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An Analysis for the Eft'ects of 
Compressive Load Excursions on 
Fatigue Crack Growth in Metallic 
Materials 

G. A. KardomateasIO,ll and R. L. CarlsonIO,12 

1 Introduction 
The variable amplitude loading of service load spectra 

often includes compressive excursions. Since it seemed rea­
sonable to assume that compressive loads do not induce 
opening of the crack and hence do not contribute to crack 
growth, it had been recommended that analyses of crack 
growth may exclude the compressive excursions, i.e., only 
cycles with tensile loading need to be included. Howev r, a 
number of experimental investigations on the effects of com­
pressive excursions indicated that neglecting them can be 
expected to lead to nonconservative crack growth predictions 
(Carlson and Kardomateas, 1994). 

Based on elastic compression of the asperitie , single as­
perity models had been presented by Beevers el al. (1984). 
These discrete asperity models provid a rational explanation 
of the observed behavior due to closure obstruction in load 
sequences that involve cycling in tension with a positive load 
ratio, and involve mostly elastic loading/unloading of the 
asperities. For compressive excursions of sizable magnitude, 
an inelastic model accounting for the plastic crushing of the 
asperities is required. 

2 Formulation 
For a properly loaded specimen, the distribution of the 

asperities is essentially uniform across th specimen thick­
ness. This suggests the possibiliry of representing the asperi­
ties configuration through the thickness by an effective 
(through-thickness) line contact. 
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Fig. 1 (a) External (global) and crack tip (local) loading; (b) 8 

single asperity on the upper crack face 

Consider an asperity at a distance C from the crack tip in 
a specimen of thickness I (Fig. 1). The presence of both 
externally applied forces and crack face forces is illustrated 
in Fig. l(a) whereas the details of the proposcd model are 
indicated in Fig. l(b). Only the upper crack face is shown 
with the asperity developing a force P. The stress intensity 
factor produced by concentrated, opposing line loads on the 
faces of a finite center crack of length 2a, can be determined 
from Sih et al. (1962) for both the Mode I and Mode II cases. 
The opening mode stress intensity factor for plane strain in 
terms of the local crack face force from Sih et al. (1962) is 

(1) 

This expression is also valid for a single-edge crack of length 
a (this can be easily shown by following the same procedure 
as in Sih et aI., 1962). 

The contribution of the external load will be represented 
by K',global' By superposition, the total stress intensity factor 
is 

(2) 

The dimension L o represents the initial magnitude of the 
interference produced by the asperity. The effective initial 
width of the asperity is bo (Fig. l(b». The load P will now be 
determined from a displacement condition at the asperity 
site, which includes the plastic crushing of the asperity. 

The vertical displacement at the upper crack face, i.e., at 
() = 7T and an arbitrary r, is 

(3) 

By use of the stress intensity factors for the global and the 
local load, we can write the displacement at the asperity site, 
r = C, () = 7T: 
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2 ( C ) 1!2 
U2 ( , 7T) = G 27T (1 - II)K/r,looa, 

2(1 - II) ( C ) 112 P 
+ 7TG 1 - 2a t' (4) 

where G is the shear modulus and II the P isson' ratio. The 
condition for d t rmining the force P i the displacem nt at 
the asp rity ite 

(5) 

where LJ is the interfer nc height for a given external load 
during closure. This will be considert;d next. 

The a penty i a sumed under uniaxial compression au = 
a (all other ·tress components ar zero). Moreover, th" total 
equivalent train of the asperity is 

(6) 

where E" is the elastic and EI' the plastic component (we 
consider positive the asperity stress a and strain e when 
they are compre, ive). otice that in uniaxial compr ssion, 
although there are other nonzero components f strain, 
namely, e 1\ = en = - e22/2. it turns out tbat f = E2'!' Hence, 
since EO = a/ , E7

= In(LoILr), the plastic component is 

_ La a 
E P = In - - - (7)

L E'r 
where L is the modulus of elasticity. um now an equiva­
lent true stress vs. int geat d equivalent plastic strain law 

- ( -1')"a = au EO + E . (8) 

The two constants au, and f1 arc fl und fr m two points on 
the stress-strain curve beyond yi ld, usu lJ the maximum 
load and the fracture point, whereas En i found [rom the 
yield point, i.e., EO = (aylao)l.fl,. The con'tant n is the 
strain-hardening exponent. otice that (j = a. 

Next, denote by a = Ibo the initial cro s- e tional area of 
the asperity. For simplicity, we 'hall consider the material as 
being incompressible in both the ela tic and the plastic 
ranges when cross-sectional ar a cal ulati 115 arc performed 
(this would be strictly accurate if the Poisson' rati is 0.5; 
however, the error introduced for the USll I value of 0.3 c n 
be reasonably expected to be mall, if the lastic strains are 
small compared to the plasti on'). Ther f re the incom­
pre ibility requirement gi a relati nship for the current 
cross-section A[ and the srre S (J = PIA: 

PLfAfLf = AuLa. a = --. (9)
AoLo 

Using (7), (8), and (9) give one equation in P, L / 

PL ] 1/" L PL_--,f,-- = In ~ f_ + e (lOa)[ aoAoLo Lf EAuLu o· 

The other equation needed to solve for Land P is found 
from (4) and (5): 

Lr = ~ ( 2
C
7T) IjZ (I - II) K /,~Iohal 

+ 2(1 - II) (1 __ )I
12 
~. 

7TG 2a I (lOb) 

Notice that the final, crushed a perity width can be found 
from the volume preservation condition (9) and the trans­
verse strain equality Ell = E 3: 

(11 ) 

BRIEF NOTES 

The description of the asperity behavior for the two sep rate 
phases, i.e., the loading and unloading one, will f 1I0w next. 

Loading Phil 'e. Owing the application of th external 
cyclic load, Q. a penty loading may occur from the initial 
eonfigurati n or it may inv Ive reloading after the a penty 
has been pi tically cru h d to a reduced height. Hence. 
during the decreasing external load cycle (loading the asp r­
ity) fr m a general po ition (Q;, Pi = 0, Li, A) to a position 
(Qr < Q,. p. Lr ::; L i , Af ~ A,), the following conditions may 
devdop: 

(3) 0 asperi contact takes place and K/ = K/.gluhal if, 
from (lOb): 

2( 1 - v) ( ) 1!2 
(12)G 27T K/,global > L i · 

(b) If asperity contact takes place and during asperity 
loading (decreasing external load), the asperity compresses 
below yield, then (lOa) i' replaced with the equation found 
b. setting EI' = 0 in (7), or 

P 
( 13) 

£A; 

Then the asp rity load and final asperity height are found by 
eliminating L[ from (lOb) and (13). 

(c) If th loreg ina conditions are not met and the asper­
ity loaeling is taking place in th plastic range, then the 
. ·tem of Eq . (10) is numericall olved. 

The current asperity hei t, L;, and cross-sectional area, 
A;, have been used in (13) in tead of the initial values, L o 
and .11 0 , respectlv ly, since on reloading aft r a compre 'si e 
excursion, the asperity is I aded elastically from the current 
(crushed ill perity) dimensions. 

Unloading Pha -e. During the increasing external load 
cycle (unloading the asperity to zero asperity load, from a 
p sition COr' p", Lr. A ) to a position (Qi> Qr P = 0, 
Li > Lr. Ai < A ), we recover not the initial asp rity height 
La. but the final compressed one, Lf , plus the chang in 
height that is given by 111e elastic solution that corresponds to 
the load p" at which unloading takes place, a LjE, i.e., 

PIILIL, = f + --; Ai = LIiAuIL i · (14)
EA f 

Notice that L; is now the" new" (after unloading) interfer­
en e height. 

3 M del Predictions 
C nsider a metal with the mechanical properti : E = 200 

GN/m2, II = 0.3, yield strength OJ. = 400 M 1m2
, train­

hardening exponent n = 0.30 and the constant of Eq, (8), 
a o = 700 MN/m 2. The other constant in the relation (8) that 
describes the behavior beyond yield is found by Citing the 
yi Id pint, i.e., EO = «(Ty/au)I//l. Th e material constants are 
typical of a hot r lied steel. A single-edge-cracked 'p imen 
of thickn ss I = 13 mm and width II' = 26 mm with a rack of 
length a = 11 mm is assumed. 

For this case of single-edge through crack of length a in a 
platt: of \ idth II' und r uniform remot normal load Q. the 
stress intensity factor is (e.g.. Hellan. 1984): 

2
Q ( a aK/(Q) = -[;{/ 1.12 - 0.23- + 10.62wi II' II' 

(15) 
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F g. 2 (a) Applied load sequence; (b) the total stress intensity
 
factor at different moments during the application of the load se­
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quence 

Consider a single a.. perity configuration with an initial 
interference height La = 25 p.m and initial width bo = 50 
p.m. The distance from the crack tip is C = 15 p.m. These 
are typical dimensions of experimentally observed asperities 
as reported by Be vers et al. (l984). First, the opening load 
(toad at which asperity contact is established), QoP' is found 
by setting P = 0 in (lOb): 

(16) 

A load sequence as shown in Fig. 2(a) is applied. irst, the 
specimen is cycled between l.lQo p and 0.55Qop, 0 that the 
load ratio is positive, R = 0.5. Then a compressive excursion 
to -2.2Qo P, i.e., a negative R = -2. is applied. Subse­
quently, the initial, positive R = 0.5 is resumed. 

The quantity that controls the fatigue crack growth rate is 
tbe range in the total stres' intensity factor 6. K. Figure 2(b) 
hows the total stress intensity factor at the different stages 

of the loading sequence. In all segments, at the maximum 
positive external load, K = K1.:IUhlll and the range 6. K is 
affected by the minimum (positive or negative) external load, 
at which asperity contact may d v lop, and a nonzero K 1,local 

may be generated. At the first R = 0.5 load segment, 6. K is 
relatively small (because of the rather large K1,local at the 
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load minimum). During the compressive excursion, which 
crushes the asperity, 6. K is increased substantially. Notice 
that at the minimum, negative load point, K is positive, 
nonzero. 

4 Conclusions 
It has been shown that an inelastic, discrete asperities 

model can be used to demonstate the effect of compressive 
excursions during fatigue crack growth. By reducing the height 
of roughness asperities, the effective range of the stress 
intensity factor is increased. Subsequent increases in crack 
growth rate can then be expected to follow. 

Acknowledgments 
The studies which led to the preparation of this paper 

were initiated during the support of the Warner Robins Air 
Logistics Center, Robins AFB under Contact No. F09603-91­
G-0096-0013. The authors are grateful for the encourage­
ment provided by the Project Monitor, Mr. Gary Chamber­
lain. 

References 
Beevers, C. J .. Carlson, R. L., Bell, K, and Starke, E. A., 1984, "A 

Transactions of the ASME 



BRIEF NOTES 

Model for Fatigue Crack Closure,'" Engineering FraClure Mechanics, Vol. 
19, pp. 93-100. 

Carlson, R. L., and Kardomateas, G. A., 1994, "Effects of Compressive 
Load Excursions on Fatigue Crack Growth," [Iltenwlfonal Journal of 
Fatigue, Vol. 16, pp. 141-146. 

Hellan, K., 19H4, IntroduCtion 10 Fracture Mechanics, McGraw-Hili, ew 
York. 

Sih, G. C, Paris, P. c., and Erdogan, F., 1962, "Crack-Tip Stress 
Intensity Factors for Plane Extension and Plate !'lending Problems," 
ASME Jo R"AL or ArrUED MECHM'HCS, Vol 29, pp. 306-3l2. 

An Alternative Derivation of Some New 
Perspectives on Constrained Motion 

A. A. Barhorst 13 

An altemative derivation of some recently reported results is 
presented. Specifically, some results regarding the fundamental 
view of Lagrangian mechanics and nonholonomic constraints. 

Introduction 
In a recent paper (Udwadia and Kalaba, 1992), the o-eneral 

nonhoJonomic' e'quations of motion for rigid bodies were 
developed via a constrained optimization procedure. The 
authors utilized the theory of generalized inverses for matri­
ces. The resulting evolution equations were cast as an error 
equation similar to state feedback in the modern control 
theory. The authors mentioned that this interpretation of the 
nonholonomic dynamics is new and enlightening. 

In this Note, the intent is to show that the error type 
interpretation is also available from a physical formulation of 
the nonholonomic equations of motion. The presentation 
herein is more restrictive than the work in (Udwadia and 
Kalaba, 1992), but it does appear to cover all the case that 
arise in engineering systems. 

Derivation 
Without loss of generality and to facilitate brevity, suppose 

a system of P particles with N degrees-of-freedom i under­
going holonomic motion, uniquely described by N-indepen­
dent generalized coordinates. D'Alembert's principle for this 
system of particles can be written as 

L N 
oOr P ' (Fp - m~aN) = 0 (1) 

p 

where Noorp is the absolute variation of the position of the 
pth particle as seen in the Newtonian frame N with origin o. 
The vector Fp is the resultant of forces on the p particle 14, 

o a;~ is its absolu te acceleration, and m I' its mass. The vector 
variation can be written as (Kane and Levinson, 1983: Ev­
erett, 1988; Desloge, 1987) 
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I\' (JQvIJ 
BOrf' = --au" 

dUn 

C/oa) 
-,-.-Ou" (2) 

dUn 

with summation on rcpeated indices implied. The quantities 
un (n = J, 2, .. " N) are quasi-coordinates or generalized 
speeds, the simplest choice being the time derivative of the 
holonomic generalized coordinates 1,,, n alternaLivc choice 
being a c nvenient linear combination of the 4n' With inde­
pendent variations oUn' the ystem's time evolution is mod­
eled with 

(3) 

for each of the N generalized speeds un' Kinematic differen­
tia� equations relating qn to un must al.o be suppLied. Jf one 
chooses the simple form u" = qn for the generalized speeds, 
then the equations of motion can be written as 

M(q, t)q = Q(q, q, t) (4) 

where the matrix M has dimension N X N, and Q, q, and q 
are N X I column vector. The mass matrix M(q, r) and the 
column vector Q(q, q, t) are chosen to be partitioned as 
follows: 

where 

(6) 

and 

(7) 

with summation on p implied. The vector Gf' is the gyro­
scopic terms left after the linear terms in q have been moved 
to the left-hand side of the equation. 

Now consider the same system of particles under the 
influence of M nonholonomic constraints of the form 
(Neimark arid Fufaev, 1972; Barhorst and Everett, 1993): 

OUm = AIIIIlou,l, n' E {I,N-M}, m E {It} (8) 

where UI '- M} means the set of all N - M indices associated 
to independent generalized speeds. U)I} is the set of M 
indices associated to dependent generalized speeds. Also,
u;y} E U,tY- M}. The constraint tensor A",n' is a function ot 
the generalized coordinates q and time. Considering Eq. (8), 
the vector variation in Eg. (1) can be written as 

with summation on repeated indices. Substitution of Eq. (9) 
into E4. (1) allows general conclusions to be drawn. 
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