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Abstract—A formulation based on the three dimensional theory of elasticity is employed to study
the buckling of an orthotropic cylindrical shell under external pressure. In this paper, a non-zero
axial displacement and a full dependence of the buckling modes on the three coordinates 1s assumed,
as opposed to the ring approximation employed in the earlier studies. The results from this elasticity
solution are compared with the critical loads predicted by the orthotropic Donnell and Timoshenko
non-shallow shell formulations. Two cases of end conditions are considered ; one with both ends of
the shell fixed, and the other with both ends capped and under the action of the external pressure.
Moreover, two cases of orthotropic material are considered with stiffness constants typical of
glass/epoxy and graphite/epoxy. For the isotropic material case, the predictions of the simplified
(single expression) Donnell and the Fligge and the Danielson and Simmonds theories are also
compared. In all cases, the elasticity approach predicts a lower critical load than the shell theories,
the percentage reduction being larger with increasing thickness. The degree of non-conservatism
depends strongly on the material properties, being smaller for the isotropic case. Furthermore,
although it 15 a commonly accepted notion that the critical point in loading under external pressure
occurs for n = 2 and m = | (number of circumferential waves and number of axial half-waves,
respectively), it was found that this is not the case for the strongly orthotropic graphite/epoxy
material and the moderately thick construction ; for this case, the value of m at the critical point is
greater than | (yet, in all cases n = 2).

[. INTRODUCTION

Shell structural configurations of moderate thickness can be potentially used in the marine
industry for submersible hulls as well as for components in the automobile and aircraft
industries. Moreover, composites in the form of circular cylindrical shells are considered
for civil engineering, column-type applications and in space vehicles as a primary load
carrying structure.

In all these applications, an important design parameter is the buckling strength. This
is particularly significant in applications involving advanced composites because of the
large strength-to-weight ratio and the lack of extensive plastic yielding in these materials.

In shells under external pressure, simple, direct expressions for the critical value are
available in the literature only for isotropic material (Donnell, 1933 ; Fliigge, 1960 ; Daniel-
son and Simmonds, 1969). Besides these simple expressions, which are derived by imposing
certain shallowness limitations, values of the critical pressure can be found by solving the
eigenvalue problem for the set of cylindrical shell equations from the Donnell theory that
are not subject to the shallowness limitations of the simple expressions (Brush and Almroth,
1975). Furthermore, in presenting a shell theory formulation for isotropic shells, Timo-
shenko and Gere (1961) included some additional terms (these equations are briefly
described in the Appendix). Both the (non-simplified) Donnell and Timoshenko shell theory
equations can be easily extended for the case of orthotropic material. Although several
other shell theories based on the classical hypotheses have been formulated, the Donnell,
Timoshenko, Fligge and Danielson and Simmonds theories constitute the representative
set of classical shell theories that will be used in this paper for comparing with the results
[rom the benchmark elasticity solution.

2195



2196 G. A. KARDOMATEAS and C. B. CHUNG

Furthermore, although the classical shell theories have been most widely used in
deriving critical loads (e.g. Simitses ez al., 1985), the recent, higher order. shear deformation
theories (e.g. Whitney and Sun, 1974 ; Librescu, 1975 ; Reddy and Liu, 1985) could poten-
tially produce much more accurate results. Therefore, a benchmark elasticity solution is
needed in order to enable a future comparison of the accuracy of the predictions from the
improved shell theories. The anisotropy and the large extensional-to-shear modulus ratio
of advanced composites underscores further the need for accurate predictions.

Elasticity solutions for the buckling of cylindrical shells have been recently presented
by Kardomateas (1993a) for the case of uniform external pressure and orthotropic material ;
a simplified problem definition was used in this study (“ring” assumption), in that the pre-
buckling stress and displacement field was axisymmetric, and the buckling modes were
assumed two dimensional, i.e. no zcomponent of the displacement field and no z-dependence
of the r and # displacement components. It was shown that the critical load for external
pressure loading, as predicted by shell theory, can be highly non-conservative for moderately
thick construction.

A more thorough investigation of the thickness effects was conducted by Kardomateas
(1993b) for the case of a transversely isotropic thick cylindrical shell under axial
compression. This work also included a comprehensive study of the performance of the
Donnell (1933), the Fliigge (1960) and the Danielson and Simmonds (1969) theories for
isotropic material in the case of axial compression. These theories were all found to be non-
conservative in predicting bifurcation points, the Donnell theory being the most non-
conservative.

In a further study, Kardomateas (1993c) considered a generally cylindrically ortho-
tropic material under axial compression. In addition to considering general orthotropy for
the material constitutive behavior, the latter work investigated the performance of another
classical formulation, i.e. the Timoshenko and Gere (1961) shell theory. The bifurcation
points from the Timoshenko formulation were found to be closer to the elasticity predictions
than the ones from the Donnell formulation. More importantly, the Timoshenko bifurcation
point for the case of pure axial compression was always lower than the elasticity one, i.e.
the Timoshenko formulation was conservative. This case of pure axial load from the
Timoshenko formulation was actually the only case to date of a classical shell theory
rendering conservative estimates of the critical load (the case of combined lateral pressure
and axial load has not yet been studied). However, as will be seen in this paper, the same
formutation for the case of a shell under external pressure would render non-conservative
estimates.

In this paper, a benchmark solution for the buckling of an orthotropic cylindrical shell
under external pressure is produced. The non-linear three dimensional theory of elasticity
is appropriately formulated and reduced to a standard eigenvalue problem for ordinary
linear differential equations in terms of a single variable (the radial distance r), with the
applied external pressure, p, the parameter. A full dependence on r. 6 and z of the buckling
modes is assumed. The formulation employs the exact elasticity solution by Lekhnitskii
(1963) for the pre-buckling state. Two cases of end conditions are considered ; one with
both ends of the shell fixed, which leads to a much easier derivation of the pre-buckling
stress field, and the other with both ends capped and under the action of the external
pressure.

Results will be presented for the critical load and the buckling modes; these will
be compared with both the orthotropic “non-shallow™ Donnell and Timoshenko shell
formulations. For the isotropic case, a comparison with the simplified Donnell (1933), the
Fligge (1960) and the Danielson and Simmonds (1969) formulas will also be performed.
The orthotropic material examples are for stiffness constants typical of glass/epoxy and
graphite/epoxy and the reinforcing direction along the periphery.

2. FORMULATION

Let us consider the equations of equilibrium in terms of the second Piola—Kirchhoff
stress tensor X in the form
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div(Z-F") =0, (1a)

where K 1s the deformation gradient defined by
F =1I+grad 7, (1b)

where ¥ is the displacement vector and I is the identity tensor. Notice that the second Piola—
Kirchhoff stress tensor 1s symmetric whenever the Cauchy stress tensor is, and therefore it
has been preferred in finite-strain elasticity formulations. Furthermore, because it is sym-
metric, it can be used on constitutive equations with a symmetric strain tensor.

The strain tensor is defined by

E = §(FT-F—I). (1)

More specifically, in terms of the linear strains:
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the deformation gradient F is
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At the critical load there are two possible infinitely close positions of equilibrium. The
r, 6 and z components of the displacement corresponding to the primary position are
denoted by u,, vy, wy. A perturbed position is denoted by

U=ugtou;; v=0vo+av,;; w=wotaw, (4)

where o 1s an infinitesimally small quantity. Here, o, (r, 0, 2), o (r, 0, 2), aw (r, 6, z) are the
displacements to which the points of the body must be subjected to shift them from the
initial position of equilibrium to the new equilibrium position. The functions u,(r, 6, z),
v(r,0,z2),w (r,0,z)are assumed finite and « 1s an infinitesimally small quantity independent
of r, 8, z.

Following Kardomateas (1993a), we obtain the following buckling equations:
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In the previous equations, o} and w) are the values of 6, and w; at the initial equilibrium
position, i.e. for u = uy, v = v and w = w,, and ¢; and w; are the values at the perturbed
position, i.e. foru =u,, v =r,and w = w,.

The boundary conditions associated with 1(a) can be expressed as:

F-TN-N =4V, (6)

where 7 is the traction vector on the surface which has outward unit normal N = ([, 1, /)
before any deformation. The traction vector 7 depends on the displacement field
V = (u,v,w). Again, following Kardomateas (1993a), we obtain for the lateral and end
surfaces :

(01— 190+ T2+ (vl — Ol T )i+ (1. — T+ L) = plarimi— i), (Ta)
(T + 050, — 120D+ (05 + 190 — 180t (Th,+ 100, — %)) = —p(id—wi),  (TH)
(T 190, — 03w+ (T, + 0y, — 1Y)+ (0% T, — TSR = plwpl — k). (7¢)

2.1. Pre-buckling state

The problem under consideration is that of an orthotropic cylindrical shell subjected
to a uniform external pressure, p. Two cases will be considered ; one where both ends of
the shell are fixed (this simplifies the derivation of the pre-buckling stress field), and the
other where the ends are capped and under the action of the external pressure, p (this would
more closely resemble the state of loading in a submersible). The stress—strain relations for
the orthotropic body are

o, Eiiqi Cizy Gz D 0 0 &
O Cia €5 €3 0 0 0 €00
Oz | _ €13 €23 €y 0 0 0 ez ’ (8a)
To: 0 (PP 0 0 Vo=
Tz 0 Css 0 Vez
L T | | 0 0 0 0 0 ce6] [Vl

where ¢;; (i, j = 1, 2, 3) are the stiffness constants (we have used the notation 1 =r, 2 =0,
3=2).
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Fig. 1. Cylindrical shell under external pressure.

Let r| be the internal and r, the external radius (Fig. 1) and ¢ = r,/r,. In terms of

C

(¥

(8b)

i

the stress field for the simpler case of a cylinder with both ends fixed is given dircctly from
Lekhnitskii (1963) as follows:

o8 = p(Ci* =1+ Cor Y, ©9a)
g = p(Cikr*~'—Coer 1), (9b)
ol = —p((k-('”—k““rk SRR ¥ ) (%)
5%} 255
Ty =1, =14 =0, (9d)
where
1 cZk,J;%»l
Gy wie =BT C,= (I—c%) (9¢)

In the previous equations a,; are the compliance constants, i.e.
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For the case of a shell with end caps under the action of the external pressure,
the stresses that satisfy the equilibrium equations in the pre-buckling state, arise from a
displacement field accompanied by deformation (assume ¢, # ¢5,):

uo(r) = C o+ Cyor *+ MDor; vo=0; wo(2) = Dyz. (11a)

Cii—C22

Satisfying the inside boundary traction-free condition, 67|, = 0, allows eliminating D, and
gives the radial stress in the form

o) = Ciolerk+c (' = )+ Cao( —erik+c ) (r ' —r7 ), (11b)
the hoop stress in the form

ogp = Crol(cik+e)rf ' —(crik+ci )i
+Cool(—crok+e)r™ ' —(—cpk+e)frit* '], (1lc)

and the axial stress in the form

0% = Col(cisk+ )" —(crik+c1)gri™]
+ Cool(—cisk+e)r ' —(—crk+e)gri* '] (11d)

In the previous relations, fand g are in terms of the stiffness constants :

:(Clz+sz)(023—013)+023(011—022)_ - 3y —ctyteasler) —ca) ]
(cri4ci)(cas—cys)+enle —cpn)’ (cri4ci)(cas—cis)+ei3(e—ep)’

(11e)

The constants C,, and C,, are linearly dependent on the external pressure and are found
from the condition of external pressure

0

0rr|r2 = —pa (lza)

and the axial force developed due to the pressure on the end caps

f otrdr= 21, (12b)

as follows :

ﬁl2_ﬂ22 N o ﬂzl_ﬂll
Co oy | Co= Py B B Bar (12¢)

PR B—BiBa

where
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Hence, it turns out that in both cases the pre-buckling shear stresses are zero and the
pre-buckling normal stresses are linearly dependent on the external pressure, p, in the form

03 = p(Ciji ot Cij,lrk_l+cij,2r_k_l)s (13)

where C; o, C;;y, Cj; 2, are constants dependent on the material properties, the geometric
dimensions and the circumferential and axial wave numbers » and 1. This observation
allows a direct implementation of a standard solution scheme, since, as will be seen, the
derivatives of the stresses with respect to p will be needed and these are directly found from

eqn (13).

2.2. Perturbed state

Using the constitutive relations [eqn (8a)] for the stresses ¢7; in terms of strains ej;, the
strain—displacement relations [eqn (2)] for the strains ej; and the rotations wj in terms of
the displacements u,, v,, w,, and taking into account [eqn (9d)], the buckling eqn (5a) for
the problem at hand is written in terms of the displacements at the perturbed state as

follows :

0
U, U Ogo \ U100
Cll(ul,rr+ r) Cw’w +<C66+ 2) = +< Css+ 2>“|,zz
Goo \ V1o Gpg \U\0
C C 4 5
+( 127+ Ce6— 2) * < 22+t Cet 2>’,h

o
+<513+C55_f Wit (ci3— ‘-21) ‘—0 (14a)

The second buckling eqn (5b) gives:

0 0o__ 0
Ty Vi, Uy G —0pg \[ V1, Uy V100
(“6* ‘z)(* o )* (‘z )(‘ ¥ ;2)“2272—
00 0" Uy ro “30 Urg
+ C44+ 1zt | CostCra— +\ et Cnt— =
2) r 2 Lr

0! 1 do’ v, U
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In a similar fashion, the third buckling eqn (5¢) gives:

0
o, Wi, oo \ W16
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Jr(')r arr ul‘z
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Tpg 1)“1 ldag
2) r T3 i
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In the perturbed position, we seek equilibrium modes in the form:

u,(r,0,z) = U(r)cosnBsiniz; v,(r,0,z) = V(r)sinnBsiniz;

wi(r,0,z) = W(r) cosnf cos Az, (15)

where the functions U(r), V(r), W(r) are uniquely determined for a particular choice of #
and 4.

Substituting in eqn (14a), we obtain the following linear homogeneous ordinary differ-
ential equation forr, < r <r,:

. s 2 22 2
UG en+ U St 4 U@)| —esstz = C2TS g0 2 o 2
r r 2 2r

+ V(r),[(ClQTGﬂt gl n :|+ V(r)l:—(sz-j-Cﬁ(,)f ) n :l

—gl—x
2r " 2’

+ W(r)'[—(cla+t'ss)l+ofz §]+ W(r) 50“76‘ o, (162)

The second differential eqn (14b) gives for r| <r < r;:

02 ¢ L 9 O-’SJ’I 2 CestC 71’12
V()| ceot + V()| e A o fls +V(r)| —cah®— e UL LR
2 roor 2 2 =

)«.2 O'gg 0'0/ —(C|7+C(6)f'l n
_ 0 S, rr N .2 - \”7 0 =
9mg Tyt |[TUO) ; e
—(caa+ce)n n ,n ni ni
+U(r)[~ = e — 0ty + 00 5 |F WO (cartead) - —0%o " [ =0. (16b)

In a similar fashion, eqn (14c) gives forr, <r <ry:

0

0 0 2 2
" Ty ’ Cs O (P 5 n n
o (* z>+W(’) [ T3t ) }*W(")[‘C“”‘C“F—"362,-2]

; 5 s5)A A A
+UGY| (st esph—ad - |1 U] Tt 0 2 0t
2 r 2r 2

A A
+ V(r)[(023+c44)nr-*039’;r] =0. (l6¢c)

All the previous three eqns (16a—c) are linear, homogeneous, ordinary differential
equations of the second order for U(r), V(r) and W(r). In these equations, a>(r), a%(r),
al(r) and ¢’’(r) depend linearly on the external pressure p through expressions in the form
of eqn (13).

Now we proceed to the boundary conditions on the lateral surfaces r =r,, j =1, 2.
These will complete the formulation of the eigenvalue problem for the critical load.

From eqn (7), we obtain for /= +1,m =#4=0:

O—;rZO; T;6+(O—g+pj)w;:07 T::——(O':E]r—*_pj)wé:o’ atr:rlar2 (17)

where p; = p for j = 2, i.e. r = r, (outside boundary) and p; = 0 for j = |, i.e. r = r, (inside
boundary).



Buckling of thick orthotropic cylindrical shells 2203

Substituting in egns (8a), (2), (15) and (9d), the boundary condition ¢;, = 0 at r = r;,
j=1,2gives:

U'(r))co+[U@r) +nV(r)] crl_z —c3AW(r;) =0, j=1,2. (18a)

The boundary condition t/s+ (6 +p)w, = 0atr =r,j= 1,2 gives

V’(r,)[céé+(a,‘),+pj) 1]+[V(rj)+nU(r,-)][—c6°+(a,°,+pj) %} ’1 =0, j=1,2.

2 i
(18b)
In a similar fashion, the condition t;:—(a,°,+p,)w[, =0atr=r;,j=1,2gives:
)‘U(rj)[cSS_(o—Pr +P/);]+ W,(”j)[cs::‘*‘(ff:)r +Pj)é] =0, j=12 (18¢c)

Equations (16) and (18) constitute an eigenvalue problem for differential equations,
with the applied external pressure, p, the parameter, which can be solved by standard
numerical methods (two point boundary value problem).

Before discussing the numerical procedure used for solving this eigenvalue problem,
one final point will be addressed. To completely satisfy all the elasticity requirements, we
should discuss the boundary conditions at the ends. From eqn (7), the boundary conditions
ontheends f=m =0,/4= +1,are:

T+ (0h+p)ws=0; tp.—(62+p)w,=0; 0¢,=0, atz=0,/. (19)

These conditions are strictly valid for capped ends ; for fixed ends, p = 0 on the end faces.
However the discussion that follows remains the same in either case.

Since ¢’ varies as sin iz, the condition ¢, = 0 on both the lower end z = 0, and the
upper end z = ¢, is satisfied if

i=—, (20)

It will be proved now that these remaining two conditions are satisfied on average.
To show this we write each of the first two expressions in eqn (19) in the form:
S, =1+ (@2 +p)wy and Sy, = 1).— (¢2.+ p)w], and integrate their resultants in the Car-
tesian coordinate system (x, y, z) e.g. the x-resultant of S,. is:

ry (2m
J j S, (cos 0)(rd6) dr.
r 0

Since 1], and wj have the form of F(r) cos nf cos Az, i.e. they have a cosnf variation,
the x-component of S,. has a cos #f cos 6 variation, which, when integrated over the entire
angle range from zero to 2, will result in zero. The y-component has a cos nf sin 6 variation,
which again, when integrated over the entire angle range, will result in zero. Similar
arguments hold for §,., which has the form of F(r) sin nf cos Az.

Moreover, it can also be proved that for the system of resultant stresses eqn (19) would
produce no torsional moment. Indeed, this moment would be given by

Ty 2n
J‘ J Se(r dB)rdr.
ry 0

Since ;. and o] and hence Sy, have a sin #f variation, the previous integral will be in the
form
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Ty 2n
J J r2F(r) sin nf cos Az dr dé,
r 0

which, when integrated over the entire #-range from zero to 2z, will result in zero.

Returning to the discussion of the eigenvalue problem, as has already been stated, eqns
(16) and (18) constitute an eigenvalue problem for ordinary second order linear differential
equations in the r variable, with the applied external pressure, p, the parameter. This is
essentially a standard two point boundary value problem. The relaxation method was used
(Press ¢t al., 1989) which is essentially based on replacing the system of ordinary differential
equations by a set of finite difference equations on a grid of points that spans the entire
thickness of the shell. For this purpose, an equally spaced mesh of 241 points was employed
and the procedure turned out to be highly efficient with rapid convergence. As an initial
guess for the iteration process, the shell theory solution was used. An investigation of the
convergence showed that the solution converged monotonically and that with even three
times as many mesh points, the results differed by less than 0.005 per cent. The procedure
employs the derivatives of the equations with respect to the functions U, V, W, U’, V', W’
and the pressure p; hence, because of the linear nature of the equations and the linear
dependence of ¢} on p through eqn (13), it can be directly implemented. Finally, it should
be noted that finding the critical load involves a minimization step in the sense that the
eigenvalue is obtained for different combinations of n,/m and the critical load is the
minimum. The values of n = 2, m = 1 were found to give the minimum eigenvalue in most
but not all the cases studied. The specific results are presented in the following.

3. DISCUSSION OF RESULTS

Results for the critical pressure, normalized in terms of the shell thickness, 4, as

3
pra

a0 (21)

ﬁ:

were produced for a typical glass/epoxy material with moduli in GN/m? and Poisson’s
ratios listed below, where 1 is the radial (r), 2 is the circumferential (#), and 3 the axial (z)
direction: E, = 14.0, E,; =570, E;=14.0, G,, = 5.7, G,; = 5.7, G;;, = 5.0, v,, = 0.068,
vy3 = 0.277, vy, = 0.400. It has been assumed that the reinforcing direction is along the
periphery.

In the shell theory solutions, the radial displacement is constant through the thickness
and the axial and circumferential ones have a linear variation, i.e. they are in the form

—R
u\(r,0,z) = Uycosnsin Az, v(r,0,2) = [Vo-l- rT(VO+nUo):|sinn¢9sin)t:. (22a)

wi(r,0,2) = [Wy— (r— R)AU ] cos nf cos Az, (22b)

where R = (r,+r,)/2 is the mean shell radius and U,, V,, W, are constants (these dis-
placement field variations would satisfy the classical assumptions of e,, = ¢,y = ¢,. = 0).

A distinct eigenvalue corresponds to each pair of the positive integers m and n. The
pair corresponding to the smallest eigenvalue can be determined by trial. As noted in the
Introduction, one of the classical theories that will be used for comparison purposes is the
“non-shallow” Donnell shell theory formulation. The other benchmark shell theory used
in this paper is the one described in Timoshenko and Gere (1961). In this theory, an
additional term in the first equation, namely, — Ng(v4.+u_), and an additional term in the
second equation, namely, RN v ., exist (these equations together with the extra terms are
explicitly given in the Appendix).
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Table . Comparison with shell theories for glass/epoxy

Donnell shell* Timoshenko shell*
rafr, Elasticity (% increase) (% increase)
1.05 0.2813 0.2926 (4.0%) 0.2914 (3.6%)
1.10 0.2744 0.2973 (8.3%) 0.2962 (7.9%)
1.15 0.2758 0.3133 (13.6%) 0.3122 (13.2%)
1.20 0.2764 0.3308 (19.7%) 0.3296 (19.2%)
1.25 0.2755 0.3485 (26.5%) 0.3473 (26.1%)
1.30 0.2733 0.3662 (34.0%) 0.3649 (33.5%)

* See Appendix.

Orthotropic with circumferential reinforcement, #/r, = 10; Critical
pressure, p = pri/(E,h%); Moduli in GN/m?: E, =57, E, = E, = 14,
Gy, =50, G, =G,y =157, Poisson’s ratios: v, = 0.068, v,; =0.277,
vy, = 0.400; Capped ends, n =2, m = I.

In the comparison studies we have used an extension of the original, isotropic Donnell
and Timoshenko formulations for the case of orthotropy. The linear algebraic equations
for the eigenvalues of both the Donnell and Timoshenko theories are given in more detail
in the Appendix.

Concerning the present elasticity formulation, the critical load is obtained by finding
the solution p for a range of n and m and keeping the minimum value. Tables | and 2 show
the critical pressure, as predicted by the present three dimensional elasticity formulation
and the one, as predicted by both the “non-shallow” Donnell and Timoshenko shell
equations for the glass/epoxy and graphite/epoxy material, respectively (case of capped
ends under pressure). A length ratio £/r, = 10 has been assumed. A range of outside versus
inside radius, r,/r, from somewhat thin (1.05) to thick (1.30) is examined. The following
observations can be made :

(1) For both the orthotropic material cases, both the Donnell and the Timoshenko
bifurcation points are always higher than the elasticity solution, which means that both
shell theories are non-conservative. Moreover, they become more non-conservative with
thicker construction. Notice that the result for the Timoshenko theory in this case of a shell
under external pressure is opposite to the one for a shell under pure axial load, in which
case the Timoshenko shell theory was found to be conservative (Kardomateas, 1993c).

(2) Although it is a commonly accepted notion that the critical point in loading under
external pressure occurs for n = 2 and m = 1, it was found that this is not the case for the
strongly orthotropic graphite/epoxy material and the moderately thick construction (Table
2) ; for this case, the value of m at the critical point is greater than 1. However, in all cases
n=2.

(3) The bifurcation points from the Timoshenko formulation are always slightly closer
to the elasticity predictions than the ones from the Donnell formulation. .

(4) The degree of non-conservatism is strongly dependent on the material ; the shell
theories predict much higher deviations from the elasticity solution for the graphite/epoxy
(which 1s also noted to have a much higher extensional-to-shear modulus ratio).

Table 2. Comparison with shell theories for graphite/epoxy

Elasticity Donnell shell* Timoshenko shell*
rofr, (n, m) (n, m) (% increase) (n, m) (% increase)
1.05 0.2576 (2, 1) 0.2723 (2, 1) (5.7%) 0.2713 (2, 1) (5.3%)
1.10 0.2513 (2, 1) 0.2871 (2, 1) (14.2%) 0.2861 (2, 1) (13.8%)
.15 0.2347 (2,2) 0.3037 (2, 2) (29.4%) 0.2995 (2, 2) (27.6%)
1.20 0.2166 (2, 3) 0.3183 (2, 2) (47.0%) 0.3111 (2, 3) (43.6%)
1.25 0.1978 (2, 3) 0.3310 (2, 3) (67.3%) 0.3198 (2, 4) (61.7%)
1.30 0.1808 (2, 4) 0.3429 (2, 4) (89.7%) 0.3261 (2, 5) (80.4%)

*See Appendix.

Orthotropic with circumferential reinforcement, ¢/r, = 10; Critical pressure,
p=pr3/(E;h%); Moduli in GN/m?: E, =140, E, =99, E;=9.1, G;, =509,
G, =4.7,G;; =4.3; Poisson’s ratios : v, = 0.020, v,5 = 0.300, vy, = 0.490 ; Capped
ends.
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Table 3 gives the predictions of the Donnell and Timoshenko shell theories for the
glass/epoxy material, in comparison with the elasticity one for the case of fixed ends. A
comparison with Table 1 reveals that the end conditions (fixed ends versus capped under
pressure ends) have little influence on the critical load. However, two observations can be
easily made; the bifurcation load for the capped ends is always slightly smaller than the
one for the fixed ends, and the Timoshenko bifurcation point is almost identical to the one
for the Donnell point for fixed ends, unlike for capped ends. Hence, it can be concluded
that the additional term in the second shell theory equation, namely, RN v ., (which would.
be zero for fixed ends) is primarily responsible for the differences in the two shell theories
and also for the conservatism of the Timoshenko shell theory when pure axial loading is
considered. Notice that the study in Kardomateas (1993b) did not include a comparison
with the Timoshenko’s shell theory.

Particularly simple formulas can be obtained for isotropic materials. Set

mnR

; (23)

m:

With some additional shallowness assumptions, a direct formula can be obtained from the
Donnell shell theory, in terms of the Young's modulus, £, and the Poisson’s ratio, v, as
follows :

Eh h? m? +n?)? mt
Ps- Donnell = *R [12R2(1 —VZ) ( :-2 )— e ;12(”712_‘_"2)2]. (243)
For isotropic materials two other shell theories, namely the Fliigge (1960) and the Danielson
and Simmonds (1969), have produced direct results for the critical external pressure in
shells and should, therefore, be compared with the present elasticity solution. The expression
for the eigenvalues derived from the Fliigge equations (Flugge, 1960), ps, and the more
simplified, but just as accurate, one by Danielson and Simmonds (1969), p,s, are:

o Eh Qrps
Pirosi = g [t +nY) — G +nd)]’ i)

where the numerator for the Fliigge theory is

hZ

Or= 12R (1 —y?

) {2 +n%)* —2[vm> + 3rit*n?
~2 2

+@—vm’n* +n®1+2Q—v)m*n® +n'} +mt,  (24¢)

and for the Danielson and Simmonds equations

Table 3. Comparison with shell theories for glass/epoxy-fixed ends

Donnell shell* Timoshenko shell*
ryry Elasticity (% increase) (% increase)
1.05 0.2860 0.2972 (3.9%) 0.2972 (3.9%)
.10 0.2789 0.3017 (8.2%) 0.3017 (8.2%)
[.15 0.2803 0.3178 (13.4%) 0.3178 (13.4%)
1.20 0.2808 0.3354 (19.4%) 0.3353 (19.4%)
1.25 0.2798 0.3532 (26.2%) 0.3531 (26.2%)
1.30 0.2776 0.3709 (33.6%) 0.3708 (33.6%)

* See Appendix.

Orthotropic with circumferential reinforcement, ¢/r, = 10; Critical
pressure, p = pri/(E:h%); Moduli in GN/m?: E, =57, E, = E, = 14,
Gy, =50, G,,=G,;=5.7; Poisson’s ratios: v,, =0.068, v,; =0.277;
vy, =0.400; Fixed ends, n =2, m = 1.
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Table 4. Comparison with shell theories for isotropic material

Simplified

Danielson

rafry Elasticity Donnell* Timoshenko* Donnellt Fligget & Simmondst
1.05 0.3759 0.3907 0.3906 0.4721 0.3936 0.3965
(3.9%) 3.9%) (25.6%) (4.7%) (5.5%)
1.10 0.3303 0.3523 0.3523 0.4556 0.3547 0.3580
(6.7%) (6.7%) (37.9%) (7.4%) (8.4%)
.15 0.3304 0.3617 0.3616 0.4750 0.3644 0.3678
(9.5%) (9.4%) (43.8%) (10.3%) (11.3%)
[.20 0.3365 0.3779 0.3779 0.4995 0.3811 0.3846
(12.3%) (12.3%) (48.4%) (13.2%) (14.3%)
1.25 0.3436 0.3959 0.3959 0.5254 0.3998 0.4033
(15.2%) (15.2%) (52.9%) (16.4%) (17.4%)
1.30 0.3508 0.4145 0.4144 0.5517 0.4191 0.4227
(18.2%) (18.1%) (57.3%) (19.5%) (20.5%)
*See Appendix.

T Equations 24(a-d).

Isotropic, £ = 14 GN/m?, v = 0.3, //r, = 10; Critical pressure, 5 = pri/(Eh®); Fixed ends, n = 2,

m=1.

Qns =

2

12R*(1—

v?)

(P4 (mi+n—1) +m,
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(24d)

Again, a distinct eigenvalue corresponds to each pair of the positive integers m and #, the
critical load being for the pair that renders the lowest eigenvalue.

Table 4 gives the predictions of the different isotropic shell theories for //r, = 10, in
comparison with the elasticity one. It 1s clearly seen that all shell theories predict higher
critical values than the elasticity solution, the percentage increase being larger with thicker
shells. However, both the direct Fliigge and Danielson and Simmonds expressions predict
critical loads much closer to the elasticity value than the direct Donnell expression. These
were also very close to the ones predicted by the more involved, non-shallow Donnell and

(@)

u(r)

1.015
Elasticity-GR/Ep

1.010- /
1.005 /

Elasticity-GL/Ep
1.000 /

Shell
0.995 T T
0.80 0.85 0.90 0.95
Y r2

1.00

Fig. 2. (a) Eigenfunction U(r) versus normalized radial distance r/r,, for the two orthotropic cases
[shell theory would have a constant value throughout, U(r) = 1 for all cases|. (b) Eigenfunction
V(r) versus normalized radial distance #/r, from the elasticity solution and the Donnell sheil theory,
which would show linear variation. The results are for the graphite/epoxy orthotropic case. (c)
Figenfunction W(r) versus normalized radial distance r/r,, from the elasticity solution and the
Donnell shell theory (the latter has a linear variation). The results are for the graphite/epoxy

SAS 31:6-E

orthotropic case.
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(b) -0.35
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Fig. 2—(continued).

Timoshenko theories. A comparison of the data from all four Tables shows that for isotropic
materials the degree of non-conservatism of the shell theories is much lower.

It should also be mentioned that the elasticity results of Tables | and 3 for the
glass/epoxy material that were produced through the present formulation, which was based
on assuming general, non-planar equilibrium modes, are very close to the results from the
earlier simplified formulation of Kardomateas (1993a), which was based on plane equi-
librium modes, i.e. a ring assumption.

Finally, to obtain more insight into the displacement field. Figs 2(a,b,c) show the
variation of U(r), V(r), and W(r), which define the eigenfunctions, for r,/r, = 1.20,
£|r, =10, as derived from the present elasticity solution, and in comparison with the
Donnell shell theory assumptions of constant U(r), and linear V(r) and W(r). These values
have been normalized by assigning a unit value for U at the outside boundary r = r,.

These plots illustrate graphically the deviation of U/ from constant, and the deviation
of ¥V and W from linearity. Although the Donnell shell theory eigenfunction has been
plotted for V(r) and W(r), the Timoshenko theory lines would nearly coincide with the
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latter. Notice that the distribution of U(r) for the graphite/epoxy case shows the biggest
deviation from the constant U value, shell theory assumption ; the bifurcation load for this
case shows also the biggest deviation from the shell theory predictions. In general, Figs 2(a)
and (b) are similar to Figs 3 and 4 in Kardomateas (1993a) which were based on a ring
approximation and glass/epoxy material. However, Fig. 2(a) of the present paper illustrates
in addition the difference between the strongly orthotropic graphite/epoxy and the mod-
erately orthotropic glass/epoxy. Furthermore Fig. 2(c) shows that both shell and elasticity
give essentially a linear variation for W(r).
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APPENDIX: EIGENVALUES FROM NON-SHALLOW DONNELL AND TIMOSHENKO
SHELL THEORIES

In the shell theory formulation, the mid-thickness (r = R) displacements are in the form:
u, = UycosnOsin Az, v, = Vysinnfsiniz, w,= W,cosnfcosiz,

where U, V,. W, are constants.
The equations for the non-shallow (or non-simplified) Donnell shell theory are (Brush and Almroth, 1975):

RN+ ‘V:mu =0,
" My,
RN+ Noy+ R +M,. =0,
_ M0

Ny— RNO”;. RM. . —2M 4+ 1\'«?130‘04‘[7(0.0"' u) =0

R

where Rfl, = v—u,. The Timoshenko shell theory (Timoshenko and Gere, 1961) has the additional term
— N{(v,.+u.) in the first equation, and the additional term RN’y _ in the second equation. We have denoted by
R the mean shell radius and by p the absolute value of the external pressure. Notice that for loading under external
pressure p, N, = 0 and N = —pR and if the pressure {rom the end caps is included, N! = —pR/2. For the case
of a shell with fixed ends, N! = 0.

In terms of the ““equivalent property™ constants
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Coa= Edh/(1 —vavyn),  Cyy= Eqh/(1—vaqvyy),

. Eyvish . h’
Cyy=+ —, Ciuu=Gyh, Duf(‘ul—y

: L=vy3vy,
the coefficient terms in the homogeneous equations system that gives the eigenvalues are:
dy; =Cy3A; 2= (Cys+Cdnk; o3 =—(Cy3RIZF+C 1R,

N (C?: Doy’ 1)33/'.%

Dy 4?
e B T Hés R—)n,

C,,n* 5 Dsan? Di? X
Qpy = —( < + C R+ — +2L>, 02y = (Cyy+ Cydni,

R R? R
C,y Dyt Dy A%t ) D.yin?
ay =t 2 +DuA R4
Caa  Dyan® Dy Dy’
Uy = ( R ,*—"?45 - R +4- "; >n, oy = —C5 0

Notice that in the above formulas we have used the curvature expression k., = 2(v.—u )/ R for both theories.
Then the linear homogeneous equations system that gives the eigenvalues for the Timoshenko shell for-
mulation for the case of end caps is:

(2,1 +pRAU+ (s +pRuA)V o+, W, =0, (Al)
R:’I"'_‘
‘1:|Uu+<123+1) 2 )V0+12_‘W0::0, (A2)
.';»1 4 '
[11,~pT —p(n'—1):|l/,>+aul’rd-anWD =0. (A3)

For the Donnell shell formulation, the additional term in the coefficient of ¥, in eqn (A2) is omitted, i.e. the
coefticient of ¥ is only «,, and the additional terms in the coefficients of U, and Fyin eqn (Al) are also omitted,
1e. the coeflicient of Uy 1s only «,, and the coefficient of V, is only «,,. For the simpler case of a cylindrical shell
with fixed ends, the terms pR*.%/2 are omitted in the second and third equations. The eigenvalues are naturally
found by equating to zero the determinant of the coefficients of Uy, ¥, and W,



