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ABSTRACT 

The dUClilily of aSylllmelrically cracked slruClures, as may occur near 
lI'elds, is considerably decreased due to the presence ofa single shear band 
and the crack progressing into prestrained and predamaged material. 
Such all effect may hare important consequences in the design and 
maintenance of pressure ressels. For the fully plastic state, assuming 
strain increments follOln'ng a power lall' relation, damage due to hole 
groll'th wrying linearly lI'ith strain and quasi-steady crack groll·th leads 
to a closedform solution for the crack grolfth in such cases of combined 
shear and tension. The results sholl' a progressil:ely higher crack adrance 
per unit far-field displacement as the crack grOll'S along the ligament, an 
ejJect IIhich has also beell obst'rred experimentally. 

NOME:--iCLATURE 

c Crack advance distance. 
E Young"s modulus. 
J J-integral. 
Ii. Shear strength. 
K~ Far-field stress intensity fact\.)r. 
.\f r Mode I mixity parameter. 
/l Strain hardening exponent. 
/I, A hardening coefficient. 
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u Far-field displacement. 
U l Initiation displacement. 
W Work per unit volume. 

ex Material parameter. 
y Principal shear strain. 
l: Equivalent strain.
 
'1 Damage.
 
Of Growing crack orientation.
 
O. Shear band orientation.
 
p Mean inclusion spacing.
 
(J Mean normal stress.
 
(J Equivalent stress.
 
(Jo Yield stress in simple tension.
 
(J 1 Flow stress at unit strain.
 
T Principal shear stress.
 

I~TRODUCTION 

Predicting the ductility of pressure vessels and structures is important for 
their design and maintenance, especially in the presence of cracks and in 
the fully plastic state which is the desirable one before fracture. In the 
typical symmetric case the crack tends to advance into the relatively 
undamaged region between two plastic shear bands. However, jf a crack is 
near a weld or shoulder, loading into the plastic range can eliminate one 
of the bands and thus give a single asymmetric shear band extending from 
the crack tip(Fig. I). The resulting crack propagation into the previously 
damaged material gives less ductility than the typical symmetric case. 
Preliminary tests on carbon steel specimens indeed gave deformation 
from maximum load to instability only half of that for a symmetric 
specimen. FraclOgraphy indicates that the crack grows by a combination 
of sliding otl' and void growth along the shear band; essentially the near 
tip stress and strain causes damage by hole nucleation and growth from 
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inclusions. The assumption of a non hardening material leads to a single 
slip band with a constant displacement discontinuity and a consequent 
infinite strain across it, whereas any strain hardening would impose 
infinite stress across the band and cause the band to fan out. In the 
following we present a model for predicting crack growth by employing 
the mixed mode stress and strain fields of Shih I to analytically represent 
the damage and strain in such mixed mode I and " asymmetric 
configurations. 

ANALYSIS 

Shih I extended the HRR 2.3 singularity by gIVing the dominant 
singularity solutions governing the asymptolic behavior of the stress and 
strains at the crack tip of a stationary crack for the complete range of 
loadings between Mode I and II. The power hardening relation between 
plaslic strain and stress was assumed to be: 

(J )". - 1 (J 
£P =:X - - (1)

( 
(Jo E 

where (Jo is the yield stress in simple tension, ('J. a material constant and n s 
the strain hardening coefficient. The dominant singularity was expressed 
in terms of the far-field stress intensity factor K~ and the Mode I mixity 
parameter MP as: 

(2)
 

:Xu 
£ .. = _0 I KP)"" -". '". + 11£p.(8 MP) (3)

IJ E' ~l IJ ' 

:X(J
U. =_0 (KP)",,1,("s ~ IIU.(8 \fP) 

I E ~I I ,. (4) 

Since our problem is fully plastic. the amplitude of the singularity \\ill be 
expressed in terms of the p;.lth independent integral, which is gi"en by: 

(5)
 

with I" (.\f r ) a numerical ('onstant determined from the sin2ularity. 
analysis. whi('h de{Xnds on the strain hardening ('oefficient II and the near-
field .\f r . Since we are interested in the fully plastic regime. it is more 
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convenient to use a material law in terms of the flow stress at unit strain 
instead of the yield stress:" 

(1=(1.c" (6) 

Thus n = lin, and (1. = [(do· -"""E)/cx]" and we can rewrite the dominant 
singularity equations as: 

J J"/("~.I (7)(1jj(r,O) = (j.'. ,,(MP)r B(O,l/n,MP)[ 

J JI/I"~ I)
t( r 0) = i .( 0 lin M P) (8) 

IJ ' [ (j I '. ,,( M P)r 'J" 

U [ J Jl/("~.)
-.!. = u(8, lin, MP) (9) 
r (jl'. ,,(MP)r 

The mixity parameter, MP, is determined by taking the relative flank
to-flank displacement of the near tip singular field and the far slip line to 
be at the same direction: 

_ U 2 (TC - 8 , MP) - u2 ( - TC - 8r, .\1 P )rtan ( 8s - 8r) - (10) 
U.(TC - 8r, MP) - u 1 ( - TC - 8r, MP) 

Now the path independent integral J can be evaluated from Fig. 2 
directly from its definition. Consider the crack running at an average 
angle 8r while the shear band is at an angle 8s ' Express the work per unit 
volume Was from the non hardening case: 

( II ) 

where k is the shear strength and j' is the shear strain. The shear strain can 
be written for a relative displacement u across the shear band of 
infinitesimal width 61 as: 

U 
( 12)

61 

and since dx c = (~H'OS ttl, - tit) we find: 

ku 
J=---

cos ttl, - tit) 

The rate of damage ..H..Yumulation can be approximated by the 
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Fig. 2. i-integral parameters. 

equation of McClintock. 5 In terms of the two largest principal stress 
components and the strain hardening exponent: 

( 14) 

where F, is the hole gro\'1h ratio (defined as the ratio of the mean hole 
spacing O\'er the inital mean radius). Define F~ as the rate of damage per 
unit principal shear strain by: 

F~ = dll;d~' = \.' 3d1];df (15) 

Far from th~ crack tip the loading of Fig. 2 giws a triaxiality 
(J r = (aa + a b) (20' \. 3) = I for nonhardening plasticity. Closer to the tip 
th~ normal strain will tend to relax the normal str~ss. At th~ sam~ time the 
shear strain will incr~ase. Since the near tip triaxiality depends on the 
ori~ntation of th~ crack rdative to the shear band. we can tak~ F~ to b~ 

constant d~pending on the (assumed constant) direction of th~ growing 
crack Betw~n the two limiting cases of a r = O. I and for F, = I· 3 and 
II = I D. F~ \"ari~s betw~n 0 and 2·52. Substitution of ~qns (15) and (13) 
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Fig. 3. Damage variation ahead of the crack. 

the displacement per unit crack growth du/d~ over prior positions of the 
crack and the damage increment (d'l/de) required for further growth by 
de =p: 

I =[ rCd'1d~d~J+(d'1)deJo du d.; de 

=[ rC!L( ui_)t(n+1)d~d~J+~(du)(ui)1,(n+11p (20)
Jo U i e + P - .; d.; ui de p 

Taking the displacement per unit crack growth du,d~ nearly constant at 
du, de (quasi-steady growth), which is a reasonable assumption since most 
of the damage occurred as the crack approached its current value, allows 
restating eqn (20) in a form which can be integrated: 

dIlF~F(II+I)[ 1In.1) -)n l n+ 11 Ic 
II (u i )11n+11JI =- -/Ii (c+p-.; +-- - PI 

de /lUi 0 /l + I P 

(21) 

Introducing th~ crack growth length and displacement in normalized 
form: 

c* = c,p 

u* = /liP 
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into eqn (8) yields the damage as a function of the far-field displacement 
and the distance r from the crack tip: 

ku J'/I"+II 
( 16),,= [ a.I.,,,(MP)rcos(O. - Or) F"i 

with the dimensionless principal shear strain 1: 
( 17) 

The initiation displacement and the direction of crack growth can be 
calculated by considering the crack advancing to the direction requiring 
the least far-field displacement to reach the critical damage of unity. The 
critical strain for fracture, achieved at one inclusion spacing r = p, can be 
found from the strain equation (8) together with eqn (13). A computer 
program has simulated the above equations for the case ofa shear band at 
0s=45~ and for material characteristics a./k=3 and n=I/13 and 
resulted in a crack growth direction Or of about 36· 3°, initiation 
displacement ujp = 0·714 and triaxiality a/r = 0·38. The parameter F" is 
thus F" = 0·85 for a typical hole growth ratio F( == 1·3. Our main object is 
nevertheless to study the growing crack, whichever its orientation is. 

Consider thus the crack growing from initial length c; through previous 
lengths ~ to a current length c. The damage at p ahead of the current crack 
tip is less than I, as Fig. 3 shows, so a further displacement is required for 
further crack advance. The damage increment d1] for the displacement 
increment du across the shear band can be expressed in terms of the 
current crack tip c + p - ~ for low strain hardening (n :;: 0) according to 

the following inverse power law, where. since the exponent in u 1 I" ~ 11- 1 is 
close to zero, we substitute U j for u as a first approximation: 

F-~[ Jll"~I)dllkud1] --~-' I 

n + I <JJI "(JfP)r cos(8, - 8r) II; 

u. )11"-11dU
=FF.. _ (18)

(
I 

" . c + P - ~ II; 

with 
k JI I"~ 11 

(= [ (J J 1 "t-\! r) cos (0, - Or) i~ (19) 

Tak~ as a fractur~ ni(~ril..)O (hat (h~ damag~ reaches unity at a structural 
distanc~ II ah~ad of th~ curr~nt crack kngth c. This damag~ is found by 
summing the integral of th~ damage incr~m~n(sper uni (displacem~n( and 
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fig. 4. Quasi-steady crack gro....-th rate vs. crack advance. 
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we can solve eqn {21' for the crack growth rate: 

dc· _ F,Fy{n + I,
 
du· - n
 

x [(c. + 1)"14". "_Cu., -"/C". I, + (_n_)(U~) -../e .... I 'J (23) 
u~ I n+ I I 

Thus the crack advance per unit displacement starts at F"F,C I/U~)""" + I) 

and continually increases with c·, although at a decreasing rate, as is seen 
from Fig. 4 which gives the crack growth rate vs. crack advance distance 
for the example case of n= 1/13, u; == 0·714 and F, =0'88, F" = 0·85 
considered here. In Fig. 5 the far-field displacement u· vs. crack growth c· 
is plotted. Equation (23) can be used to assess the size effects. For example 
for a prototype-specimen ratio of 100 and a ligament of 1- m in the 
prototype structure, the crack growth rate after growth in both cases by 
1/10th of the ligament is about 2·3 times bigger in the large prototype than 
in the small specimen. Thus small laboratory tests can be used to derive 
the parameters F", n, F,., uJp, and thus produce an 'engineering' equation 
that can be used to estimate the displacement to cause fracture in the 
actual structure. Figure 6 shows the large-scale crack growth. Notice that 
an infinite crack gro\l,1h rate is not predicted; however, instability {which 
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is mainly coupled to the surroundings) is likely to occur due to the high 
values of dc/duo 

CONCLUSIONS 

In asymmetrical singly grooved tensile specimens simulating weld defects 
the crack progresses into pre-strained material with less ductility than in 
the symmetrical case where the crack grows into new material between 
two shear bands. A quasi-steady model is presented to predict the crack 
growth by hole coalescence in regions dominated by an HRR-type strain 
hardening singularity.2.3 The analysis gives the crack growth per unit 
displacement and the displacement as functions of the crack advance. The 
crack growth per unit displacement is found to increasecontinuouslywith 
crack growth according to eqn (23), although at a decreasing rate. The 
availability of such an equation allows also estimating the size effects. 

ACKNOWLEDGEMENT 

The financial support of the Office of Naval Research, Structural 
Mechanics Program. Arlington. Virginia. Contract NOO 14-82K-0025. is 
gratefully acknowledged. 

REFERENCES 

I.	 Shih. C. F. Small scale yielding analysis of mixed mode plane strain crack 
problems. FraCf/(rt' olla!.15i5. AST\l STP 560. 1974. pp. 187-2/0. 

.., HUlchinson. J. W.. Singular beha\ior al the end of a lensile crack in a 
hardening material. 1. .\fah. Ph.\'5. 501. 16 P968). pp. 13-31 . 

.'. RICe. J. R. and Rosengren. G. F.. Plane strain deformation near a crack tip in 
a rx"'\\er-Iaw hardening material. 1. .\ft'ch. PhY5. 501..160968). pp. 1-12. 

~.	 Swill. H. W .. Plastic instability under plane stress. 1. .\ft'ch. Phr5. 501.. 1 
(1952). pp. 1-18. 

5.	 \kClin{(lck. F ..-\ .. A criterion for ductile fL.II:ture by the gW\\lh \....1 holes. 1. 
.-Ippl .Ift'eh. 35 t 196$). pp. 363 -71. 


