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Introduction 

A Micromechanical Model for 
the Fiber Bridging of Macro
Cracks in Com asite Plates 
Recent experimental studies on the propagation of transverse cracks in composites 
have shown that fiber bridging is frequently present, and can be considered as the 
cause (!f in~'reased toughness. This paper presents a model that is capable ofqualltify
mg this effect and explaining the decrease in the crack growtli rate in either a 
monotonic or a cyclic load profile. Both Modes I and II are considered. The model 
is based on the elastic loading of a fiber located on the IIUlcro-crack face close to 
the tip and under dominantly plane strain conditions. Two fundamenlal cases offiber 
bndgmg configurations are distinguished, namely when the fiber-matrix inte/face is 
intact and when the fiber-matrix inteiface has partially failed. Following the single 
fiber analysis, the model is extended to the case of multiple fibers bridging the faces 
of the IIUlcro-crack. The analysis is for a generally anisotropic material and the fiber 
lines are at arbitral)' angles. Results are presented for the case of an orthotropic 
material with unidirectional fibers perpendicular to the crack faces. Specifically, the 
reduction in the stress intensity factor (relative to the nominal value) is investigated 
for the glass fibers in (l glass/epoxy composite system. The effects offiber debonding 
and pullout with friction as well as fiber breaking are accounted for in the analysis, 
and results with respect to a parameter representing the fiber-matrix inteiface friction 
are preseJ1led. Results are also presented regarding the partial or full fracture of the 
fiber bridging zone. The model can also be used to analyze the phenomenon offiber 
nesting, which is similar to fiber bridging, and occurs with growing delaminations. 

tate interfacial failure and extensive sliding resisted by friction 
(e.g. Cox et aI., 1989). Such weak interfaces are beneficial

In many composite structure applications, transverse cracks, 
in relatively brittle-matrix composites, especially the titanium 

usually emanating from holes or notches, extend into sizable 
aluminides, in contrast to the case of the more common ductile

macro-crack growing across the fibers. Fiber bridging of the 
metal matrix and polymeric composite, in which stronger inter

macro-crack f ces has been observed to take place in polymeric 
faces are generally believed to optimize macroscopic properties. matrix compo ites (e.g., Botsis and Shafiq, 1992) and ceramic

Despite the relatively stronger interfaces of polymetric matrix matrix composite: ( .g., Zok et al., (990). 
composites, fiber bridging has been observed as a source ofThe bridging of macro-cracks by fibers only partially pulled 
toughening even in these materials. Moreover, another phenomout is a significant source of toughness. The toughening mecha
enon, which is analogous to fiber bridging, appears in polymeric nism behind the delamination tip is analogous to the contribu
matrix composites with growing delamjnations. This is the phetion to the toughness of polymers by bridges between molecular 
nomenon of fiber nesting, which takes place because of thechains. Alternatively stated, in plastics. internal stresses are 
fibers which cross adjacent layers due to compression during transmitted through tangles of chains, and if crosslinks are pres
the manufacturing process (Russell and Street, 1988). As the ent, more and more internal resistance to external loading is 
delamination extends, these nested (bridged) fibers gradually . available. 
become strained and subsequently divert some of the available The toughening roles played by fibers bridging a crack can 
strain energy away from the crack tip; therefore increasing the be conceptually described as follows: Close to the crack tip, 
toughness.the crack-opening displacement i mall enough to be accomo

The fiber bridging effect on the opening of macro-cracks indated by enhanced extension of the fiber located there: typical 
composites is analogous to the effect of discrete asperities instrains to failure are 0.003 for fibergh '$ and OJ> I for carbon 
the obstruction to crack closure in metallic materials (Beevers fiber. Moving away from the crack tip, the displacement gets 
et al., 1984; Carlson et aI., 1991). However, the fiber bridging larger so that fiber pull-out or fiber fracture are required in order 
of delaminations in composites affects the loading phase (opento accomodate the increasing crack displacement. 
ing of the delamination) and hence it can influence both the This phenomenon has been exploited in the design of various 
monotonic and cyclic growth behavior. whereas the discrete titanium and titanium aluminide alloys wruch have been rein
asperities effect in metallic cracks affects the unloading phase forced by unidirectional SiC fibers having carbon-rich coatings.
 

These fiber coatings contain weak graphitic films, which facili (closing of the cracks) and hence this phenomenon influences 
primarily the eyclic growth behavior. In both cases, the result 
is a reduced growth rate. In the same context, it can be argued 
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during unloading, result in a welding of a peritie , which would 
produce an effect similar to the bridging phenomenon discussed 
here (Carlson and Beevers, 1992). 

Several important contributi ns have appeared on the bridg
ing problem, mainly in connection with ceramic matrix compos
ites. Specifically, Budiansky and Amazigo (1989) examined 
the effect of fiber bridging on th Mode I stress intensity fa lor 
in a smeared fiber force model. Rubinstein and Xu ( 1992) also 
examined the effect of fiber bridging on the Mode I :;tress 
intensity factor by using a discrete fiber r pre entation in an 
isotropic material and a linear fiber force-displacem nt rei. tioo
ship. Nemat-Nasser and Hori (1987) developed a ymptotic so
lutions for fully or partially bridged cracks. A detailed treatment 
of the fiber debonding with friction was provided by Hutchinson 
and Jensen ( 1990). 

In the present paper, a different approach is followed, based 
00 discrete fibers at arbitrary orientations, with allowance for 
fiber breaking. The analysis allows evaluation for both Mode I 
and II stress intensity factors and is valid for a generally aniso
tropic material. Also, by incorporating til capability of treating 
individual fibers, it is possible to examine cases in which single 
fibers are either fractured or have interface failures which are 
very different from their adjacent neighbors; such studies would 
be analogous to examining the effect of imperfections in struc
tural systems. Two cases are treated separately here: either the 
fiber-matrix interface remains intact or has failed. For the latter 
case, a general nonlinear fiber force-displacement relationship 
is proposed. 

Formulation 
Let us first define the basic geometric and material parameters 

that will be used in formulating the model. Consider a fiber at 
an angle wand at a distance c from the tip of a macro-crack in 
a composite body of thickness t (Figs. I (a).(b». The length 
of the macro-crack is 2a and the fiber is at a distance b from 
the center. The presence of both externally applied forces and 

Fig. 1 (a) External (global) and crack face (local) loading 

Fig. 1(b) A single fiber loading the upper crack face 

226 I Vol. 63, MARCH 1996 

crack face forces is illustrated in Fig. I (a). whereas the details 
of the proposed model are indicated in Fig. 1(b). Only the 
upper crack face is shown with the fiber developing a force 
with component P aod Q. 

Let us consider a state of plane strain, i.e., tOt< = ')',: = ')',,: = 
O. In thi .. ca e, the tres~-strain relations for the orthotropic body 
are (Lekhnitskii, 1963): 

(1) 

here aij ar the compliance constants (we have used the nota
tion I ;: x, 2.,. y. 3"" z). 

sing the condition of plane strain, which requires that t" = 
0, allows elimination of cr"', i.e., 

(2) 

The Eq. ( 1) can then be written in the form 

(3) 

where 

(i,j = 1,2,4,5,6). (4) 

Problems of this type can be formulated in terms of two 
complex analytic functions <1'>.(z.,.) (k = 1,2) of the complex 
variabl . z. = x + s.y, where Sk, St, k = 1, 2 are the roots of 
the algebraic equation 

/3JJs 4 - 2/316.\J + (2/312 + /3(6).1'2 - 2/3,(,s + /322 = 0. (5) 

It was proven by Lekhnitskii ( 1963) tbat these roots SI, .1'2, .i1, 
S2 are either complex or purely imaginary, i.e., Eq. (5) cannol 
have real roots. 

Now we proceed to the problem of tudying the effect of 
discrete loads on a crack face in an anisotropic material. 

I' 

C-' <-
F 

II 
FI 

I--- 2a-

I Concentrated EquiJibrating Forces on the Two Faces 
of a Macro-Crack in an AWsotropic Material. A has been 
discu d, following Lekhnitskii (1963), the plane-strain aniso
tropic elasticity pr blem can be reduced to that of determining 
the two complex potentials if?(z~ of two different complex 
variables, Zk = + SkY' k = 1 2. otice that if the complex 
potential ill. are regarded as function.. of the complex variables 
Z., they must be d t rmined not in the region 5 but in regions 
5.. obtained from S by the affine transfolmation 

where s. = C'I.. + i/3•. 
For a crack of length 2a in the z-plane (Fig. 2), Sih and 

Liebowitz (1968) have shown that K, iU1d K" can be evaluated 
directly from <1'>1 (ZI) in th limit as 21 --> a; i.e., 

(7) 

In many extensional problems the use of conformal mapping is 
an efficient method for obtaining the 'tress intensity factors. 

Let the mapping function b defined (with the usual restric
tions as to analyticity and single-valuedne . ) by 

2 = w( ~) ; z. = w. (1;~ ). (8) 

Essentially. we map all three regions 5, 51. 52 onto the S = ~ 

+ iT} plane (Fig. 2). Thi mapping is effected so that one and 
the same point on the contour of the s-plane region will corre-
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(8) 

{O 

p (b) 

Fig. 2{a) The z-plane with the crack in an anisotropic body; (b) the 
transformed, ~ -plane 

spond to the points on the contours of the regions 5 and Sk, 
which are related by the affine transformation (6). 

Then 

<I>;(Z,) = d<I>, dS I = <I>;(SI) . (9) 
dS I dZI W;(SI) 

Now, corresponding to the crack tip Z = ZI = a in the z-plane, 
there will be a point S = Sc in the S-plane. Thus, Eq. (7) may 
be written 

(10) 

The above equation illustrates the fact that the stress intensity 
factors may be found simply from a knowledge of <I>; (Z,) in 
the vicinity of the crack tip, and that <I>2 can be ignored if the 
stress intensity factors are the only desired result. 

In the Z = x + iy plane, we have the region 5 in the form of an 
infinite plane with a crack (Fig. 2 (a)), for which the equation is 

x = a cos B, - 7f < B < 7f; y = o. (1Ia) 

Since Zk = x + SkY, the regions 51 and 52 are also planes with 
straight cutouts described by 

Xk = X = a cos B, - 7f < e< 7f; Yk = Y = 0, (k = 1,2). 

( lib) 

As has been already observed, we map all three regions S, 
S I, 52 onto the lower half of the plane S = ( + i1J. This mapping 
is effected so that to all three points on the contours of the 
regions 5 and Sk corresponds one and the same point on the 
real axis S = ( 

z = w( ~) = a(I -S:) ( 12a) 
I + S· 

The functions reciprocal to the above, are 

Sk= a-Zk 

a + z a + Zk 
S = (~)1/2 ( ) 

1/2 
( 12b) 

Indeed, when x and y runs along the contour of the crack, taking 
on values x = acost} and y = 0, then ( 12b) results in the values 

S = Sk = tan ((J12) (k = 1,2). (13) 

That is, a crack of length 2a in the z-plane is transformed to 
the entire real axis of the S-plane, and the infinite plane to the 
lower half of the S-plane. The crack tip z = a is mapped onto 
the point S = 0, and Z = -a is mapped onto the two infinite 
points on the real axis S = ::'::00. Therefore, the upper crack face 
on the z-plane is mapped onto the positive real semi-axis of the 
s-plane and the lower crack face is mapped onto the negative 
real semi-axis. Since one point Z in the z-plane corresponds 
to the two points ::'::S in the S-plane, a one-to-one, conformal 
transfonnation is established between the z-plane and the lower 
half of the S-plane. 

For a generally anisotropic material, the function <I>; (S,) for 
two equilibrating concentrated loads on the half-plane, applied 
at S = ::'::1;0, with components P (vertical) and Q (horizontal) 
is (Lekhnitskii, 1963) 

Then, upon noting that 

I i~7.
lim [W(SI) - W(0)]1/2 -,-r- = - ----r,
,,->{) W (~I) 4\/a 

and that 

I 1 
(

+ )"2lim---=-= ~ , 
s,->{) So - SI So a - Zo 

and using ( 10) and ( 14), since Zo = b, we obtain for a generally 
anisotropic body (at the right end of the crack): 

K, + KII = PS2 + Q a + b 
1/' 
-, 

( ) 
(15a) 

S2 7fS2..[;z a - b 

so that the stress intensity factors are given directly as 

P (a + b)1/2 _ jL (~)1/2K,=- -- ; KII - . (15b) 
7f..[;z a - b 7fa a-b 

Hence, the relations (15) give the stress intensity factors for 
an anisotropic infinite sheet with a crack along the x-axis of 
length 2a, centered at the orig~in, and haVing two equilibrating 
forces at x = b, one on the upper crack face and the other on 
the lower crack face, with y -component, P, and x-component, 
Q (per unit thickness). 

Notice that since the loads on the crack faces are self
equilibrating, the stress intensity factors do not depend on 
the material constants. This observation has also been made 
by Sih et al. (1965); moreover, in analyZing plane center
crack problems, Sih et al. (1965) were able to conclude that 
"for problems involving self-equilibrating loads (on each 
boundary) the stress intensity factors for both the isotropic 
and the anisotropic materials are identical." Only if these 
loads are not self-equilibrating on each boundary, do the 
stress intensity factors depend on the elastic constants. A 
similar statement has been made in connection with the stress 
distribution in multiply connected bodies by Timoshenko and 
Goodier ( 1970). Specifically, they concluded that' 'the stress 
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distribution is independent of the elastic constants of the 
material if the resultant of the forces applied to each boundary 
are zero. The moment of these forces need not be zero." 
Notice that this conclusion is of practical importance in the 
experimental determination of the stress distribution for any 
material by simply applying the optical methods on a trans
parent material. 

Sih et al. ( 1965) treated the problem of a single, unbalanced, 
vertical force, P, on the upper crack face by using a mapping 
function that transforms the crack in the z-plane into a circular 
hole of unit radius in the I;;-plane. Since the force was unbal
anced, their stress intensity factors included the material con
stants; however, if an equilibrating force on the lower crack 
face is included, then their formulas wOtlld reduce to the stress 
intensity factors ( 15), independent of the elastic constants. 

Although the stress intensities are decoupled and independent 
of the elastic constants, the displacement relationships are not, 
as will be shown in the next section which considers the devel
opment of the fiber-bridging model. The basic configuration of 
an anisotropic infinite body loaded with remote normal stress 
0"0 and in-plane shear To would also exhibit this feature of 
decoupled and independent of the elastic constants stress inten
sities, with K, = O"o-kz and K/I = To-kz, but the displacements 
would be coupled (Sih and Chen, 1981). 

Hence, it is re-emphasized that since during fiber bridging 
the loads on the crack faces are self-equilibrating, the stress 
intensity factors do not depend on the elastic constants for either 
the isotropic or the anisotropic material assumption. 

Next, we shall use these relations in the development of the 
fiber bridging model. 

II Development of the Fiber-Bridging Model. In terms 
of the stress intensity factors K, and K/I' Sih and Liebowitz 
(1968) give relations for the displacement field as 

uAr, () = .,fl; Re{ __I_ [(K,s, + K/I)P2kos () + S2 sin () 
s, - S2 

-	 (K,S2 + K/I)p,Vcos () + s, sin ()J }, (16a) 

uy(r, () = .,fl; Re{-_I- [(K,s, + K/I)q2kos () + S2 sin ()
S, - S2 

-	 (K,S2 + K/I)q,Vcos () + s, sin ()J}, (I6b) 

where 

( I6c) 

At a distance c behind the crack tip, i.e., at () = 1f and r = 
c, the displacements become 

u, = & Im{ __I_ [K,(S,P2 - S2P,) + K/I(P2 - PI)]} ,
S2 - S, 

( 17a) 

uy = & Im{_I- [K,(S,q2 - S2q,) + K/I(q2 - q,)]} . 
S2 - S, 

(l7b) 

The displacements at the lower crack face, i.e., at () = -1f, 

are of opposite sign. 
Notice that even if a pure Mode I state of loading exists, i.e., 

K/I = 0, both normal and shear components of the displacement 
field uy and u"' respectively, are nonzero for general anistropy. 
This means that the final orientations of the bridging fibers, Wi, 

may be slightly different than the initial fiber orientations. They 
will be determined in the process of fiber loading, and are, 
therefore, unknowns to be determined. 

It should also be mentioned that the length of the fiber bridg
ing zone is assumed to be small compared to the crack length, 
and confined near the tip of the crack. Therefore, the displace
ment relations are expected to be adequate near the crack tip for 
the problem under consideration. In practical cases, at moderate 
distances from the crack tip, the fibers would actually be ex
pected to be broken, anyway. A more accurate solution for the 
displacement field, valid at large distances away from the crack 
tip would certainly be desirable; however, it is not available at 
present and our future plans include exploring the theoretical 
aspects of obtaining a more accurate displacement field for an 
anisotropic crack. This would then be directly incorporated into 
our fiber bridging model. Future research could also include 
detailed finite element analyses. Please note that the same as
sumptions regarding the displacement field, namely use of the 
asymptoptic near-tip formula, have been adopted in past work 
of other researchers. such as the discrete asperities model in 
metals of Beevers et at. ( 1984). The discrete asperities model 
has been applied to the closure obstruction problem, and it has 
been found that the features of the model can be used to correlate 
experimental measurements of opening stress intensity factors 
after tensile overloads (Carlson et aI., 1991). 

Now, let us represent the Mode I and Mode II contribution 
of the global, extemalload byK'.GLandK".GL,respectively. By 
superposition, the total stress intensity factor is 

KU1 = Ku','oca' + K'.IJ.GL' (18) 

Displacement conditions at the fiber sites are needed to deter
mine the fiber loads. The displacements at the upper macro
crack face, i.e., at (1 = 1f and an arbitrary r, due to both local 
and global loading. is 

Ux .y( r, 71) = Ux.)',CI. + Ux,y,local' ( 19) 

Moreover, if c = a - h represents the initial distance of the 
fiber load point from the crack tip, this distance on the upper 
crack face is c - Of sin w, and the corresponding distance on 
the lower crack face is c + Of sin w, due to the fiber orientation 
at an angle W as shown in Fig. I (b). The quantity oJ represents 
half of the final fiber interference length and will be discussed 
in detail in the following. Hence, including the effect of loading 
both the upper and lower faces of the macro-crack, and using 
the stress intensity factors for the global and the :locaJ load 
from (15). we can write the x-component of the displacement 
difference between the upper, () = 1f, and lower. () = -1f, face 
of the macro-crack at the fiber site, r = c, as follows: 

uAc, 1f) = 2& Im{-._1_. [K,.G,.(S,P2 - S2P,) 
j2 - '\1 

+ K".GL(P2 - P,)]} 

~[(2(1 - e + 0Jsin W)/2
+	 2v2e 

C - Of sin W 

_.) 112]+	 2a - (' - ~J sm W
 

(
 c + OJ m W 

I [F cos W
X 1m -- --r- (S,P2 - S2PI){ 

S2 - Sl 21fva 
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and the y-component of the displacement spread (opening) as 

uy(c, 7f) = 2& Im{ __l_ [K1.cd5,q2 - S2Q,) 
52 - 5, 

+ K/I.CL(Q2 - q,)] } 

+ 2&[(2a - c + I5J sin W)1I2 
c - OJ sm w 

+ (2a - c - 15, sin w) 112] 
C + I5J sm w 

(20b) 

Two separate cases of fiber bridging configurations are distin
guished now. 

(a) Fiber-Matrix Interface Intact. In this case, which is 
schematically shown in Fig. 3, the displacement at the fiber site 
is zero. The fiber is elastically stretched with a force F, therefore 
the fiber stress is 

4F 
13 = -d ; 13 < IJ"J' (2la)

2 
7f J 

where dJ is the fiber diameter. A condition of the fiber stress 
being below the fiber ultimate strength 13"J is imposed for valid
ity of this model. 

The condition of zero displacement at the fiber site gives 

(2Ib) 

Taking into account ( ISb), ( 17), and ( 18), it is concluded that 
the foregoing two equations, (21 b ), are two linear equations in 
P and Q. Notice that in this case the fiber can sustain both 
tensile and shear stresses; the force along the fiber axis is F = 
P cos w + Q sin w. 

In this case of an intact fiber-matrix interface, we have very 
effective ligament bridging. However, it is more reasonable, 
common, and an experimentally supported fact, that the fiber 
does not remain perfectly bonded to the matrix and fiber de
bonding occurs to some extent. This case is examined next. 

(b) Partial Fiber-Matrix Interface Debonding. In this 
case, which is schematically shown in Fig. I (b), the displace
ment at the fiber site is nonzero. The characterization of fric
tional sliding of a fiber embedded in a matrix is an issue of 
intense current interest. To this extent, Hutchinson and Jensen 

Fig. 3 The case of fiber-matrix interface intact (ligament-bridging) 

Journal of Applied Mechanics 

I, 
I 
I 
I 

5 = (d~) (iT - iTi)
da iT=iT, 

i ,I
I 

I 

-----f----------~--~----------------------,I, 
,I

Fig. 4 Schematic of the fiber stress, iJ', versus displacement, iJ, curve 

( 1990) have developed a model that describes the interactions 
between components of a unidirectionally reinforced composite 
which is subject to debonding. The model is designed to include 
the effects of fiber strength, interface bond strength, and the 
friction force which can develop if residual compressive stresses 
act across the interface boundary. 

The form of the fiber stress, a, versus the pullout displace
ment, 15, curve with CouJomb friction is qualitatively illustrated 
in Fig. 4. The fiber stress versus the debond length, I, is similar 
in form. As shown, the debond length and pullout displacement 
are zero until a threshold value of stress, a; , is achieved. Above 
this value, the curves have decreasing slopes until a limiting, 
unstable value of stress, an, is attained. Note that if the fiber 
strength, ac , is less than an, the value of a can abruptly decrease 
and then continuously decrease with increasing 15. 

In the following, ai, b; , and Ci are constants that depend on 
the overall modulus of the composite and the elastic properties 
of the fibers and the matrix, and they are given in the Appendix 
of Hutchinson and Jensen ( 1990). An expression for the debond 
length, I, is given in terms of the coefficient of friction, p" and 
the area fraction of the fiber, p= [dJI (dJ + s)] 2, as follows 

1= -.!!L In [an - ai + k,(aj - a)] , (22a) 
4p,b, an - (J 

where 

(22b) 

When the fiber is isotropic with l/r = 1/"" then a) = 0 and thus 
k j = O. 

Moreover, the pullout displacement, 15, is given by Hutchin
son and Jensen ( 1990) in terms of the modulus of the matrix, 
En" and the mode II toughness for the debond crack, measured 
by the critical value of the energy release rate, Gc : 

I-P I (2Gc )1/2
o=(b +b) ---- -

2 , { P (',t) E",dJ 

(22c) 

where S, = 4p,b,lldr and 13-; is the normal stress acting across 
the interface just below the debond tip. For debonding with 
Coulomb friction, 

13-; = -p"(l - p)(b,/c,)[an - ai + k,(an - a)]. (22d) 

The previous expressions are nonlinear relations for the fiber 
displacement versus fiber stress law, 15 = F(a). Although it 
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seems that a nonlinear fiber load-displacement relationship 
would provide a more complete description of the fiber debond
ing process and better account for the relative sliding between 
the fiber and the matrix, the need for analytically tracking the 
problem easily has led to the use of a linear relationship between 
displacement and fiber load (e.g., Rubinstein and Xu, 1992). 
It is also easier to illustrate the use of our fiber bridging model 
by using a linear law. 

For this purpose, a linear fiber displacement versus fiber stress 
law is adopted by using the initial, almost linear segment the 
curve in Fig. 4, as follows: 

( dO)0= ----= ,(0' - 0';); 1= (d~) (0' - 0';). (23a) 
dO' ~~", dO' ~~~i 

Such an approximation should be adequate as long as we are 
not very close to the saturation stress, 0'0. 

The resulting expressions are much simpler if we assume that 
the fiber is isotropic with vf = v'" (in which case k, = 0). Under 
this assumption, we obtain from (22a, c) and (23a) 

for 0'; < 0' < 0'0' (23b) 

The initiation stress 0'; is the stress required to propagate the 
debond crack up the fiber and is given in terms of the axial 
mismatch strain c;- by 

(23c) 

In turn, the saturation stress 0'0 is given in terms of the radial 
mismatch strain c~ by 

(23d) 

The initiation stress can be negative if the nondimensional 
combination 2GcI(Edf c}) is sufficiently small; in such cases, a 
finite length debond zone would be introduced before any over
all stress is applied. In the interest of simplicity, let us take 0'; 
= 0 (the case of nonzero 0'; will be examined in a future 
publication). Furthermore, since we assume that there is a uni
form distribution of fibers with spacing s and diameter df 
through the thickness, there are lI(df + s) fibers per unit thick
ness, and the effective area per unit thickness is Af = 

Hdj/4(df + s). Then, (23b) gives the fiber displacement Of = 
oin terms of the fiber force F; = 0' Af , in the form 

Of = _ ~ 4 F; (df + s) , (24a) 
HEfdf 

where now ~ is dimensionless and can be considered as a mea
sure of the fiber-matrix friction 

(24b) 

The minus sign is used because the fiber is under tension loading 
when the crack face is loaded with a force opposite to the one 
in Fig. 2 (a); the force in Fig. 2 (a) would generate nhe local 
stress intensity factors given by (15). 

In the previous relations, dr is the fiber diameter and s is the 
mean spacing between the fibers. In a representation of the form 
(24a), the quantity ~ increases for poorer bond quaUty that 
allows more fiber sliding. This quantity can vary widely de
pending on the class of composites under consideration. Spe
cifically, brittle (ceramic )-matrix composites are characterized 
by relatively weak interfaces, in contrast to the case of the more 
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common polymeric-matrix composites or the ductile metal-ma
trix composites, in which relatively strong interfaces generally 
exist. 

Since 20f is the final interference fiber height, the conditions 
for determining the forces P and Q are the displacements at the 
fiber site 

uAc, H) - u,(c, -H) = 20f sin w, 

uy(C, H) - u,,(c, -H) = 20fcos w. (25) 

III Multiple Fiber Bridging. The single fiber analysis 
has been used thus far because a clear definition of the working 
quantities was needed. In actual fiber-bridging situations, multi
ple fibers are connecting the two faces of the macro-crack. 
Based on the single fiber analysis, an extension to multiple 
fibers can be directly performed. An interesting observation in 
connection with the multiple fiber bridging problem is that the 
load redistribution, which occurs among fiber bridges, as the 
load increases (or the crack propagates) and some fibers break 
in the process, is analogous to the redistribution of stresses 
which occurs due to the development of a crack-tip plastic zone 
in metallic materials. On another note, it can be observed that 
a similar redistribution occurs in the shear lag mechanism of 
load transfer in composites. 

If n fibers at final angles W; and at distances c; behind the 
tip (and b; from the center) are bridging the faces of the macro
crack, then the first set of conditions for determining the forces 
P; and Q; are the displacement components equations at each 
of the fiber sites (Fig. 5). A direct extension of Eqs. (20), and 
using (25), gives the first equation from the x-component of 
the displacement spread between the upper and lower crack 
faces as 

Of; sin W; = &: Im{-_I- [Kt .GL (SIP2 - S2P,) 
.1'2 - S, 

+ KII,GI.(P2 - PI)] } 

{ 
[P. cos w-I

X 1m --- J !c" J (S,P2 - S2P,) 
.1'2 - .1', 2H a 

i = I, ... n (26a) 

The condition from the y-component of the displacement spread 
is 

_._. 

i 
i

.1._._._._._. 
i 
i 
i F2 
i 

Fig. 5 Loading of multiple fibers on the upper face of the macro-crack 
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Of; COS Wi = fiZ Im{__I_. [K,.GL(S,q2 - Slq,) 
.1'2 - '\1 

+ KIl.GL (q2 - q [)] } 

+ (2a - 'i - I5fJ sin Wi) 112] 
<:j + I5fj sm Wi 

i = I, ... 11. (26b) 

The second Sel of conditions is the fiber load-displacement 
equations, either (22) for a nonlinear law or (23), (24) for a 
linear law. 

The quantities to be determined are the final fiber interference 
heights ofr and the fiber loads F; as well as the fiber orientations 
W; ; hence there are 3n unknowns. For each fiber there are two 
displacement equations, (260, b), and one "fiber constitutive," 
equation; hence we have a total of 3/1 equations. Therefore. a 
well-posed problem has been formulated. The only complica
tion arises from the fact that the system of equations is non
linear. 

The problem becomes linear, however. in the more common 
problem of a transverse crack in a zero-degree unidirectional 
orth tropic composite under pure Mode I loading, if the linear 
fiber load-di placement Eq. (24a) is used (Fig. 6). Due to 
symmetry. W, = O. and the x-displacements arc zero and the 
corresponding relations (26a) are automatically satisfied (be
cause the quantitie-~ in the brackets tum out to be real). Further
mol' .0Ji an be directly expre sed in terms of F; from the linear 
fiber load-displacement law. This leaves us with the 11 fiber 
loads. F;, to be determined from the 11 linear equations from 
the normal. 11,_. displacement relations at the fiber sites. (26h). 
The number of loaded fibers, II, is determined by imposing the 
condition of the fiber loads being below the fiber strength, i.e.: 

4F,(dj + .1') ./' 
-'--'--"--::2--"-""" (T"r, i = I, ... 11. (27)

Tldr 
Hencp 

, It is increased succe-~sively, until a state is reached where 
the nth fiber is under load exceeding the fracture strength. 

1.A 

"Nomina'" (Applied) 
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Fig. 6 The "effective" stress intensity factor, K" as a function of i, 
which expresses the interface friction. Two values of fiber spacing, s, 
are considered. K'.Gl is the nominal (applied) stress intensity factor. 

20 40 60 80 100 

In the general case of an arbitrary fiber orientation, under 
combined Mode I and IT loading with the linear fiber load
displacement relation, again Of' can be directly expressed in 
terms of F;. Furthermore, an initial guess for the final fiber 
orientat.ions is the initial fiber orientations of the parent compos
ite, w? This leaves us with the n fiber loads, F" to be deter
mined from the n tineal' equations for the nOlmal, uy, displace
ments at the fiber sites. An iteration procedure can be employed 
to find the final orientations of the bridging fibers, w" by satis
fying the x-displacement equations. Since a neighborhood of 
the roots is identified. standard numerical techniques such as 
the Newton-Raphson, generalized to multiple dimensions, can 
be used (Press et aI., 1989). 

Once the fiber loads, F" and the tiber interference lengths, 
Or', and orientations. Wi, are determined, the local stress inten
sity factors can be found by using (15b), as follows: 

Kl,loca, = i Fj CO~Wi [(2a - c) + On sin Wi)I/2 

j=1 21rva Cj - Ofj SIl1 Wj 

+ (2a - Cj - oJ) sin Wi) 1/2] (28a) 
Ci + On SIl1 Wj 

+ (2a - Cj - O~) sin Wi)l/2] (28b) 
ci + or; SIl1 wJ 

Application of the Model 
The model described in the previous section has been used 

to analyze the effect of fiber bridging on a transverse crack in 
a unidirectional orthotropic plate. The linear fiber load-displace
ment law. Eg. 24(a), is used. It will be shown that the effect 
of tiber spacing and the fiber-matrix interface frict'ion can be 
quantified in this model. Moreover, the response due to increas
ing magnitudes of tensile loads that may include partial or full 
fracture of the bridging zone will be investigated. 

The composite system considered is a glass/epoxy with glass 
fibers of diameter dr = II p,m. Two values of spacing are 
considered: one with a fiber spacing of s = 6 p,m and a more 
closely spaced system; s = 3 p,m. Notice that the fibers are at 
distances from the crack tip Cj = (df + .1') j, j = I, ... 11. For 
square spacing, this would give tiber volume fractions of Vf = 
0.329 and Vj = 0.485, respectively, according to the formula 
(e.g., Hull, 1981): 

The glass fibers have a modulus Ef = 72.5 GPa and an ultimate 
strength of (T"j = 3.5 GPa. The epoxy matrix is assumed to 
have a shear modulus of Gm = 1.35 GPa. 

The moduli in GN/m 2 and Poisson's ratios used are listed 
below, where I is the horizontal (x) direction. 2 is the vertical 
(y). and 3 the direction through the thickness (z). 

(a) Spacing of .I' = 6 p,m: E, == EJ = 5.1, E2 == 26.2, G I2 

= Gn = 2.1, Gli = 1.9, V'2 = 0.068, V23 = 0.277, V3' = 0.400. 
The characteristic Eq. (5) gives purely imaginary roots: 

.1', = 0.297i; S2 = 1.609i. 

Furthermore, Eq. (16c) gives real Pk and purely imaginary qk' 
(b) Spacing of s= 3 p,m: E, == E l = 6.5. E2 = 37, G I2 = 

Gll = 2.6, Gl , = 2.4, Poisson's ratios are the same as in system 
(a). For this material, the characteristic Eg. (5) gives again 
purely imaginary roots: 
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5, = 0.277i; 52 = l.64li. 

Furthermore, Eq. (16c) gives again rea1/h and purely imag
inary qk. 

In either a center-cracked specimen with a crack of length 
2a or a single-edge crack specimen with a crack of length a 
under a remotely applied normal stress (To, the stress intensity 
factor is the same as for an isotropic body (e.g., Sih and Chen, 
1981) : 

(29) 

A crack length of a = 10 mm and a remotely applied stress 
corresponding to the typical value of fracture toughness of the 
epoxy matrix are assumed, i.e., K,.GL = 1.25 MN 1m 3'2. The 
remotely applied stress, (To = 12.5 MPa, and the crack length 
are also the same as the ones used in the experiments of Botsis 
and Shafiq ( 1992) and Botsis and Beldica ( 1994). Furthermore, 
a fiber bridging zone of 120 p.m behind the crack tip is assumed. 
For the spacing of 5 = 6 J1.m, a total of 20 fibers would span 
this distance, whereas for the spacing of 5 = 3 J1.m, there would 
be a total of 40 fibers in the bridging zone. 

For the unidirectional case, W = 0, the local stress intensity 
factors are given by using (28), as follows: 

" F; ( Cj) 1/2
K,.loco, = I I 2 - - ; KII.loc.t = O. (30) 

j~1 1[\G a 

Although the stress intensity factor K,.c, is applied and consti
tutes the nominal quantity indicative of the amount of crack tip 
loading, an "effective" stress intensity factor K, = K"GL + 
K",oca', due to the effect of fiber bridging, actually exists at the 
crack tip, This depends strongly of the properties of fiber-matrix 
interface, as is clearly seen in Fig. 6, which shows KII KI <iL as 
a function of the parameter ~, which expresses the int~rface 
friction. For a larger value of ~, i.e., more fiber debonding, the 
effective stress intensity factor is smaller. 

The two curves represent the two cases of fiber spacing con
sidered, and it is again clear that the more widely spaced fibers 
show a larger effective stress intensity factor than the more 
closely spaced system. This agrees very nicely with the experi
mental observation of Botsis and Shafiq ( 1992) that the more 
closely spaced system is tougher than the more widely spaced 
one, Specifically, for ~ = 20, the effective K, for 5 = 6 J1.m is 
21 percent of the nominal value, whereas for the more closely 
spaced 5 = 3 J1.m system, the effective K, is only 13 percent of 
the nominal value. For a weaker fiber-matrix interface bond, ~ 
= 100, the effective KI for 5 = 6 J1.m is 59 percent of the 
nominal value, and, by comparison, for the more closely spaced 
5 = 3 J1.m system, the effective K, is smaller, i.e., 44 percent of 
the nominal value. 

In either case, the fiber stress was below the ultimate fracture 
stress (T,,! of the glass fiber, for the entire range of ~'s consid
ered; this indicates that for this example only fiber debonding 
and no fi ber fracture would occur, Botsis and Shafiq (1992) 
and Botsis and Beldica (1994) considered the same geometrical 
configuration and the same level of applied stress but in a more 
widely spaced glass fiber system and a larger fiber diameter. 
Substituting for their fiber spacing and fiber diameter, the pres
ent model would also predict fiber stresses in the bridging zone 
below the ultimate fracture strength of the glass fibers, and this 
would again agree with their experimental results, in which no 
fiber fracture was observed. Hence, fiber bridging can reduce 
significantly the stress intensity factor and hence "toughen" 
the material, but this depends strongly on the fiber-matrix inter
face and the fiber spacing. The model presented in this paper 
allows quantifying this important qualitative observation. 

It is conceivable that an increasing remotely applied stress 
(To would lead to fracture of either some of the most remote 
from the crack tip fibers, or of the entire fiber bridging zone. 
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Table 1 Fracture of fiber bridges 

x.* 0",10'J n*! 
10.0 8.68 0 
30,0 10.79 3 
40.0 12.11 6 
50.0 13.16 9 
60.D 14.21 IJ 
90.0 17.63 16 

IOO.D 1868 17 

* From Eq, (24b).
 
t ao is the applied stress corresponding to the fracture toughness of the
 
epoxy matrix; a,v is the applied stre S that cause,~ fracture of at [east
 
one of the fiber bridges.
 
:j: Number of fiber bridges left (out of initially 20).
 

This was found to depend strongly on the fiber-matrix interface 
parameter, ~, as shown in Table I. In this table, the value of 
the applied stress, (fO(, that first causes fracture of the fiber 
bridges is calculated for the entire range of ~'s considered, 
along with the number of fiber bridges left, Il/'. The case of fiber 
spacing s = 6 !-tm is considered, The fiber bridging zone behind 
the crack tip consists of initially 20 fibers. It can be seen that 
for strong fiber-matrix interfaces, i.e., low values of~. the entire 
fiber bridging zone breaks and no fiber bridges are left, i.e., It! 
= O. Notice that this implies some kind of unstable process 
since in this case of low ~, the maximum stress carried by a 
bridging zone with a smaller number of fiber is higher t.han 
the corresponding one with the t ad distributed on a larger 
number of fibers. However, for relatively weak fiber-matrix 
interfaces, that is high values of~, only some of the most remote 
fibers break and as a result, a fiber bridging zone is still left. 
The applied stress that causes fra ture of fiber bridges naturally 
increases with weaker fiber-matrix interfaces, i.e., higher values 
of \. 
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