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ABSTRACT

The ductility of asymmetrically cracked structures, as may occur near
welds, is considerably decreased due 1o the presence of a single shear band
and the crack progressing into prestrained and predamaged material.
Such an effect may have imporiant consequences in the design and
maintenance of pressure vessels. For the fully plastic state, assuming
strain increments following a power law relation, damage due to hole
growth varying linearly with strain and quasi-steady crack growth leads
10 a closed form solution for the crack growth in such cases of combined
shear and tension. The results show a progressitely higher crack advance
per unit far-field displacement as the crack grows along the ligament, an
effect which has also been observed experimentally.

NOMENCLATURE

Crack advance distance.
Young's modulus.
J-integral.
Shear strength.
& Far-field stress intensity factor.
M? Mode | mixity parameter.
n Strain hardening exponent.
n, A hardening coefficient.
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Far-field displacement.
Initiation displacement.
Work per unit volume.

T= =

Material parameter.
Principal shear strain.
Equivalent strain.

Damage.

Growing crack orientation.
Shear band orientation.
Mean inclusion spacing.
Mean normal stress.
Equivalent stress.

Yield stress in simple tension.
Flow stress at unit strain.
Principal shear stress.
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INTRODUCTION

Predicting the ductility of pressure vessels and structures is important for
their design and maintenance, especially in the presence of cracks and in
the fully plastic state which is the desirable one before fracture. In the
typical symmetric case the crack tends to advance into the relatively
undamaged region between two plastic shear bands. However, if acrack is
near a weld or shoulder, loading into the plastic range can eliminate one
of the bands and thus give a single asymmetnc shear band extending from
the crack tip(Fig. 1). The resulting crack propagation into the previously
damaged material gives less ductility than the typical symmetric case.
Preliminary tests on carbon steel specimens indeed gave deformation
from maximum load to instability only half of that for a symmetric
specimen. Fractography indicates that the crack grows by a combination
of sliding off and void growth along the shear band; essentially the near
tip stress and strain causes damage by hole nucleation and growth from

Fig. 1. Symmetric and asymmetne shear band configurations.
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inclusions. The assumption of a nonhardening material leads to a single
slip band with a constant displacement discontinuity and a consequent
infinite strain across it, whereas any strain hardening would impose
infinite stress across the band and cause the band to fan out. In the
following we present a model for predicting crack growth by employing
the mixed mode stress and strain fields of Shih' to analytically represent
the damage and strain in such mixed mode | and [l asymmeltric
configurations.

ANALYSIS

Shih! extended the HRR?? singularity by giving the dominant
singularity solutions governing the asymptotic behavior of the stress and
strains at the crack tip of a stationary crack for the complete range of
loadings between Mode | and Il. The power hardening relation between
plastic strain and stress was assumed to be:

o i ns—lg
’ _1(00) 2 (1)

where g, 1s the yield stress in simple tension, « a material constant and n,
the strain hardening coefficient. The dominant singularity was expressed
in terms of the far-field stress intensity factor K§ and the Mode I mixity
parameter MP? as:

Gij:o-oK_\p(r—l ("‘+Uéij(0’Mp) (2)
EuZ%(Kﬁ)"”—"""””a}(@, MP) (3)
= =p RGP a0, M) “@)

Since our problem is fully plastic, the amplitude of the singularity will be
expressed in terms of the path independent integral, which is given by:

J=220 L (K (5)
E ™ '
with /, (MF) a numerical constant determined from the singularity

analysis, whichdepends on the strain hardening coeflicient # and the near-
field M P. Since we are interested in the fully plastic regime. it 1s more
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convenient to use a material law in terms of the flow stress at unit strain
instead of the yield stress:*

o=o0,0" (6)

Thus n=1/n_and o, = [(¢}) ~"""E)/a]" and we can rewrite the dominant
singularity equations as:

B J TJnitn+ 1)
O'U'(’, 0) = .1 (Mp)r 6(09 l/n, MP) (7)
| 171 _
[ J l/(n*l)‘
E-j(’a 0)= m—p');w s,-l.(O, 1/n, MP) (8)
171 _
u. B J Tl + 1)
g iy (A 7 P
2 O B &

The mixity parameter, M?, is determined by taking the relative flank-
to-flank displacement of the near tip singular field and the far slip line to
be at the same direction:

u,(m— 6, MP) —u,(—mn— 6, MP)

—0)—
tan (6, t) u(m— 6, MP) —u,(—n— 6, MP)

(10)

Now the path independent integral J can be evaluated from Fig. 2
directly from its definition. Consider the crack running at an average
angle 6, while the shear band is at an angle 6. Express the work per unit
volume W as from the nonhardening case:

W=k (1
where & is the shear strength and 7 is the shear strain. The shear strain can

be written for a relative displacement u« across the shear band of
infinitesimal width dr as:

u

= 12
tooor (12)
and since d.x, = dr.cos (6, — 8,) we find:
_ ku 13)
 cos (8, — 8, U

The rate of damage accumulation can be approximated by the
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Fig. 2. J-integral parameters.

equation of McClintock.? In terms of the two largest principal stress
components and the strain hardening exponent:

dn _sinh [(1 —n)(0, + 6,)/(26,4/3)]
dé (1-n)InF,

(14)

where F_ is the hole growth ratio (defined as the ratio of the mean hole
spacing over the inital mean radius). Define F, as the rate of damage per
unit principal shear strain by:

F_=dn:dy; =, 3dn/de (15)

Far from the crack tup the loading of Fig. 2 gives a triaxiality
¢ 1=(0,+0,) (20 | 3)=1Tfornonhardening plasticity. Closer to the tip
the normal strain will tend to relax the normal stress. At the same time the
shear strain will increase. Since the near tip triaxiality depends on the
orientation of the crack relative to the shear band. we can take F, to be
constant depending on the (assumed constant) direction of the growing
crack. Between the two limiting cases of ¢ 1=0.1 and for £, =1-3 and
n =113, F, vanes between 0 and 2-52. Substitution of eqns (15) and (13)
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Damoge, n

P
Distance r ahead of crack tip

Fig. 3. Damage variation ahead of the crack.

the displacement per unit crack growth du/d¢& over prior positions of the
crack and the damage increment (dn/dc) required for further growth by

dc =p:

‘dndu | . dn
I = ——d —|d
[ odud: g}+(dc) ‘

¢F F u, ta*b gy F F.(du\/u\""""
= S/ —=dZ L v Bt | g} 20
Uo u; (Hp—é) d¢ C'} u, (d6)<p) P

Taking the displacement per unit crack growth du,d¢ nearly constant at
du dc(quasi-steady growth), which s a reasonable assumption since most
of the damage occurred as the crack approached its current value, allows
restating eqn (20) in a form which can be integrated:

du F,F.(n+1) c n fu\tttn
=" i @7 + “i P
dc nu; o n+1\p
&y

Introducing the crack growth length and displacement in normalized
form:

i [—l(-l tn*l)(c+p_5)n(n+l)

crF=cop
(22)
ur=up
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into eqn (8) yields the damage as a function of the lar-field displacement
and the distance r from the crack tip:

ku 14n+1)
qz[aulx,,(M’)rcos(o,—0,)] Fn- (16)

with the dimensionless principal shear strain 7:
T U 4+ £2)112 an

The initiation displacement and the direction of crack growth can be
calculated by considering the crack advancing to the direction requiring
the least far-field displacement to reach the critical damage of unity. The
critical strain for fracture, achieved at one inclusion spacing r = p, can be
found from the strain equation (8) together with egn (13). A computer
program has simulated the above equations for the case o a shear band at
6,=45° and for material charactenistics ¢,/k=3 and n=1/13 and
resulted in a crack growth direction 6, of about 36-3°, initiation
displacement u;/p = 0-714 and tnaxiality 6/t =0-38. The parameter F, is
thus F, =0-85 for a typical hole growth ratio £, = 1-3. Our main object is
nevertheless to study the growing crack, whichever its orientation is.

Consider thus the crack growing from initial length ¢, through previous
lengths ¢ to a current length ¢. The damage at p ahead of the current crack
tip is less than 1, as Fig. 3 shows, so a further displacement is required for
further crack advance. The damage increment d#n for the displacement
increment du across the shear band can be expressed in terms of the
current crack tip ¢ + p — ¢ for low strain hardening (#n = 0) according to
the following inverse power law, where. since the exponentin ' """ 7! s
close to zero, we substitute u, for u as a first approximation:

e Fe ku, b dy
=l a1, (MP)rcos(8,— 6,) u,

. 1 tm— l)d
= F,,F_(""J du as)
NC+Hp =< u,
with
A Line1)
£ 7 19
‘ l:axll LM COS((L — 0,.):, / (19

Take as a fracture criterion that the damage reaches unity at a structural
distance p ahead of the current crack length ¢. This dumage is found by
summing the integral of the damage increments per unit displacement and
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Quasi-steady crack growth rate vs. crack advance.
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Fig. 5. Far-field displacement vs. crack advance.
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we can solve eqn (21) for the crack growth rate:

dc* _ F,Fn+1)

du* n

c* +1 -/cunl_ .\ -afint 1) n .y —afn+ 1
) o= ] o

Thus the crack advance per unit displacement starts at F, F(1/u?)""*"
and continually increases with ¢*, although at a decreasing rate, as is seen
from Fig. 4 which gives the crack growth rate vs. crack advance distance
for the example case of n=1/13, u? =0-714 and F,=0-88, F, =085
considered here. In Fig. 5 the far-field displacement u* vs. crack growth c*
1s plotted. Equation (23) can be used to assess the size effects. For example
for a prototype-specimen ratio of 100 and a ligament of im in the
prototype structure, the crack growth rate after growth in both cases by
1/10th of the ligament is about 2-3 times bigger in the large prototype than
in the small specimen. Thus small laboratory tests can be used to derive
the parameters F,, n, F, u,/p, and thus produce an ‘engineering’ equation
that can be used to estimate the displacement to cause fracture in the
actual structure. Figure 6 shows the large-scale crack growth. Notice that
an infinite crack growth rate is not predicted ; however, instability (which
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Fig. 6. Large-scale crack growth.
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is mainly coupled to the surroundings) is likely to occur due to the high
values of de¢/du.

CONCLUSIONS

In asymmetrical singly grooved tensile specimens simulating weld defects
the crack progresses into pre-strained material with less ductility than in
the symmetrical case where the crack grows into new material between
two shear bands. A quasi-steady model is presented to predict the crack
growth by hole coalescence in regions dominated by an HRR-type strain
hardening singularity.?-* The analysis gives the crack growth per unit
displacement and the displacement as functions of the crack advance. The
crack growth per unit displacement is found to increase continuously with
crack growth according to eqn (23), although at a decreasing rate. The
availability of such an equation allows also estimating the size effects.
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