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An Analysis for the Effects of
Compressive Load Excursions on
Fatigue Crack Growth in Metallic
Materials

G. A. Kardomateas'®!' and R. L. Carlson'""?

1 Introduction

The variable amplitude loading of service load spectra
often includes compressive excursions. Since it seemed rea-
sonable to assume that compressive loads do not induce
opening of the crack and hence do not contribute to crack
growth, it had been recommended that analyses of crack
growth may exclude the compressive excursions, i.c., only
cycles with tensile loading need to be included. However, a
number of experimental investigations on the effects of com-
pressive excursions indicated that neglecting them can be
expected to lead to nonconservative crack growth predictions
(Carlson and Kardomateas, 1994).

Based on elastic compression of the asperities, single as-
perity models had been presented by Beevers et al. (1984).
These discrete asperity models provide a rational explanation
of the observed behavior due to closure obstruction in load
sequences that involve cycling in tension with a positive load
ratio, and involve mostly elastic loading/unloading of the
asperities. For compressive excursions of sizable magnitude,
an inelastic model accounting for the plastic crushing of the
asperities is required.

2 Formulation

For a properly loaded specimen, the distribution of the
asperities is essentially uniform across the specimen thick-
ness. This suggests the possibility of representing the asperi-
ties configuration through the thickness by an effective
(through-thickness) line contact.
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(b)

Fig. 1 (a) External (global) and crack tip (local) loading; (b) a
single asperity on the upper crack face

Consider an asperity at a distance C from the crack tip in
a specimen of thickness ¢ (Fig. 1). The presence of both
externally applied forces and crack face forces is illustrated
in Fig. 1(a) whereas the details of the proposcd model are
indicated in Fig. 1(b). Only the upper crack face is shown
with the asperity developing a force P. The stress intensity
factor produced by concentrated, opposing line loads on the
faces of a finite center crack of length 2a, can be determined
from Sih et al. (1962) for both the Mode I and Mode II cases.
The opening mode stress intensity factor for plane strain in
terms of the local crack face force from Sih et al. (1962) is

I/.’_( C)lﬂ’-f (1)

1
Kl.local i (R

This expression is also valid for a single-edge crack of length
a (this can be easily shown by following the same procedure
as in Sih et al.,, 1962).

The contribution of the external load will be represented
by K giobar- By superposition, the total stress intensity factor
is

a t

K, =K 1+ K sional- 2)
The dimension L, represents the initial magnitude of the
interference produced by the asperity. The effective initial
width of the asperity is b, (Fig. 1(6)). The load P will now be
determined from a displacement condition at the asperity
site, which includes the plastic crushing of the asperity.

The vertical displacement at the upper crack face, i.e., at
# = = and an arbitrary r, is

/,loca

Uy(r, m) = Up giovat + Uz jpocal-

3)

By use of the stress intensity factors for the global and the
local load, we can write the displacement at the asperity site,
r=C, 0=
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where G is the shear modulus and » the Poisson’s ratio. The
condition for determining the force P is the displacement at
the asperity site

Uy(C, ) =Ly, ()
where L, is the interference height for a given external load
during closure. This will be considered next.

The asperity is assumed under uniaxial compression o5, =
o (all other stress components are zero). Moreover, the total
equivalent strain of the asperity is

€T =€+ €’ (6)

where €¢ is the elastic and &7 the plastic component (we
consider positive the asperity stress ¢ and strain e when
they are compressive). Notice that in uniaxial compression,
although there are other nonzero components of strain,
namely, €;; = €33 = —€5,/2, it turns out that € = €,,. Hence,
since € = o/E, €' = In(L,/L,), the plastic component is

_ Ly o

e’ =hn—-—, (7)

L, E

where [ is the modulus of elasticity. Assume now an equiva-
lent true stress vs. integrated equivalent plastic strain law

o=o(€ + g (8)

The two constants oy, and n are found from two points on
the stress-strain curve beyond yield, usually the maximum
load and the fracture point, whereas ¢, is found from the
yield point, ie., €, = (oy/0y)"". The constant n is the
strain-hardening exponent. Notice that o = o .

Next, denote by A, = th, the initial cross-sectional arca of
the asperity. For simplicity, we shall consider the material as
being incompressible in both the elastic and the plastic
ranges when cross-sectional area calculations are performed
(this would be strictly accurate if the Poisson’s ratio is 0.5;
however, the error introduced for the usual value of 0.3 can
be reasonably expected to be small, if the elastic strains are
small compared to the plastic ones). Therefore, the incom-
pressibility requirement gives a relationship for the current
cross-section A, and the stress o = P/A:

AL, = Ayl e 9
plap == Aglags U—AOLO- (9
Using (7), (8), and (9) gives one equation in P, L
PL, "1™ L, PL
it i = + €. (10a)
oaAgLy L, EA,L,

The other equation needed to solve for L, and P is found
from (4) and (5):

o b
Lf= E(ZT') (l e V)Kl.gluhal

2(1 - ») (‘)‘/”- P
1 - =] —.
7l 2a {

Notice that the final, crushed asperity width can be found
from the volume preservation condition (9) and the trans-
verse strain equality €, = €45:

by = boy Lo/

(10b)

(11)
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The description of the asperity behavior for the two separate
phases, i.e., the loading and unloading one, will follow next.

Loading Phase. During the application of the external
cyclic load, Q, asperity loading may occur from the initial
configuration or it may involve reloading after the asperity
has been plastically crushed to a reduced height. Hence,
during the decreasing external load cycle (loading the asper-
ity) from a general position (Q;, P, =0, L;, A)) to a position
(O, < Q. P L;< L, A > A), the following conditions may
develop:

(a) No asperity contact takes place and K, = K, ,,,pu 1f,
from (10b): '
12
| &

(b) If asperity contact takes place and during asperity
loading (decreasing external load), the asperity compresses
below yield, then (10a) is replaced with the equation found
by setting €” = 0 in (7), or

2(1 — v c
(_O—)(; |>L,-. (12)

/1 globa

@ L = - L 13
EAi = nfi N Z ( )

Then the asperity load and final asperity height are found by
climinating L, from (106) and (13).

(c) If the foregoing conditions are not met and the asper-
ity loading is taking place in the plastic range, then the
system of Egs. (10) is numerically solved.

The current asperity height, L;, and cross-sectional area,
A;, have been used in (13) instead of the initial values, L,
and A,, respectively, since on reloading after a compressive
excursion, the asperity is loaded elastically from the current
(crushed asperity) dimensions.

Unloading Phase. During the increasing external load
cycle (unloading the asperity to zero asperity load), from a
position (Q;, P,, L, A,) to a position (Q, > Q,, P =0,
L,> L, A; <A,), we recover not the initial asperity height
Ly, but the final compressed one, L., plus the change in
height that is given by the elastic solution that corresponds to
the load P, at which unloading takes place, o L,/E, ie.,

A;=LoAy/L; (14)

Notice that L; is now the “new” (after unloading) interfer-
ence height.

3 Model Predictions

Consider a metal with the mechanical properties: £ = 200
GN/m?, v =03, yield strength o, = 400 MN/m”, strain-
hardening exponent n = 0.30 and the constant of Eq. (8),
o, = 700 MN/m*. The other constant in the relation (8) that
describes the behavior beyond yield is found by fitting the
yield point, i.e., €, = (,/0,)"". These material constants are
typical of a hot rolled stecl. A single-edge-cracked specimen
of thickness f = 13 mm and width w = 26 mm with a crack of
length @ = 11 mm is assumed.

For this case of single-edge through crack of length @ in a
plate of width w under uniform remote normal load Q, the
stress intensity factor is (c.g., Hellan, 1984):

O a a?
Ki(Q) = —Vma [1.12 = 023— + 106—
W w?

a’ a*
—217— +304—|. (15)
we w
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External Load, @/Qop

(

I({/KOP

02

Q.0 *

Time

(2)

(b)

Time

Fig. 2 (a) Applied load sequence; (b) the total stress intensity
factor at different moments during the application of the load se-

quence

Consider a single asperity configuration with an initial
interference height L, = 25 pm and initial width b, = 50
pm. The distance from the crack tip is C = 15 pwm. These
are typical dimensions of experimentally observed asperities
as reported by Beevers et al. (1984). First, the opening load
(load at which asperity contact is established), Qp. is found
by setting P = 0 in (105):

L,G Gy 2
KOP:m( ) = K;(Qop)- (16)

2

A load sequence as shown in Fig. 2(a) is applied. First, the
specimen is cycled between 1.1Q,, and 0.55Q,,, so that the
load ratio is positive, R = 0.5. Then a compressive excursion
to —2.2Q,P, ie, a negative R = —2, is applied. Subse-
quently, the initial, positive R = 0.5 is resumed.

The quantity that controls the fatigue crack growth rate is
the range in the total stress intensity factor AK. Figure 2(b)
shows the total stress intensity factor at the different stages
of the loading sequence. In all segments, at the maximum
positive external load, K = K, ,,,,y and the range AK is
affected by the minimum (positive or negative) external load,
at which asperity contact may develop, and a nonzero Ky,
may be generated. At the first R = 0.5 load segment, AK is
relatively small (because of the rather large K., at the
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load minimum). During the compressive excursion, which
crushes the asperity, AK is increased substantially. Notice
that at the minimum, negative load point, K is positive,
nonzero.

4 Conclusions

It has been shown that an inclastic, discrete asperities
model can be used to demonstate the effect of compressive
excursions during fatigue crack growth. By reducing the height
of roughness asperities, the effective range of the stress
intensity factor is increased. Subsequent increases in crack
growth rate can then be expected to follow.
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An Alternative Derivation of Some New
Perspectives on Constrained Motion

A. A. Barhorst®

An altermative derivation of some recently reported results is
presented. Specifically, some results regarding the fundamental
view of Lagrangian mechanics and nonholonomic constraints.

Introduction

In a recent paper (Udwadia and Kalaba, 1992), the general
nonholonomic equations of motion for rigid bodies were
developed via a constrained optimization procedure. The
authors utilized the theory of generalized inverses for matri-
ces. The resulting evolution equations were cast as an error
equation similar to state feedback in the modern control
theory. The authors mentioned that this interpretation of the
nonholonomic dynamics is new and enlightening.

In this Note, the intent is to show that the error type
interpretation is also available from a physical formulation of
the nonholonomic equations of motion. The presentation
herein is more restrictive than the work in (Udwadia and
Kalaba, 1992), but it does appear to cover all the cases that
arise in engineering systems.

Derivation

Without loss of generality and to facilitate brevity, suppose
a system of P particles with N degrees-of-freedom is under-
going holonomic motion, uniquely described by N-indepen-
dent generalized coordinates. D’Alembert’s principle for this
system of particles can be written as

Y "8oc? - (F, — m%ag) = 0 (1)
p

where "6°r? is the absolute variation of the position of the
pth particle as seen in the Newtonian frame N with origin o.
The vector F, is the resultant of forces on the p particle',
“af; is its absolute acceleration, and m , its mass. The vector
variation can be written as (Kane an(f Levinson, 1983; Ev-
erett, 1988; Desloge, 1987)
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Nopr =

ou,

au,,
On
d%ay

= ou 2
S Ot @

with summation on repeated indices implied. The quantities
u, (n=1,2,..., N) are quasi-coordinates or generalized
speeds, the simplest choice being the time derivative of the
holonomic generalized coordinates ¢,, an alternative choice
being a convenient lincar combination of the g,. With inde-
pendent variations 8u,, the system’s time evolution is mod-
eled with

X

P

3)

00 P

dt\" AR

Ju ( P ml’d‘\‘) -
n

for each of the IV generalized speeds u,,. Kinematic differen-
tial equations relating ¢, to u, must also be supplied. If one
chooses the simple form «, = g, for the generalized speeds,
then the equations of motion can be written as

M(q, 1) = 0(4, g, 1) (4)

where the matrix M has dimension N X N, and @, ¢, and g
are N X | column vectors. The mass matrix M(q, ¢) and the
column vector Q(q, g, ¢t) are chosen to be partitioned as

follows:
[M1I "wlz-‘ !qm l w !Qm \

- ’ 4 ol (3)
[Mz My |{dy) (Y]
where
a'vh 9% °vl  a%v{
My =m,— - ,’G, My = —0 —2
(/qlﬂ aqlﬂ &qm aqn,
a°vg  d°vL a°vl  avv{
My =m — ,-A’ My, p “\ ; (6)
r aq,, 794, £ a4,y aq,;
and
a()v/\[j )
an = é’qm ® (Fp = mp(;p)
B a°vf )
Qn’ - aq y ? (FP 2 mp('!/) (7)

with summation on p implied. The vector G, is the gyro-
scopic terms left after the linear terms in § have been moved
to the left-hand side of the equation.

Now consider the same system of particles under the
influence of M nonholonomic constraints of the form
(Neimark and Fufaev, 1972; Barhorst and Everett, 1993):

ou,, =A,,0u,, neE {1,-"’"”}, me {Ié”}

m mr (8)
where {/¥~*} means the set of all N — M indices associated
to independent generalized speeds. {1}7} is the set of M
indices associated to dependent generalized speeds. Also,
(11"} € {IN ~™}. The constraint tensor 4, . is a function of
the generalized coordinates g and time. Considering Eq. (8),
the vector variation in Eq. (1) can be written as

(QUVA’

ﬁ"v(j kT

. i Su,y,
|7
I

’
mmn "

Nyore =

du

me {1} (9)

with summation on repeated indices. Substitution of Eq. (9)
into Eq. (1) allows general conclusions to be drawn.

ne {1,"\‘ ‘”},
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