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Introduction 

Fully plastic flow before fracture is desirable even in structures containing c:rac.ks. Such 
ductility is reduced if plastic flow is limited to one shear band, by a weld, for example (1 J. 
Nonhardening plasticity ~ves a shear band of infinitesimal thickness. Strain hardening, 
however, causes the defoanation field to fan out, leaving a finite strain except possibly at 
the crack tip. 
In orthogonal machining the geometry is similar, with the cutting tool progressing steadily 
below the plastic zone. Here, again due to strain hardening, the plastic zone fans out over 
10°_30° as opposed to the single plane required by the perfectly plastic solid (21. Both 
cases involve plane strain flow. 
In the following we shall provide a solution and discuss its implications for steady flow of 
a rigid plastic solid in the vicinity of a crack tip or a tool tip with assumed straight flanks 
of finite angle. 

The assumption of rigid flanks and the associated stress singularity 

Let us postulate a steady flow in rigid-plastic, linearly strain hardening material. The 

mechanics of the problem should eventually answer the question as to whether the crack 

tip has a finite angle. Let us start by assuming a crack of finite angle, w, and rigid body 

velocity of the material Bowing past the flanks. To satisfy incompressibility assume a 

stream function, .p, in polar coordinates, r and e. We seek the form of the stream function 
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in the immediate vicinity of the craclc tip where the velocities should be nonzero and finite. 

From an asymptotic expansion of t/J in the dominant term as r -+ 0, r·F(8), it is seen that 

the exponent" must be unity since the vdocities at the tip are nonzero and finite. Thus, 

t/J = rF(8) . (1) 

The corresponding velocities are: 

U = ~ 8t/J =r(8) ; ti, =- a: = -F(8) . (2)
r r 8r vr 

The strain rates are: 
. OUr 0 . (3)f r = Or = = -f, , 

. 8u, lOUr ti, r ' (8) + F(8) 
(4)

'Yr' = Or +; 88 - -;: = r 

Thus the only component of strain is shear. The equivalent strain rate is: 

(5) 

The stress deviators ";j are found from the stress-strain rdations and the equivalent stress 

u: 
. 3 "ij:.
 
fij =2 ii f. (6)
 

Since f r = f' = 0 from (3), 

"r = '" = 0 and I"rI 1= ii/V3 . (7) 

The material is rigid-plastic, linearly strain hardening, hence: 

ii = Y + Hl. (8) 

The a.ccumulated equivalent strain is calculated by integration along a streamline, where 

the time increment is expressed in terms of that required for an element to traverse an 

increment of angle: 

f = j' fdt = J.f rd8 = -1' IF'CB) + F(8) IdB . (9) 
-00 u, 0 v'3F(8) 
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~hus the equivalent strain is independent of radius. The same holds for the equivalent 

stress, q, by (8), and also for the shear stress, by (7), i.e. 

~rl = ~rI(8) . (10) 

Now, let us turn to the equilibrium equations. In terms of the mean normal stress, 17, 

au ajr 1 a~rl jr - j,
-+-+---+--=0 (11)ar ar rae r 

as r , + ~ au + ~ ajl + 2jr' = 0. (12)ar rae rae r 
Introducing (7) to eliminate jr, j I, (10) to eliminate Ojrl / ar, and using cross-differentiation 

to eliminate 17, leads to: 

tPSr' __ 0 tUrl D
d82 ,from which d8 =const. = . (13) 

Now, (11) simplifies with (7), and after substituting (13), can be integrated as follows: 

r
017 + ~ tU , = 0 17 = -DIn(r/R) + C(8). (14)
Or rd8 ' 

Differentiating (12) with s, = 0, and noting that jrl =F fer) from (10), gives: 

(15) 

Let us define u(R, 0) as the mean normal stress at a convenient radius Rand 8 = o. Then, 

equation (14) becomes: 

u(r, 8) - u(R, 0) = -jrl,' [In(r / R) + 82
] (16) 

Thus, the mean normal stress at the crack tip (r -+ 0) appears to have a logarithmic 

singularity. Let us now complete the study of the field specified by (1) for flow past rigid 

flanks of a finite angle by applying the boundary conditions and deriving its streamlines. 

Two possible flow fields are consistent with the constant rate of shear stress from (13) and 

the hardening of the material (increase in equivalent stress q from (7) as it flows along 

the streamline). The first field, shown in Fig. Ia, is for jr'.' > o. From (16) this model 

gives a tensile logarithmic singularity in the mean normal stress as r -+ 0, and thus this 
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field will be called "tensile". Th~ second field, shown in Fig. Ib, is for ~r'.' < O. Here 

the singularity in the mean nonnal stress is compressive and, accordingly, this field will be 

called "compressive". A compressive singularity, however, would require strains of order 

unity or more for fracture. Since such large strains are not actually observed [1], the 

"compressive" field is not plausible for the growing crack. 

FIG.la 

The flow field for tension in the band. The machining case is illustrated; otherwise w is 
the crack opening angle. 

Two other conceivable fields can be excluded. A single band being split by the crack (Fig. 

lc) would have shear stresses of the same sign, but increasing in magnitude both above and 

below the line of advance. This would give tensile and compressive singularities adjacent 

to each other, and a discontinuity in normal stress.. If the shear in a band being split by 

the crack were to change sign, on the other hand, there would be an intermediate region 

below yield, and the band would separate into two, corresponding to these in Figs la,b. 

In the limit, the Mode I field would be approached. 

Thus the "tensile" field of Fig.la is the only acceptable. From (7) and (8) for positive 



--------------- - ------

487 PLASTIC FLOW AROUND A GROWING CRACK 

shearing, 

(17) 

Rigid 

Rigid 

FIG.lb
 
The field for compression in the band.
 

(17) and (13) give, 

(18) 

By differentiating (9), and taking into consideration that for positive 3 r , then .:yr', given 

by (4), is positive [this can be readily seen from (6)), gives: 

di F"(O) + F(O) 
(19)

dO = V3F(O) 

(18) and (19) give finally 

F"(O) + k'lF(O) =0, (20) 

where 

(21) 
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The solution of (20) is: 

F(8) = A cos k8 + Bsink8. (22) 

Referring to Fig. 1a we denote by Vt, v. the (rigid body) velocities at the lower and upper 
boundaries of the defonning region, which are at angles 8t and 8. respectively. Then the 
boundary conditions are as follows: At the lower boundary, 

Ur = -Vt cos 8t , and by (2), F'(8t ) = -Vtcos8t . (23) 

UI = vtsin8t , and by (2), F(8t ) = -Vtsin8t . (24) 

.FIG. lc 
The field for a single band being split by the crack. 

Similarly, at the upper boundary, 

F'(8.) = -v.cos(8. +w); F(8.) = -v.sin(8. +w). (25) 

Using (22) and eliminating v./Vt, A, B gives w from: 

[ 
P - tank8t ] 

w = arctan k(1 + P tan k8 
t 
) 

where 
P = Han8t + tank8. 

1- Han8t tank8. 

Substituting back into the boundary conditions gives: 

- 8. , (26) 

(27) 

(28) 

------ -----_.-------------­
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A (v.lvt) sin(O. +w)sin kOt - sin kO. sin 0t 
Vt = sin k(O. - Ot) 

B sinOtcoskO. - (v./vt)sin(O. +w) cos kOt 
Vt = sin k(O. - Ot) 

The velocity triangle shown in Fig. 1a defines a "slip" angle 0.: 

(29) 

(30) 

(31) 

A5sume now a critical strain ")'. occurring at the upper boundary. Then 

(32) 

and 

(33) 

Finally, the rotation of the material element relative to that of the stress field is important 

in hole growth and thus it is worth considering. The rotation of the element is: 

l _1 (au, u, 1 8Ur)
'l'rn-- -+-+-­

2 ar r rao ' 
and from (2) 

~rn = - 2~ [F(O) + F"(O)] , 

while that of the stress field is: 

giving a relative rotation: 
. 1 

tPrcl = 2r [F(O) - F"(O)] 

For F(O) given by (22) and since k > 1 by (21), it is found that rotation and shear strain 

are of different sign. The effect is to open up the holes and thus to increase the damage. 

AIl illustrative example of streamlines for a particular case is given in the next section. 

Now, according to Hill [3] , the infinite mean normal stress by (16) cannot be sustained at 

the rigid flank and this will lead to plastic yielding. However, consider now the contribution 

of elasticity. An elastic plastic strain singularity would perturb the near tip field so that it 

could wash out the above mean normal stress singularity; nonetheless the characteristics 
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of the flow field at moderate distances could still be described by the above rigid plastic 

solution, "specially at low levels of strain hardening when the elastic plastic singularity is 

weak (4). Further discussion in connection with the problem of machining, which follows 

next, will reveal that certain characteristics of machining nechanics can be explained from 

this flow field. 

Relation to the Mechanics of Machining 

In machining, a shear band with an undetermined rigid-plastic boundary breaks through 

to a free surface. The problem is similar to the mixed mode crack growth, except that the 

deformation is larger. Christopherson et al [2J tried to assess the effect of work harden­

ing in the mechanics of orthogonal machining. By modifying the slip line equations and 

estimating roughly the magnitude of the added term, they pointed out that, due to hard­

ening, the hydrostatic stress changes from compressive at the free surface to tensile near 

the tool point. What they found was essentially the qualitative effect of the logarithmic 

singularity derived above for fully plastic flow. In fact, we can also deduce that, for a cer­

tain change in the yield stress between the chip and the parent material, if the deforming 

region is narrower, the angular change in the shear stress [i.e., D in equation (13)) is bigger 

and, consequently, the singularity stronger, in accordance with their observation that the 

work-hardening effect becomes more pronounced as the plastic zone gets narrower. 

It is worth considering now the region of dominance of the logarithmic singularity in the 

mean normal stress that would characterize the flow past rigid flanks. Using typical data, 

dii{di. = H ~ Y for 1020 steel and di.{dO ~ 1.5, gives from (7): 

1 dii di. 1 di. 
3 r,., = J3 df dO = J3H dO ~ 0.87Y . (34) 

From the fully plastic flow field of Prandtl for tension of grooved plane strain specimens 

(see e.g. McClintock (5]), u ::::::: 2.8Y and, assuming that R is the radius at which u(r, 0) 

changes sign, gives from (16), r {R ::::::: 0.04. The distance R is within the macroscopic scale, 

as is evident from the approximate study for the marbining field done by Christopherson 

et al (6J. According to their modified (to include hardening) slip-line theory, the change 

in the mean normal stress 6.u from the free surface to a point in the band is roughly 
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estimated in terms of the shear yield strengths in the work-piece and the chip, k", and kc • 

the distance "1 from the free surface, and the local width "2 of the slipband: 

(35) 

In a typical instant in which mild steel is machined, kc may be 40% more than k"" so 

kc - k. ~ OAk. Since at the free surface (T ~ -k, the mean nonnal stress becomes positive 

at about "1/"2 = 2.5, which for 10° angular width happens at a radius R approximately 

1/2 the total shear band length. Thus the singularity in the mean normal stress would 

dominate in a significant region and could describe the field at moderate distances. 

Taking now a particular example from machining (Fig. 2) for "I. =1.3, 8t = 40°, 8. = 50°, 

we find by using equations (26)-(33): 

w =59°, v.lvt = 0.i3, d-Yr,ld8 = 7.44 , 8, =45.0~ 

and, for 8 in radians: 

F(8)/Vt =O.59cos(2.98) - 0.459sin(2.98) 

A reS'.uting from (1) streamline for this particular example has been sketched in Fig. 2. 

FIG. 2 
A typical streamline predicted by the stream function (1) for the singular region in ma­
chining. 
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Since now there is tension near th~ tool point, it is possible that brittle (or ductile) fracture 

may occur at a particular history of stress and this could ~ve rise to the characteristic 

fracture running ahead of the tool point and the formation of a built-up edge or a discon­

tinuous chip [6J. In particular, according to the "tensile" field, the maximum strain occurs 

at the boundary with the chip (upper boundary of the shear band), where cracking could 

occur. 

Conclusions 

The aim of this article is to demonstrate the close relationship that exists between the 

mechanics of orthogonal machining and that of a growing mixed mode crack of finite 

angle. Assuming in both cases rigid-plastic, linearly strain hardening material, and steady 

flow with rigid material flowing past straight flanks gives a tensile logarithmic singularity 

in the mean normal stress. This indicates that the fla.nk.s of the crack tend to deform, and 

for the machining case it helps to explain the formation of a discontinuous chip, and, with 

a continuous chip, the tendencies to form a built-up edge or to fracture ahead of the tool. 
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