B(I) 
(25b)Co - ET' Co - ET + Eh + 2 ' 

(2) (2) (2) 
(2) L _ ~ Pd e f(2) ~ 11 B(2) (25c)Co - 2 + Eh + b + ET + 2 . 

The construction of G - eor Eo - ecurves as in Figs. 2, 3 will be described next. Let us 
discuss first the family curves of applied strain versus delamination length, co(e) for different 
values of G (e.g. Fig. 2). This is done as follows: For a specified G = f o, the corresponding 
C is determined from the minimum (negative) root of the equation 

(26a) 

The corresponding applied strain is 

(26b) 
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In a similar fashion, the family curves of the energy release rate as a function ofdelamination 
length G(£) for different values of applied strain EO (e.g. Fig. 1) are plotted as follows: For a 
specified EO = Eo, the corresponding E is determined from the minimum (negative) root of 
the equation 

(27a) 

Then, the corresponding energy release rate is 

(27b) 

According to (5), the delamination growth is stable if the EO - £ curve has a positive slope 
or the G - £ curve a negative slope, and it is unstable otherwise. 

4. Effect of mode-dependence on the fracture toughness 

The previous analysis was based on assuming a mode-independent critical energy release 
rate; this would mean, for example, fa = G/. During the initial postbuckling phase, the mode 
mixity changes with applied strain, and depends on the relative delamination thickness hiT. 
For example, the study in [11] has shown that a higher mode I component is present with 
delaminations further away from the surface. 

Based on these observations, let us now assume that the toughness fa depends on the mode 
mixity 1/;, and in fact f o(1/;) increases with increasing I1/; I (increasing mode II component). 
A simple, one parameter family of mixed mode adjusted fracture criteria can be described by 
[14] 

f o(1/;) = G][1 + (A - 1) sin2 1/;t l 
. (28) 

The parameter A adjusts the influence of the mode II contribution in the criterion. The limit 
A = 1 is the case of the classical mode-independent toughness, i.e. fa = Gj for all mode 
combinations (note that Gj is the pure mode I toughness). Other phenomenological criteria 
have been proposed to characterize mixed mode toughness data for interlaminar fracture such 
as in [16]. ne other alternative phenomenological criterion is: 

2l"'o(1/;) = GJ[1 +(1- A) laI1 ]. (29) 

According to (28), the fracture toughness levels off as 1./) -t 90° (mode II), whereas (29) 
models the toughness as unbounded as 1/; -t 90° for all A < I. As was discussed in [14], 
while this feature should not be taken literally, it did emerge in the simple model of mixed 
mode interface toughness due to asperity contact of Evans and Hutchinson [17]. 

Returning now to the delamination growth during the initial postbuckling phase, to see the 
effects of mode-dependent toughness on the growth characteristics, curves of GIfo( 1/;) versus 
delamination length £ at various levels of applied strain EO are constructed. Then GIfo(1/;) 
can be regarded as a mode-adjusted crack driving force in the sense that the criterion for crack 
advance is GIfo( ) = Gf. Two values of A, 0.15 and 0.30 are used. 

For the thin film model, the mode mixity is 

./, 4 cos w +V3~ sin w 
tan 'f/ = , (30a)

-4 sin w +V3~cos w 
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where 

_[4 (EO )]1/2. (30b)~- - --1
3 'Eer 

Therefore, if we define 

(; = Glfo('l/J) = O(Eo, Eer , 1/J), (31) 

Since 

we can write 

( ~~) 
c(} 

Substituting the definitions of 1/J from (30) and f o( 1/J) from (28) we obtain the unstable-to­
stable transition point 

(E6 + 2EoEer - 3E~r)( ) 1 4 EO .( ) (32)EO - 3Eer + [1 + (A _ 1) sin21/J] A-I (3e + 16) V3~ E~r Sin 21/J = O. 

Likewise, for the fracture condition (29), the unstable-to-stable transition point in the thin film 
model is defined from 

(E6 + 2EoEer - 3E~r) 1 _8_ ~ tan 1/J = 0 
(EO - 3Eer ) + [1 + (A _ 1) tan2 .ljJ]p - 1) (3e + 16) V3~ E~r cos21/J' (33) 

For the general case of arbitrary delamination and plate dimensions, the post-buckling 
solution by Kardomateas [11] can be used to derive the mode mixity 1/J in a closed form 
expression. In this case, the family curves of the energy release rate, G = GIfo(1/J) as a 
function of delamination length for different values of applied strain EO are plotted. For a 
specified EO = E6, the corresponding c is again determined from the minimum (negative) root 
of (27a) and the corresponding energy release rate, G' is again found from (27b) whereas the 
mode mixity 1/J is found from 

E]{(I) + E2K(2)
1/J - tan - I II II (34)

- 7:7(1)+ 2[.··(2)'
E.it [ E .ill 

5. Discussion of results 

For an illustration of the results from the previous analysis for a delamination of arbitrary 
thickness, consider a delaminated plate with E = 70 GPa and v = 0.3 and half-length 
L = 60 mm. These dimensions correspond to our specimen dimensions (a width of 10 mm 
has also been considered and is appropriately accounted for in the results). A delamination 
thickness of h = 0.4 mm is assumed whereas the delamination length is varying. 

To ensure the same thin film model solution in the results that follow (for a chosen 
delamination length), we keep the delamination thickness constant and change only the plate 
thickness; this would give a varying ratio hiT. 
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Fig. 4. The energy release rate as a function of the delamination length (for a specific applied strain Eo 
3.0 x 10-3). In each curve, the zero slope or peak value is the unstable-to-stable transition point. 

Figure 4 shows the energy release rate (2G IE h)105, as a function of the delamination 
length fl L, for a specified applied strain Eo = 3.0 X 10-3 and two cases: hiT = 0.10 
and hiT = 0.15, in comparison with the thin film solution. It is seen that the unstable-to­
stable transition point (zero slope or peak value) is shifted to the left with respect to the 
corresponding point in the thin film solution. The ratio EoIEcr(f tr ) = EoI2f~/7f2h2, where 
f tr is the delamination length at this transition point, is always three for the limiting thin film 
solution as has already been discussed. It is found that this ratio in the general case is less 
than three; in this particular example, for the other two cases this ratio is close to two. This 
would suggest that the delamination growth is less likely to be unstable since the range of 
delamination lengths for unstable growth is reduced. 

Another observation is that beyond f tr (peak point) the curves for hiT = 0.10, 0.15 are 
steeper than the thin film model approximation (steeper for the higher hiT ratio); therefore, the 
jump distance (unstable growth) is smaller than the one predicted by the thin film model (see 
also Fig. 1). Assuming a critical energy release rate fo = 120 N/m, or (2fol Eh) 105 = 0.857, 
the G - f curve for Eo = 2.8 X 10-3, hiT = 0.10, would predict unstable growth at 
fl L = 0.143. A lower bound on the jump distance (delamination growth) f j is found from the 
stable branch of Fig. 4: fjLI L = 0.047; applying (9) gives the upper bound at fjU I L = 0.080. 
In comparison, the thin film model would predict unstable growth at fl L = 0.163 and a very 
large jump (indeed the lower bound, i.e. the end point on the stable branch would be beyond 
the scale of delamination lengths shown in Fig. 4). 

The stability of delamination growth can be also assessed from the plot of the applied strain 
versus delamination length for a chosen value of the energy release rate. This is illustrated in 
Fig. 5 which shows Eo as a function of the delamination length f!.1 L, for the specified value 
of the energy release rate, (2G IEh)105 = 1.3. The two cases, hiT = 0.10 and hiT = 0.15, 
in comparison with the thin film solution are again being shown (see also Fig. 2). Similar 
conclusions are drawn, i.e. the point of zero slope (lowest value in the Eo - f plot) which is 
the unstable-to-stable transition point is shifted to the left with respect to the corresponding 
one in the thin film solution and the ratio EolEcr ( f tf ) (where f tf is the delamination length at 
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Fig. 5. The applied strain as a function of the delamination length (for a specific energy release rate (2fI Eh) 105 = 
1.3). In these curves, the lowest value (zero slope) is the unstable-to-stable transition point. 

Table 1. Eol<:cr(R. II ) at the unstable-to-stable growth transition point' 

From the G - R. curves 

Eo is the applied strain 

hiT = 0.15 hiT = 0.10 Thin film 

Eo = 2.8 X 10-3 1.82 1.86 3.00 
Eo = 3.0 X 10-3 1.81 1.85 3.00 

From the Eo - R. curves 

fa = (2f01Eh) 105 
, where fa is the critical energy release rate 

hIT=0.15 hIT=O.IO Thinfilm 

f o = 1.0 1.85 1.87 3.00 

fa = 1.3 1.83 1.85 3.00 

, Mode-independent fracture criterion, oX = 1.0 

this transition point) for the general case is less than three. 
A comparison of the ratio Eolccr(.etr ) for the cases examined is shown in Table 1. It is also 

seen that this ratio shows in general a tendency to increase for a smaller value of the ratio hiT 
(i.e. delaminations located closer to the surface). 

Figure 6 illustrates the effect of varying the applied strain Eo in the G-.e curves by showing 
a family of curves for hiT = 0.15 and the thin film solution for two values of applied strain. 
Although the ratio Eolccr(.etr ) is independent of the applied strain in the thin film solution, it 
is found that in the general case this ratio does have a slight dependence on the applied strain 
Eo (see also Table 1). 

The last two plots show the effect of mode dependence on the fracture criterion. For these 
plots, the energy release rate is normalized with the (mode-dependent) critical energy release 
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Fig. 6. The effect of applied strain on the growth stability (two values of Eo are shown). 
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Fig, 7. The effect of mode-dependence on the fracture criterion (A = 1 corresponds to mode-independence), An 
applied strain Eo = 2,8 x 10-3 has been assumed. 

rate ro( 'l/J). For this purpose, a value of G1c = 80 N/m was assumed. Figure 7 gives the G - e 
curves for an applied strain Eo = 2.8 X 10-3 for two values of A : A = 1 corresponding 
to mode-independence, and A = 0.15 according to the mode-dependent fracture criterion 
(28). Again, the cases of hiT = 0.10, 0.15 and the thin film solution are shown. It is 
seen that the unstable-to-stable tran ition point in the A = 0.15 case is shifted to the left 
(smaller delamination lengths) in comparison to the mode-independent A = 1.0 curves. For 
the hiT = 0.10, 0.15 cases, the ratio EO/Ecr(ltr) is reduced to about 1.5 versus 1.8 for the 
A = 1 case. For the thin film model this ratio is reduced to 1.7 for A = 0.15 versus the value 
of three for A = 1. 

Furthermore, the values of the ratio G /fo('l/J), which determines whether growth takes 
place, show a wide range, increasing to above un.ity for the A = 1 curves but remaining 

0.14 0.1 B 0.22 0.26 
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Fig. 8. Comparing the predictions of the two suggested mode-dependent fracture criteria for an applied strain 
Eo = 2.8 X 10-3 

below unity for the A = 0.15 curves (and being always higher for the larger values of 
hiT). This underlines the importance of the combined influence of the relative location of 
the delamination through the thickness, and that of the selection of the appropriate fracture 
criterion. The latter is also underscored in Fig. 8 which compares the predictions of the two 
suggested fracture criteria, (28) and (29) for A = 0.15 (again for hiT = 0.15 and the thin 
film solution, and for an applied strain Eo = 2.8 x 10-3). It is seen that the unstable-to-stable 
transition point for the fracture criterion (29), is shifted slightly to the left in comparison to 
employing the fracture criterion (28) with the same A. For the hiT = 0.10, 0.15 cases, the 
ratio Eolccr(f.tr) was calculated to about 1.4 versus 1.5 for the (28) case. For the thin film 
model this ratio is reduced to 1.5 for (29) versus the value of 1.7 for (28). 

Before listing these results in a condensed form, it is useful to re-iterate the major outcome 
of this research. In short, besides providing a formulation and solution for investigating 
the stability of delamination growth for an arbitrary ratio hiT of the relative delamination 
thickness, this work shows clearly that delamination growth is more likely to be stable than 
would be expected on the basis of the thin film model. 

This study is a one-dimensional analysis and it is, therefore, natural to underline the need 
that the stability of growth be studied in detail in the future for two- dimensional delamination 
configurations. To this extent, Nilsson and Stor~ers [18] have found in their numerical study 
of a single embedded circular delamination under uniaxial compression that the external load 
required to sustain crack growth for their configuration was steadily decreasing, rendering 
the system unstable, and this result was sensitive to the particular fracture criterion used. 
Further studies are needed to study the stability of delamination growth in the more common, 
two-dimensional, elliptical delaminations. 

6. Conclusions 

In this study, the closed form solutions for the energy release rate at the delamination tip 
versus applied compressive strain during the initial postbuckling phase were used to define 

0.18 0.22 0.26 
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the combinations of delamination length and applied strain that lead to unstable growth. 
This would practically cause a 'jump' (most probably contained) growth of the delamination. 
Specifically, the following were concluded from this investigation: 

1.	 Thin film theory predicts that at the transition point of unstable to stable growth.err the ratio 
of the applied strain and the critical delamination buckling strain [0/[cr(.err ) is three; the 
present study predicts that for an increasing value of the relative delamination thickness 
hiT the ratio [0/[cr(.etr ) is less than three, and is dependent on the fracture toughness. 
This indicates that the point of stable growth is occurring at a smaller delamination length 
(than the thin film model). 

2.	 Another observation is that beyond the transition point (peak point in the G - .e curves), 
the curves for an increasing hiT ratio are steeper than the thin film model approximation; 
therefore, the jump distance when unstable growth occurs, is smaller than the one predicted 
by the thin model. 

3. A study of the influence of the mode dependence of interface toughness on the conditions 
of initiation and extent ofdelamination growth reveals that the unstable-to-stable transition 
point in the mode-dependent cases is shifted to the left (smaller delamination lengths) 
in comparison to the mode-independent curves, and the ratio [0/[cr(.err) is accordingly 
decreasing. 

4. A common, major observation from the results of this work is that delamination growth 
is more likely to be stable than would be expected on the basis of the thin film model. 
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