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Introduction 

Three-Dimensional Elasticity
 
S ution for the Buckling of
 

ransversely Isotropic Rod •
• 

he Euler Load evisited 
1ite bi urcation of equilibrium of {J cumpressed tran uersely isotrupic bar IS inve tigated 
by using a three-dimensiollal elasticity formulation In this manner, an assessment uf 
the thickness c>f{ects '{[II be accurat'ly p r(onned For isotrupil' rods or circular 
cro . '-section, the bifurcatiun value of the c.:ompres 'iue force 111/11.1' 011/ to c.:oinc.:ide with 
the Elller aitic.:al load for values of the length- er-radill.\ ratio approximately gr< ater 
than /5. The lasticity approach predicts always a lower (thall the Elller uti/ue) critical 
load for isotropic bodies; the two e.xamples 0 transvasely isotropic bodies considered 
show also a lower critical load il/ comparison with the Eul r value based Oil the axial 
modulus, and the reduction is larger thun the aile con'espollding to isolropic rods with 
the same length over radius ratio. However, for the isotropic material, hulll 
Timushenko'sfomwlas fur transverse shear cO/Tection are cunservative; i.e., they predict 
a lower critical load than the c!asticity sollltiol1. For a generally transversc!y isotropic 
material only the fir..t Timoslwl1ko shear cO/Tection fonllula pruved to be a consen'ative 
estimate in aI/ cases considered. Huweve/; in aU cases considered, the second estimate is 
always closer to tlte elasticity solutioll than the fir. tOile alld therefore. a mor~' precise 
estimate of tlte transverse shear effects. Furthem1.Orc, by performing a series er:pansion 
of the' terms of the resultin characteristic equation from tit elasticity Iomllllariotl for 
the isutropic case. the Euler luad is proven to be tlze solfltion il1 the first approximation; 
consideratioll of the .second approximation gives a direct expr, ssion for the co/Tection to 
the Euler load, therefore defining a new, "'vised, yet sill/pIe formula for column 
bucklillg. Final/y, the examinatioll of II rod with different elld conditiolls, lIamely a 
pinned-pinnc:d rud, shows thm Ihe tltickrzes. effects depend alsu n the end fixity. 

Th clastic bucklin of slender rod. and beams wa' the directly responsible for increased intere t in extending the 
first stability problem to be investigated bccau e f its histori­ theoretical knowledge in this area. 
cal importance in eon'trueti n engineering. Ree ntly. de­ When a bar is initially straioht and of perfe t geometry, 
mands in the analysis and th design f light and highl' stiff and subjected to tlte action of a compressive fon:e without 
structures of many types made of advanced composite mate­ eccentricity, it has been lied an .. idl:al column."The case of 
rials and capable of carrying relatively high loaus have been a lender, ideal column, hi h i~ buill in vertically al the 

b, se, fr 'C at the upper end, and subj eled to an axial force 
P. c ntitutes the fir-t pr blem of bifurcation buckling, the 
one Ihat was originall 'olvod by Euler (1744. 1933). The 
Euler solution is based on the \ ell known uler-Bernoulli
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load would d viat from the exact critical load. A similar 
deviation is expected if the materials laws are not isotropic. 
The objective of the present paper is to investigate the extent 
to which the classical Euler load represents the critical load, 
as dcrived b three-dimensional ela. ticity analyse for a gen­
erally tran' t:r'cly isotropic rod with no restrictive assump­
tions rcgarding the cross-sectional dimensions. 

Regarding elasticity solutions to buckling, Kumar and 
Niyogi (1982) studied the bifurcations in axially compressed 
thick elastic tubes by using the strain-energy function of 
Ogden (1972) to represent the material behavior in isotropic 
solids. A three-dimensional elasticity formulation and solu­
tion for buckling of orlhotropic composite materi Is wa 
presenled by Kardomateas (1993a) in connection with the 
problem of buckling of thick cylindrical orthotropic shells 
subjected to xtemal pressure. It was shown that the critical 
load predicted by shell theory call be quite non-conservative 
for thick constructi n. Thi WOl- was based on the simplify­
ing assumption that the pre-buckling stress and displacem nt 
field was axisymmetric, and the buckling modes were as­
sumed two-dimensional (ring assumption); i.e., no z (axial) 
component of the displacement field, and no z-dependence 
of the I' and () displacement components. In a subsequent 
article, K rdomat a and Chung (1994) presented a solution 
that relax • this rin o approximation, i.e., based on a nonzero 
axial displacement and a full depend nee of the buckling 
mode: on the three coordinatcs. 

In rder to further as es the thickn effects on the 
stability of shells, Kardomateas (I993b) presented a solution 
for the ease of a transver 'ely isotropic thick cylindrical shell 
under axial compres!iion. In lhat work, a full dependence on 
r, Ii, and z of the buckling modes was assumed. The reason 
for I' stricting the material to transver:ely isotropic was the 
desire to produce closed form analytical solutions. The same 
problem of an axially loaded moderately thick cylindrical 
shell was treated in a subsequent study for the case of a 
gen rally orthotropic shell (Kardomateas, 1995). A compari­
son with various shell theories showed that for the isotropic 
material cases considered, both the Flugge (j 960) and 
Danielson and Simmonds (I 969) hell theories pI' dieted 
critical loads much closer to the elasticity value than the 
Donnell ( rush and Almroth, 1975) theory; the elasticity 
approach predicted a lower critical load than aU the e classi­
cal shell theories, the percentage reduction being larger with 
increasing thicknc$,!. However, in this study, an additional 
shell theory, nam ly that of imoshenko and Gere (1961), 
was examined. It was found that for both the orthotropic and 
the isotropic material cas s, the Timo. henko bifurcation 
points are lower than the elasticity one. This means that the 
Timoshenko formulation is conscrvative, unlike all the other 
shell theories examined. 

Regarding the stability loss of elastic bars, the only alter­
native direct xpressions to the Euler load that cxi. t in the 
literature are two formulas suggested by Timoshcnko and 
Gere (1961). These were int nded t account for the influ­
ence of transv rse shearing forces. These load expressions, 
denoted by P71 and PT1 , are given in the Results .ection. 
De pite the simplicity of the derivation of these formulas, it 
will be seen that they perform remarkably well in accounting 
for the thicknes effec as well as for the effects of a low 
ratio of shear versus ext nsional modulus. It should be noted 
that although a study of the buckling of a gcncrally ani 'otropic 
rod would be de 'irable, this work i. restricted to the case of 
transverse isotropy, because mol' general anisotropy would 
not allow a direct closed-form solution of the carre ponding 
three-dimensional elasticity problem. 

Thf' ~tl1rjv ('onOIlCfe.O in rhi .ni'lfl'r include. ~necific reo uJts 
for the critical load and the buckling modes of a cylindrical 
rod under axial compression for various ratios of length over 
radius ljR. The effect of transverse isotropy is examined by 
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considering two material cases: one that approximates 
glass/epoxy and the other that approximates graphite/epoxy, 
both with reinforcing direction along thc z-axis. The results 
from the elasticity f rmulation will be compared with the 
classical uler load predictions and with Timoshenko and 
Gere's (J 96]) column buckling with Lransverse shear correc­
tion formulas. MorlOovcr, in addition to the hi .. torically im­
portant uler rod of one end fixed and the other free, results 
for the bifurcation load of a rod with both ends pinned arc 
produced. 

Another important contribution of this work is the t.leriva­
tion of a new, simple formula for column buc ling. This is 
achieved by performing a series expansion of the terms of the 
resulting characteristic equation from the elasticity formula­
tion for the isotropic case. It is also prove that the Euler 
load is the solution of this elasticity formulation in the first 
approximation. The direct formula thus produced is shown to 
provide an exc lIent agreement to the elasticity results for 
isotropic columns. 

Formulation 
The equilibrium of a rod, considered as a three-dimen­

sional elastic body, can be described in term. of the second 
Piola-Kirchhoff stre'S tensor I as follows (e.g.. iarlet. 1988): 

div(I . FT ) = O. (la) 

Here F is the deformation gradient defined by 

F=l+:JradV, (Ib) 

where V is thc displacement vector a.nd I is the identity 
tensor. 

It should be noticed that the strain tensor is defined by 

1 
E = Z(FT 

. F - I). (Ie) 

Since we consider a circular scction, we employ cylindrical 
coordinates, and we can specifically write the components of 
the deformation gradient • in terms f the linear strains: 

au 1 au LI aw 
crr = a;' cflH = --; J8 + --;' E._. = --;;;' (2a) 

1 au au u au Jw 
v --+­Yro=--;J8+a;---;' fr: - iJz ar ' 

au 1 aw 
Yo: = e/Z + --; ao' (2b) 

and the linear rotations: 

I aw au au dw 
2w=---- 2wo =---' 

r r ae az ' lJz ar 

(/u u lau 
2 W = - + - - - - (2c): or r ,. ile' 

as follows: 

I + Err 
1 
'2Yre - Wz 

I 
'2Yrz + We 

F= 
I 
'2 y./l + W~ 1 + Eoo 

1 
'2Yuz - wI' (3) 

1 
'2y.'z - Wo 

1 
'2YH: + Wr 1 + E:: 

I the critical load there are tw ,oossible infinite.!v close 
positions () eqllilibrium. Denote by /./11' VII' w(( the r, Ii ancl z 
componenlS of the displacement corresponding to the pri­
mary position. A perturb.:d position is denoted by 

JUNE 1995, Vol. 621347 



L/=uo+aLt I ; v=vo+av l ; w=wo+aw" (4) 

where 0' is an infinitesimally. mall quantity. Here alll(r, e, 
z}, avl(r, e, z}, awl(r, 8, z} are the di placements to which 
the points of the body must b subjc ted t hift them from 
the initial position of equilibrium to th n w equilibrium 

·ition. The functions lll(r, 8, z}, vIV, e, z}, \1',(1'. e, z) are 
umed finite and 0' is an infinite imally small quantity 

independent of 1', e, z. 
F 110\ ing Kardomatea (l 93a), we obtain th following 

buckling equations: 

rJ 1 a 
' 0, II ') ( , IJ, IJ ')-;;; ( (Trr - Tr8 W z + Trz Wo + -; al:J TrO - CTiJo W z + Toz Wo 

(Sa) 

(Sb) 

1 
+ T,·z II, ° ') = 0 (SC)-; (' - O',-r Wo + TrO Wr . 

In these equations, as and wO are the alues of (T.. and 
wj at the initial equilibrium posifion; i.e., for u = u lI ' J= VII 

and. W = wo, and (Til and w; are th valu at the perturb d 
POSItion; I.e., for u = U j , V = VI and w = 11',. 

Th boundary conditions associated with (l a) can be ex­
pressed as (e.g., Ciarlet, 1988): 

(F· IT) . n. = I(V), (6) 

where t is the traction vector on the surface wbich has 
outward unit normal n. = (t, nI, n) before any deformation. 
The traction vector I depend on the isplac ment field 
V = (ll, V, w). Again, following Kardomat as (J993a), we 
obtain for the lateral and cnd surfat:cs: 

(7a) 

( , + 0, 0') 0+ Toz Tr! W z - (Tzz wr n = , (7b) 

+ ( (Tzz' + Toz0'wr - Trza wa')n = 0 . (7e) 

Pre uckling tate. We consider the case of cylindrical 
rod compressed by an axial force, P, applied at the one end, 
which i' free. Th oth r nd of the rod is fixed. Dote the 
length of e rod by land th area of the transverse section 
by A. The material is transversely isotropit:, obeying the 
stress-strain relations: 

a,r CII C I2 e l2 0 0 0 Err 

I1jjll e l2 Cli C IJ 0 0 0 €OO 

(TU CIJ CLl e33 () 0 0 €zz 

TOz 0 0 0 C55 0 0 YO z 

Trz 0 0 0 0 C55 0 Yrz 

T"O 0 0 0 0 0 (ell - e 12 )/2 Yr8 

(8) 

where e
'J 

are the clastic constants (we have used the notation 
I == 1', 2 == I:J, 3 == z). 

If we assume that the stresses along the loaded upper end 
(z = l) and the reaction along the lower (z = 0) end of the 
rod are di. tributed unit rmly and are normal to the bounding 
planes, then the components of ·tress tensor that ati fy the 
equations of equilibrium and the traction conditions on the 
surfaces are simply 

P 
(T;~ = - A = -uo; ur~1 = (To~ = Tr~ = T,~ = TO~ = O. (9) 

Perturbed State. Using (5) and (9), the three-dimcn ional 
elasticit equilibrium equations for the perturbed position 
can be written as follows (primes den te values at th per­
turbed position): 

rJa,'r I aT;o iJ 1 
-- + --- + ~(T;: - (Town) + -«(Tr~ - (To') = 0,ar ,. ae dz I' 

(lOa) 

;;T;O I a(1i:o a 2T;O 
- + - - + -('/:' + U w') + - = 0 (1Gb)
rJr I' ae Jz Oz a r I' ' 

(lOe) 

In the above equations, U,.?' (T;; are expressed in terms of 
€i~' €:j' respectively, in the 'ame manner a th stre • train 
law; i.e., Eq . (8), for uij in terms of E,j . he strains t:;j' are 
in turn expressed in t mlS of lhe displacement, Ll" VI' WI' in 
the same manner as the linear strain displacement relations 
(2). Substituting, we obtain the equations of equilibrium in 
term of the displacements at the perturbed stare, u l ' VI' WI 

as follows: 

UIe (~+ ~~ _~) 1 1 ,,2
II ar2 I' "I' r Z + 2'(C II - ('12),.2 iJe Z 

(lla) 
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a2WI 1 aWl 1 alw l ) a-wi 
C --+---+--- + 33-­

55 ( ar2 r ar r2 del . az l 

a(aU I u l It1V I )+ (c + c )- - + - + -- = O. (llc)
13 55 az '/r r r ae 

We seek a first group of solutions in terms of a function cf> 
in the form 

acf> 1 acf> acf> 
II - . V = - -' W = k- (12)

I - ;;;' 1 r ae' I az 

A similar form had been used by Elliott (1948) for Carte ian 
coordinates. Then equations (Jla) and (llb) are satisfied if 

c (a 2cf> + ~ acf> + ~ a 2<1> ) 

II (jr2 r ar r 2 ae l 

0"0] a 2cf>
+ + k c J] + C55 ) + -(k - I) -.-? = 0, (13a)[ c55 . - 2 dr 

and (llc) is satisfied if 

a2cf> 1 acf> 1 a lcf> )
 
[ ( C11 + C55) + kc55] ~ + - - + "2-2
 . ( dr r ar r ae 

alcf> 
+ kc l1-, = O. (13b)

'"ar 

A nonzero solution of these Eqs. (13a) and (l3b) can be 
found only if they are identical; this occurs if 

css + k(c u + (55 ) + (k - 1)(0"012) 

This ~ives a quadrat~c equation f r .1'2. or k. The equation for 
x = .I' , with roots Sj and si, depend109 on the compressIve 
stress 0"0' is 

C1I C55 X2 + [(CIJ+C55)(CI3+CSS+ ~II) 

-c "(C55 - ~o) -C11 C 13 ]X + 3(C55 - ~)) = 0, (14b) 

and the corresponding k;: 

slc il - e55 + ( CTo/2)
k;= i=I,2. (14 ) 

C u + C55 + (O"u/2) 

A second group of solutions is sought 10 terms of the 
function l/J in the form 

(1 ) 

(16) 

and Eq. (lle) is identically satisfied. 
Finally, an obvious third group ofsolutions is the rigid-body 

displacement field with components V x ' V y , and v., along the 
Cartesian x, y, z coordinate system: . 
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U I = V co e + v;, sin e; v I = - V sin e + Vy cos ();x x 

WI = v,. (17) 

The ispla ement is a superposition of these three fields. 
W, the function cf> and l/J are sought in a separable 

form: 

cf>;(r, (), z) = Z(z)A;(Ar) cos e; 

i = l, 2 corr 'ponding to .1'1' .1'2' (1 a) 

Hr, e, z) = Z(z)B(Ar) sin e. (I8b) 

Set 

p = Ar. (18c) 

Substituting In (l3a), w' obtain the Qrdin diH'rc.mia\ 
equations: 

A';( p) + ~A';( p) - (sl + ;2 )A;( p) = 0 (190) 

where sl ar given in (140). In a similar fashion, sub tituting 
in (I 6), we btain the ordinary differential equation 

8" ( p) + ~ B' ( p) - (q 2+ ;2) B( p) = 0 

2C 55 - 0"0
where ql = _ (19b) 

Moreover, Z(z) is found to satisfy 

Z"(z) + A1Z(z) = O. (19c) 

Th assumption 

Z(z) = cos Az (19d) 

satisfies the third differential equation, (l9c). 
The solution to the two Eqs. (19a) and (l9b) involves only 

the modified Bessel functions of first order of the first kind: 

where the on ·tant C; are in general complex conjugates 
and Co is r a!. 

Before atisfying the boundary conditions at the lateral 
surface, which will ultimately provide the system quations 
for the eigenvalue problem, we shall disl:USS th boundary 
conditions at the ends. From (7) the boundary conditions on 
the ends are 

<z + O"z~w~ = 0; Tel - O"z~w~ = 0; O":'z = O. at z = 0, l. 

(21) 

Since 0;', varie as cos Az, the condition if : = 0 on thez
upper end z = l is ati fi d if 

TT 
A= -. (22)

2l 

In a artesian coordinate system (x, y, z), the first two of 
the conditions in (21) can be written as follows: 

(23) 

It will be proved that the.e remaining two conditions are 
atisfied on the average. At this point, it should be noted that 

for some of the boundary conditions. a form of resultant 
instead of pointwise conditions has been frequently used in 
elasticity treatments, and can be con idered as based on 
some form of the Saint-Venant's prineipl . For this reason, 
they are sometimes referred to as relaxed end con itions of 
the Saint-Venan s type (H rgan, 1989). Now the lateral 
surface boundary conditions in the carte ian coordinate sys­
tem, wi 1 n the normal 10 the circular contour are from (7): 
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u;x cos (iI, x) + T;y co (fl, I) = 0, (24a) 

< cos (iI, x) + u:y cos (n, y) = 0, (24b) 

with it the normal to the circular contour. Using the equilib­
rium cquation in cartcsian coordinates, reen's theorem for 
transformation of an area integral into a contour intcgral, 
and the above conditions on the contuur, we obtain 

-1- If «z + u=~ w;.)etA = - If (au;x + aT;» etA. (2Sa)
iJz A . A ax By 

The previous integral then becomes 

-f [u;x cos (n, x) + T;> cos (n, y)]ds = 0, 
y 

where A denotes the area of the annular cro. s-seclion and y 
the corresponding contour. Therefore 

ff «z + uz~ w;.)dA = const. (25b) 
A 

Since at z = 0, T;z = w;. = 0 bee usc <Z, T;z and w~, w:, all 
have a sin[-rrzj(2l)] variation (and so do T;, 1i;z and w~, w;), 
it is concluded that this constant is Zl:ro. Similar arguments 
hold for <I' 

Moreovcr, it can also be proved that this syslem of stresses 
would pr duce no torsional moment. Indeed, 

Again, using the divergence theorem, the previous integral 
becomes 

- f{X[T;y cos(il,x) + ~:y cos(n,y)] 
y 

-Y[ u:x co (11, x) + <y cos (n, y)] }ds = 0, (2Se) 

hl:nce 

and this constant is again zero since T;z = T;z = w~ = w~ = ° 
at z = O. 

Finally, it should be noted that conccrning the variation 
along z, 

(Jv la; - 2'(z) - sin Az, (2Se) 

therefore at z = 0, WI = Juljaz = avljBz = °and u l and 
VI and can be made equal to zero at some point of the end 
z = °by the choice of the constants II; in (17). In this sense, 
the end z = 0 is "clamped." 

Notice that based on the previous analysis, we have found 
that 

(Mr, e, z) = CJI(s,Ar) cos e cos Az; i = 1,2 (26a) 

and 

Hr, e, z) = Co/l(qAr) sin e cos Az. (26b) 

Now wc proceed to the boundary condition on the latcral 
surface r = R. From (7), we obtain 

uc', = 0; T,'f! = 0; T;z = 0, at r = R. (27) 

Substituting in (27), (15), (12), (2), and (8), and using the 
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identitic' lor the derivatives of Be I functions, we obtain a 
system of three lincar homogeneous equations in C" i = 1, 2 
and Co: 

(28b) 

II(As;R) ]
+ L ;(k; + 1) [ + AS'/2(As,R) = O. (28e) 

1-12 R 
By equating the determinant uf the above system (28) to 

zero, ~ obtain an equation for Uo (characteristic equation) 
which can be solved to obtain the critical load. In general, 
the roots SI and S2 arc ither both r al or complex conju­
gates, whereas q, defined in (J 9b), i normally a real variable. 
In the case of real St' S2 the determinant of the linear system 
(28) is rca I. 

In the case of a complex conjugate pair {SI' S2}' the B ssel 
functions have complex arguments and the constants C I • C2 
arc complex conjugates, whereas Co is a real number. ur­
thermor {I1('\SIR), J,(As2R)} and UlAslR), 12(As2R)} are 
also complex conjugate pairs. The x 3 matrix of coeffi­
cient f the lin ar y-tem (28) has one real column (corre­
sponding to Co) and the remaining two are t\vo pairs of 
complex conjugates. Therefore, it turns out that in this case 
the determinant of (28) is pure imaginary. In either case, 
equating the determinant to zero results in a nonlinear real 
equation for uo. 

In performing the numerical calculations. the modified 
Bessel function of zero and first order can be evaluated from 
polynomial coefficient given by Abramowitz and Stegun 
(1964) and that of the second order from the associated 
recurrence relation.. 

A New, Improved, Direct Forrnul for Isotropic 
Column Buckling: The Euler Load Revisited 

In the case of isotropy, in which sJ = 1 and s2 = q, expan­
sion of the determinant for the sy rem of linear homoge­
neous Eqs. (28) and use of the series expan. ion of the Bes el 
functions can lead to direct formulas or the critical load. 

otice that for isotropy, c 12 = e 13 = ell - 2e55' 
Set 

- filA -rrRA = A2 IfA = AR = - (29a)
f 2! ' 

where A = -rrR 2 is the cross-sectional area and 1= -rrR 4j4 is 
the moment of inertia of the cross-section. Furthermore, we 
can define the quantity E by using (19b): 

Uo 
f = 1 - q2 = -. (29b)

2e55 

From (14e), since for isotropy SI = 1 and .1'2 = q, we find 
that k l = 1, and k 2 = k is expanded by substituting q2 = 1 
- E: 
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C I!C;5
-~"";:':"----:-31'3 + .... (29c) 
(C I I - (;55) 

T_he Be_ sci functions in (28 ar then e. anded in pow rs 
f A I' ~q by u_ in the series e pansions: IICd = x/2 + 

1.>:/,16 + x'/1 .24 + x;l .24.4 + ... , and I?(x) = x / + 
x /6.16 +x6/ .16.24 +x /10.16.24.4 + .... ­

ow since I' = O( ;\1), in the first approximatioIJ th eh_ar­
acterjslic equation would include lh tel' : 1', ,1.2, 1'2 ,1.21', 

and ,1.4; in lhe cond appr ximation it would al include 1'3, 

A~Z, ,\,41', and ;\6. }herefore, in perf rming the calculati ns, 
only terms up to ,1.0 need be retained. The detailed cxpres­
si os for the re 'ulting coefficient of the system (28) ar 
given in the Appendix. Equating the 3 X 3 determinant t 

zero rc 'ult in tht: following uatian: 

25
55 ell]C _q_A_ {4EZ + [ 3] -0C - - h: - 4 E'
 

S5 32 2(c ll - 5~) 2 - 55
c ll 

19 4c II ,C II c~~ ] -0.- A'l'­
[ 6 3(c ll - (;55) 2(e ll - 55)2 

+ -+----­

7 5 25]_}+ - - A"E: = O. (30)[48(C l1 - c) 48 

atice that the coefficient· of E. ,\2, ,\,4, and ;\0 tllm aut to 
be zero. 

In terms of the Poi on's ratio, v, and the Youn 's modu­
lus, E, 

I-II E 
(31)

(1 + v)( I - Iv)' C5 = 2( l + v) 

SUbslitutin~ into (30) gives in the first approximati n, i.e., 
terms O( I' -): 

1 + v_ 
E= __ ,1.2 (2a) 

4 

Notice th t the parameter I' = 0'0/(2c55) comes naturally 
from the formulation of the prablem. It can als be wrillen 
as € = 170(J + v)/E, hence it is a 'uitable small parameler 
since the axial tress, CTO' is much smaller than th madulu, 
£. 

() ,using the definitions (29a,b) give: 

AZR1 

170 =£--. (32b)
4 

Hence, the critical laad is 

7TR 4 

P = 0' A = EA2-- = A2EJ' (32(')
cr 0 4 ' 

i.e., from the first approximation we recover the classic uler 
load. 

In th ecand approximation, we eep all lh terms in (30) 
and, sub tituting (31), we obt in the fall ving quadralic 
equation in E: 

8(1 - V)E Z - [4 + ~2 (29 + 2v - 12V 2)]E 

,\4 
+ ,\z(1 + v) + -(9 + 71') = O. (33)

24 

The solution to this equation can be written in Ule form 

I' = 
1 + v -, 
-­,\.

4 

2 
- -:-:--:------,­

16(1 - v) , 
(34a) 

wh re 

;\2 
- 4 ­ 6"(5 + 2v + 12v1 ), (34b) 

and 

,\" 
u = 16 + '3(20 + 8v + 48v 2 

) 

;\4 
+ 36 (409 + 212v - 356v 2 

- 48v J + 144v 4 
). (34c) 

U ing (29a, b) gives now the critical I ad as follows: 

J €2 
Pu=A-£J- 2 £A. (35)

16( I - v ) 

Therefore, in the second approximation, the f:-'uler load, AZE!, 
is reduced by the quantity E2 £A /[16(1 - v Z 

)]. Equation (35) 
provides a new, improved, direct formula for isotropic col­
umn buckling. As with the Euler load, the end fixity is 
account d for in A which for the fi ed-free case is: A = n/2!. 
ResullS that will be presented in the next section will show 
thaI formula (35) provides estimat , that almo t coincide 
with the elasticity results, therefore providing an excellent 
a ount of the thickne effects for isotropic columns. 

Discu SiOD of Result 
Th tiler critical load for a compr ssed fi ed-free column 

is 

(36) 

where I is the moment of inertia of the cross section. 
oncerning the present elasticity formulation lhe critical 

10 d is obtained by finding the soluti n 17 of the determi­
nant )f W:O. Th ratio PEulcr/P I"" = E3 7T R ;(0-04/2) af 
Table 1 compares the critical load, as predicled by lbe 
pre 'cnt three-dimensional elasticity formulation, with lhe 
Euler load. The other numbers in hrackets and in parenlhe­
se' represent the prcdi tion f lhe two Timoshenko trans­
verse sh ar correction formulas that will be discussed laler. 

Thre malerial ea:e. have been c nsidered with the fol­
1m in prap rtics we have u ed the notation I == r, 2 == 8, 
3 == z): (a) [Olropic material with modulus E ... . 3 and 
Poi. ' ratio v = 0.3. (h) Material o. 1 (which aprr . i­
mat s glass; poxy with reinforcement along the z-axis) with 
moduli in GPa: £. = 57. £2 = £1 = 14, 0 I = 02.1 = 5.7 
and P isson'. ratio:: VIZ = OAOO, v:?3 = vD = 0.068. (c) Ma­
terial NO.2 (which approximate. graphite/epoxy Wilh rein­
forcement along the z-axis) with moduli in GPa: £3 = 140, 
£2'" E I = 10, 0 31 = 0 23 = 5.0 and P isson's ratios: V l 2 = 

0.53, V D = V D ... 0.02. 
It an be proved that for an isotropic material, which is 

characterized by lh two stiffness constants = andC II cJ3 
55' ( 12 = ('I = ell - 2c55 ), the roots of (l4b) arc 

Sl = 1and 52 = (1 - 2::J 1/2= q (37) 

For a tran. vel' ely isotropic material, like the twa cases (b) 
and (c), the roots are in eneral complex conjugarc . 

The critical I ad from the elast icity solution, is presented 
graphically in Fig. 1. From both Fig. I and Table 1, it can be 
conclud d that the critical load for i.otropic bodies is in 
general lower than the Euler value. The difference is, how-
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that U = 1.0 at the boundary,. '" R. ] n all cases the shortertransversely isotropic b( dies also had lower critical loads in 

One end Jj • d, Ule oUter !'ree 

rilical Loads. PI~ukl/Pcl"'1 (PT,!f'ewSl] (Pf2/PcI",,) 
IIR Isolrupic laler/al I Material 2 

J5.0 /.000 [0.992] (0.992) /.on [0.9 li](0.988) /.050 [O.LJ/i81 (0.973) 
13.0 /.00/ [O.LJ91] (0.990 1022 [O.LJ _] (().9 4) 1.065 [0.9 ](0. /iii) 
1/.0 /.006 [0.99/] «J.LJl) I) 1.031 [0.975] CO.97S) 1093 [0.943] (0.960) 
9.0 /.lJ/2[O.990](O.990) 1.047[O.l)65](0.971) 1.13 [0.921]<0.950) 
7.0 1.017 [0.9 1](0.982) 1.080 [0.947] (0.%1) 1.228 [0. ](0.944) 
5.0 1.036 [0.968] (0.971) 1.159 [0.910] (0.947) 1.44l) [0. '20] (0.901) 
3.0 1.101 [0.919] (0.941) 1.439 [0.817](0.955) 2.227 [0.71 ] (1.091) 

tPL"l<rlPcI." = £ '" 'W,/( ",,4/;). where <Tn is from the elasticity ,olu­
I'on (the determinant 1 (28)). 

*Timoshenko's JirS! "nu Second Iran~versc ~hcar correction formulas. 
'Is. {40a. II l. 

-
~ 

-
~ 

0.8 

0.6 

0.4 

F'XED-FREE 

0.2
2	 10 12 ,. ,6 18 20 

fIR 

Ag. 1 Eigenvalues Pcr / from the elasticity solution as aPEu1e, 

function of the length over radius ratio, 1/ R, for Ihree cases 01 
material data (Isotropic plus two transversely Isotropic: malerlal 1 
appro)(lmating glass / epoxy and material 2 approximating graphite 
/ epoxy, both with axial reinforcement). One end is fixed, the other 
free. 

e er, cry sm' II for relatively lon o rod and indeed, It c n­
vcrges to the Euler 10' f r valu : of length-over-radiu. ratio 
great'r than about 15. Thc two examples f tran vcrsely 
isotr pic bodie~ had low I' critical load' in comparis n with 
the Euler value based n th axial mod lu., and the: reduc­
tion was larger than that corre. p ndin' to i 'otropic rods with 
the arne length over radiu ratiu. Especially for material no. 
2, which has a markedl' reduced hear and radial m dulus 
compared t the (axial) e. tensional one, reducti ns of m re 
than ten percent occurred t'or a length-a er-radiu. ratio I . 
th n 10. 

The case of a bar with hInged ends is probabJ an qually 
important <Uld fundamental case of buckling of a p 'smatic 
bar. In thi case 

71 
Z(z) - sin Az; A =- (38a)I ' 

and the Euler load is 

(38b) 

Table 2 provid a comparison of [he critical load for a 
simply supported bar, a predicted by the present three-di­
mensional ela ticity formulation, with th Eul I' 10 d. Again, 
the same three material case hav been considered. The 
critical load from the elasticity olution normalized with the 
Euler load for a imply supported beam, is also given raphi­
cally i Fig. 2. II can he concluded that th ' thickness effe t is 
stronger in this case of end fixity. Again, the critical load i 
always lower than t e Euler value. The two examples of 

Table 2 Both ends pinned 

'ritlcaJ Load , P~ul /P"lal [Pft/Pe,a,,] (p.h/Pel",l) 

ljR Isotropic Material I Maler/al 2 

17.0 1.012 [0.988](0. 89) 1,054 [0.9621 W.970) 1.155 [0.912] (0.948) 
15.0 1.014 [0.983] (0.9 ) 1.068 [0.953] (0.962) 119' [0.,94] (O.944l 
1 .0 1.019 [0.97SJ <0.979) 1.093 [0.94 t] (0.957) 1.266 [0. 7J] (0.946) 
11.0 1.028 [0.970](0.973) 1.131 [0.922] (0.9-0) U70 [0.838](0.951) 
(.0 1.045 [U9 0] (0.%7) 1.19 (0.,93](0.943) 1.55- [0 70'}](O.97 ) 
7.0 1.074 (O.~ J(0.952) 1.321 [0.848](0.944) 1. 0 [0.744] 1.0.2) 
5.0 1.l48 [0. 93] (0.932) l.o2l) [0.777] <0.981) 2755 [0.67 1(1.1 7) 
3.0 1.414 [0.7 9](0.930) 2.717 [O.67I](J.174) 5.082 [0.597] (1.642) 

·PLulc,/Pd., - £ ".3W'/{er,,4/ 2), ' hen: <Tu is from th' elasticity solu­
lion (Ihe detcrminanl of (~')). 

imoshcnko'. first and. ccund lram:.vcr~c . hear correction formulas, 
Eq'. (40a. hl_ 

1.0 

--
-

08 

c:: 
c:.. 0.6 

0.• 

0.2 

80TH ENDS PINNED 

0.0 
2 '0 12 14 16 1 6 20 

1//1 

Fig. 2 Eigenvalues Pc< I PEuler from the elasticity solution for the 
three cases of material data (Isotropic plus two transversely 
Isotropic) In the case where both ends are pinned 

comparison, ith the ul I' v lues b ed n the <Lxial modu­
Iu ,an the reduction wa lar r than th t for isotr pic rods 
with th ame length ov I' radius ratio. Furthermore, the 
redu tion 'a larger lhan that for th fixed-fr e case. ' I' 

thi ca. , mat rial no. 2 has reduction of more than 30 
p reent for a length vel' radius ratio Ie than 10. 

U' the displacements of the elasticity solution in the flxed­
I' e case arc set in a f' rm 

7rZ	 7IZ 
u, = VCr) cos I:J cO:2/' VI = VCr) sin I) cos 2]" (3l)a) 

7rZ 
w t = W(r) cos e sin -, (39b)

2l 

we can rite these r-dependences as follows: 

/)(Aqr) [fl(AS;r) ]
(r)	 = Cu + C, + AS;l2(As;r) , 

r I_I~ r 

(39c) 

V(r) = _{Co[fl(~qr) + Aq/2(Aqr)] + ;E.//I(Ars;r)}, 

(39d) 

W(r) = -A E (3ge) 
j- 1.2 

As an illustration. for the critical load of th previou. exam­
ple of a transversely isotr pi rod made out of Material o. 2 
and of length f/R = 5 and H, Figs. 3(a, b, c) how the 
eigenfunctions VCr), VCr), and W(r). It has been a sumed 
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Fig. 4 Comparison of the different direct formulas for Isotropic 
column buckling. Eigenvalues Pc, / P Eu1e, from the elasticity solu­
tion, Eq. (35), and the two TImoshenko formulas, Pn and P Eqs.T2 , 

(40a, b) as a function 01 the length over radius ralio, f / R. 

beam, fiR = - in which transv rse normal strains are ex­
pect d to be of gr at r importance, shows a higher variation 
in the displac ment fields and a highly nonlinear radial 
displacement (r). For the longer beam, fiR = 8, the varia­
tion is smallcr. olice that classical column theory would 
have a constant value of U = 1.0 and a linear variation for V 
and W. 

comparison with an improved beam theory will be 
con idenxl next. Timoshenko . uggested two formula that 
provide a corr ction to the Euler load, Pc' due to the 
influence of trnnsver e hearing forces. Th Timoshenko 
formulas for the critical load, PT1 and Pn are (Timoshenko 
and ere, 19 1): 

Pc 
PTI	 (40a)

1 + aP,./AG ' 

I + 4aPeiAG 
PT1 =	 (40b)

2alAC 

where a is a numerical factor depending on the shape of the 
tran verse section, A is the cross-sectional area (= -rrR2 ) 

and G i the shear modulus. For a circular cross-Section, 
a=L11. 

Ta lcs ] and 2 compare results for the Tim shenko formu­
las with the Euler load and the elasticity solution for the tw 
cases of fixed-fr and pinned-pinned rod, r pcctively, 
i.otropic case and the case of m terial no. 2 (in the trans­
versely isotropic case we have us d G2J = G I in place of G 
in (40); the Euler load Pi' is alway based on the axial 
modulu , £3)' 

Final! , Fig. 4 compares results from formula (35) with the 
xact elasticitv solution and the two imoshcnko formulas, 
'qs. 40a, b5, for a range of fiR valu . It is een that 

formula (35) lmost coincid with the elasticity result·. 
onclusions from the comparison of th results in Tables 1 

and 2 and from Fig. 4, are summarized nex!. 

Summary and Condu .oos 
(1) The first Timoshenko estimate, PTI , always underes­

timates the cla ticity olution, for both cases of end fixity 
considered (i.e., fixed-free and pinned-pinned). It is, there­
fore, a c( nservative stimate. 

(2) Th econd Timoshenko estimate, Pn , (which is 
larger than Pn ) is always closer to the elasticity olution 
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Fig. 3(a) "Eigenfunction" U(r) versus normalized radial distance 
r / R for a transversely Isotropic rod made out of Material No.2 
and of length f / R = 5 and 8. A unit value for U at the lateral 
surface r - R has arbitrarily been set (column theory would have a 
constant value, U - 1.0). 
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Fig. 3(b) "EIgenfunction' V(r) versus normalized radial distance 
r / R for a transversely Isotropic rod made out of Material No. 2 
and of length I / R - 5 and B (column theory would have a linear 
variation lor V) 

0.02 

·0.08 

-0.10 

0.02 

0.00 

-0.02 

-0.04 

-0.06 

-(),oe 

-C.10 

~.12 L.-~---'--~_.J.-_~-'-----'-~---'-~.12 
0.0	 0.2 0.4 0.6 0.8 '.0 

rlR 

Fig. 3(c) "Eigenfunction" W(r) versus normalized radial distance 
r / R for a transversely Isotropic rod made out of Material No.2 
and of length I / R - 5 and 8 (column theory would have a linear 
variation for W) 
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than PTI and it is, Ihere ore, a ore precise estimate of the 
tran 'verse shear efIects for both ca' of end fixity consid­
c cd. 

(3) or the isotropic material and for both end fi. ity 
cases amined, Pn also underestimates the elasticity solu­
tion, hence both PTJ and Pn are conservativ' . limates. 

(4) F I' the transver ly isolr pic malerial. co sidercd, 
lhe second e:timate, Pn (which is al\ 'ay' clo:er to the 
elasticity SOlution than PTI ) may be larger than the elasticity 
solution for rod' of sizable thicknc s (e.g., this occurs for 
matcrial no. 2 in the pinned-pinned a c for /jR Ie than 9) 
and th refore it may provide ann nservative estimate for 
rods of izable thickness. 

(5) The new, direct formula (35) that was derived in the 
present work for isotropic column buckling, gives result that 
almosl coincide with the elasticity solution. H nee, this for­
mula pro id the b t agree men to the elasticity solution 
and th best account of the thicknes cffects in the i otropic 
case. 

In short, the previou r suit 'how that th thickness, the 
end fixity, and the material data have to be jointly considered 
in a sessing the performance of the classical column buckling 
formulas for cas beyond the traditi nal long isotropic rod. 
If a conservative estimate is desir d then Pn can be used. 
Pn is more accurat but it may bc n neonservative for 
n ni tropic I' ds of sizable thickn . If the column is 
i tropic, the simple direct C rmula (35) provides an excellent 
account of the thickness effects. 
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APPENDIX 
'ing the series expansiun of the Be sel function re ults 

in a determinant of order three \ ith clements aij , i, j = 1,3 
as follows. From thc fi t cquation, (28a), 

_ ;"2q (;"2 ;"2€ 
all (c - c )ql (,\q) = e - 1 + - - E - ­

II 12 2 , 4 12 6 

;"4E ;"6) 
(AI)

i>.16 + 6.15.16.16 ' 

7 _	 -0 )

3c tl c" '\-c+ __ ,\4 +	 ----,-.~ - 1 - ­
[ ]16.24	 (eli - css )' 12 

lO.::.16 }, (A2) 

(A3) 

From the second equation, (28b), we obtain 

E­
6 

(81) 

;"2E 2 4
EA~ A AI, )

+--+ + (82)
16.24 12 8.16 6.15.16.16	 ' 

2 2 4 -6A A

aD = - 2/2(;") = - 4A ( 1 +- + +


12 16.24 6.1/16.16) . 

(B3) 

Finally, the third equation, (28e), gives 

2 2 4Aq ( A AE A
°JI = 11(Aq) = -2 1 + -8 - -8 +­8.24 

6 
,\4E A ) 

(el)
- 8.12 + 8.24.48 ' 
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of Engineering Materials and Structures 

ENSMA, Site de Futuroscope
 
September 3-6, 1996
 

Conference Chairman: Dr. J. Petit, Directeur de Recherche CNRS 
Co-chairman: Dr. A. Dragon, Directeur de Recherche CNRS, (technical program) 

Historical: The European Conferences on Fracture (ECF) started with the ECFl in Compiegne (France) in 1976. On the 
20th anniversary falling in 1996, the Eleventh ECF returns to France: it wjlJ be held at the Futuroscope ncar Poitiers. The 
ECF's are the major biennial forum for European scientists and engineers in the fields of Fracture Mechanics and Structural 
Integrity. They represent also one of the most efficient means for the European Structural Integrity Society (ESIS), formerly 
EGF-European Group on Fracture, to fulfill its statutory objectives. 

Motto of ECF 11: The headline of ECF 11 i MECHANISMS and MECHANICS OF DAMAGE AND FAILURE OF 
ENGINEERING MATERIALS AND STRUCTURES. It covers a wide spectrum of subjects related to engineering mechanics 
and material science dealing with damage and fracture phenomena in a broad range of materials including metals and 
metallic alloys, intermetallic compounds, polymers, ceramics, composites, laminates, and other nonmetallic solid materials. 

Problems pertaining to mechanical loading (sustained, low/high rate, cyclic, multiaxial, etc.) as well as to nonmechanical 
factors (temperature, environmental agents, extreme conditions) leading to damage and failure in materials and structural 
components are included in the scope of the Conference. 

Venue: The ECFll will be held at the Futuroscope area near Poitiers, an historic city with many medieval treasures of 
architecture. Poitiers is linked to Paris by the TGY high-speed train, the journey takes 90 minutes from Paris-Montparnasse. 
Moreover, the AlO Aquitaine-highway makes Poitiers and the Futuroscope area easily accessible by car. The Futuroscope 
is a modern site comprising the European Park of the Moving Image and a major centre of research and training, notably 
in the fields of engineering, media and international law. The campus includes the ENSMA (Ecole Nationale Superieure 
de Mecanique et d'Aerotechnique). 

Exhibitions: Booths will be available for displays of the latest in material testing equipment and possibly for other services. 
Inquiries can be made to the Organizing Committee. 

Call for Papers: Contributors are requested to submit an extended abstract of about 500 words including essential figures 
and references, until September 2, 1995 at the latest to 

Dr. A. Dragon, Directeur de Recherche CNRS, 
Technical Program Chairman 
of ECFll, ENSMA, B.P. 109 

F-86960 FUTUROSCOPE Cedex (France) 
Phone: (33) 49.49.82.24 Fax: (33) 49.49.82.38 
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