Three-Dimensional Elasticity
Solution for the Buckling of
Transversely Isotropic Rods:
The Euler Load Revisited

The bifurcation of equilibrium of a compressed transversely isotropic bar is investigated
by using a three-dimensional elasticity formulation. In this manner, an assessment of
the thickness effects can be accurately performed. For isotropic rods of circular

G. A. Kardomateas cross-section, the bifurcation value of the compressive force turns out o coincide with
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modulus, and the reduction is larger than the one corresponding to isotropic rods with
the same length over radius ratio. However, for the isotropic material, both
Timoshenko’s formulas for transverse shear correction are conservative; Le., they predict
a lower critical load than the elasticity solution. For a generally transversely isotropic
material only the first Timoshenko shear correction formula proved to be a conservative
estimate in all cases considered. However, in all cases considered, the second estimate is
always closer to the elasticity solution than the first one and therefore, a more precise
estimate of the transverse shear effects. Furthermore, by performing a series expansion
of the terms of the resulting characteristic equation from the elasticity formulation for
the isotropic case, the Euler load is proven to be the solution in the first approximation;
consideration of the second approximation gives a direct expression for the correction to
the Euler load, therefore defining a new, revised, yet simiple formula for column
buickling. Finally, the examination of a rod with different end conditions, namely a
pinned-pinned rod, shows that the thickness effects depend also on the end fixity.

Introduction

[he elastic buckling of slender rods and beams was the  directly responsible for increased interest in extending the
first stability problem to be investigated because of its histori-  theoretical knowledge in this area,
cal importance in construction engineering. Recently, de- When a bar is initially straight and of perfect geometry,
mands in the analysis and the design of light and highly stiff — and subjected to the action of a compressive force without
structures of many types, made of advanced composite mate-  eccentricity, it has been called an “ideal column.”The case of
rials and capable of carrying relatively high loads have been  a slender, ideal column, which is built in vertically at the
base, free at the upper end, and subjected to an axial force
P, constitutes the first problem of bifurcation buckling, the
one that was originally solved by Euler (1744, 1933). The
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Abeyaratne. As the cross-sectional dimensions of a rod increase relative

Paper No. 95-APM-6. to the length, it is naturally expected that the classical Euler
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load would deviate from the exact critical load. A similar
deviation is expected if the materials laws are not isotropic.
The objective of the present paper is to investigate the extent
to which the classical Euler load represents the critical load,
as derived by three-dimensional elasticity analyses for a gen-
erally transversely isotropic rod with no restrictive assump-
tions regarding the cross-sectional dimensions.

Regarding clasticity solutions to buckling, Kumar and
Niyogi (1982) studied the bifurcations in axially compressed
thick clastic tubes by using the strain-energy function of
Ogden (1972) to represent the material behavior in isotropic
solids. A three-dimensional elasticity formulation and solu-
tion for buckling of orthotropic composite materials was
presented by Kardomateas (1993a) in connection with the
problem of buckling of thick cylindrical orthotropic shells
subjected to external pressure. It was shown that the critical
load predicted by shell theory can be quite non-conservative
for thick construction. This work was based on the simplify-
ing assumption that the pre-buckling stress and displacement
field was axisymmetric, and the buckling modes were as-
sumed two-dimensional (ring assumption); i.e., no z (axial)
component of the displacement field, and no z-dependence

of the r and 6 displacement components. In a subsequent -

article, Kardomalteas and Chung (1994) presented a solution
that relaxes this ring approximation, i.c., based on a nonzero
axial displacement and a full dependence of the buckling
modes on the three coordinates.

In order to further assess the thickness effects on the
stability of shells, Kardomateas (1993b) presented a solution
for the case of a transversely isotropic thick cylindrical shell
under axial compression. In that work, a full dependence on
r, 8, and z of the buckling modes was assumed. The reason
for restricting the material to transversely isotropic was the
desire to produce closed form analytical solutions. The same
problem of an axially loaded moderately thick cylindrical
shell was treated in a subsequent study for the case of a
generally orthotropic shell (Kardomateas, 1995). A compari-
son with various shell theories showed that for the isotropic
material cases considered, both the Fliigge (1960) and
Danielson and Simmonds (1969) shell theories predicted
critical loads much closer to the elasticity value than the
Donnell (Brush and Almroth, 1975) theory; the clasticity
approach predicted a lower critical load than all these classi-
cal shell theories, the percentage reduction being larger with
increasing thickness. However, in this study, an additional
shell theory, namely that of Timoshenko and Gere (1961),
was examined. It was found that for both the orthotropic and
the isotropic material cases, the Timoshenko bifurcation
points are lower than the elasticity ones. This means that the
limoshenko formulation is conservative, unlike all the other
shell theories examined.

Regarding the stability loss of elastic bars, the only alter-
native direct expressions to the Euler load that exist in the
literature are two formulas suggested by Timoshenko and
Gere (1961). These were intended to account for the influ-
ence of transverse shearing forces. These load expressions,
denoted by 7, and P,, are given in the Results section.
Despite the simplicity of the derivation of these formulas, it
will be seen that they perform remarkably well in accounting
for the thickness effects as well as for the effects of a low
ratio of shear versus extensional modulus. It should be noted
that although a study of the buckling of a generally anisotropic
rod-would be desirable, this work is restricted to the case of
transverse isotropy, becausec more general anisotropy would
not allow a direct closed-form solution of the corresponding
three-dimensional elasticity problem. i

The stugv condueted in this, naner includes specific results

considering two material cases: one that approximates
glass/epoxy and the other that approximates graphite/epoxy,
both with reinforcing direction along the z-axis. The results
from the elasticity formulation will be compared with the
classical Euler load predictions and with Timoshenko and
Gere’s (1961) column buckling with transverse shear correc-
tion formulas. Moreover, in addition to the historically im-
portant Euler rod of one end fixed and the other free, results
for the bifurcation load of a rod with both ends pinned are
produced.

Another important contribution of this work is the deriva-
tion of a new, simple formula for column buckling. This is
achieved by performing a series expansion of the terms of the
resulting characteristic equation from the elasticity formula-
tion for the isotropic case. It is also proved that the Euler
load is the solution of this elasticity formulation in the first
approximation. The direct formula thus produced is shown to
provide an excellent agreement to the elasticity results for
isotropic columns.

Formulation

'he equilibrium of a rod, considered as a three-dimen-
sional elastic body, can be described in terms of the second
Piola-Kirchhoff stress tensor X as follows (e.g., Ciarlet, 1988):

div(% - FT) = 0. (la)
Here F is the deformation gradient defined by
F =1+ gradV, (1b)

where V' is the displacement vector and I is the identity
tensor.
[t should be noticed that the strain tensor is defined by

1
E=—(F'-F-1. (1¢)
2
Since we consider a circular section, we employ cylindrical
coordinates, and we can specifically write the components of
the deformation gradient F in terms of the lincar strains:

du 1 do u ow 5
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' ar i r Jd0 r faz dz ( )
1 du Jv v du aw
= — —— b —— mrpe g e = o ;
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du 1 dw -
;ET— = —,
Yoz dz r 00 (k)
and the linear rotations:
1 dw av du dw
wr = To (1)0 o
r 96 z 1z ar
du v 1 du
2w, = — + — — — ., (2¢)
- ar r £ dh
as follows:
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At the critical load there are two possible infinitelv close

for the critical foad and the buckling modes of a cylindrical
rod under axial compression for various ratios of length over
radius //R. The effect of transverse isotropy is examined by

positions of equilibrium. Denote by wu, vy, wy the r, # and z
components of the displacement corresponding to the pri-
mary position. A perturbed position is denoted by
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u=uyg+au; v=v,+av;; w=w,+ aw,,

(%)

where « lS an infinitesimally small quantity. Here, au(r, 6,
2), avr, 0, 2), aw(r, 0, z) are the displacements to whth
the points of the body must be subjected to shift them from
the initial position of equilibrium to the new equilibrium
position. The functions u(r, 6, z), v\(r, 8, 2), w(r. 6, z) are
assumed finite and « is an infinitesimally small quantity
independent of r, 6, z

Following Kardomateas (1993a), we obtain the following
buckling equations:
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In these equations, a7 and o are thL. values of o;; and

w; at the initial Lqumbrlum pmmon , for u = u,, b = v,
and w = w,, and o}, and o] are the valuu at the perturbed
position; i.e., for u =u;, v =v, and w = w,.

The boundary conditions assocmtcd with (1a) can be ex-
pressed as (e.g., Ciarlet, 1988):

(F-37)-a=t(V), (6)

where ¢ is the traction vector on the surface which has
outward unit normal A = ([, m, n) before any deformation.
The traction vector ¢ depends on the displacement field
V= (u, v, w). Again, following Kardomateas (1993a), we
obtain for the lateral and end surfaces:

[zt N T 0 0 ..
(0;1 — T, T T, wﬁ)l+( o~ Ogg@; Tl):wﬂ)m

f(7,': -l + U_,(_?w(’,)n =0, (7a)
('r,',, + alw, — 72 w;)l + (05’8 + 75w, — 7 w;)m

+(‘r,,': - 'r,,(; o), — oS (u;)n =0, (7b)
(T,, + 7!(()3 O “)u)l £ (To‘ + UEm ~ T “’u)m

+(og + Tﬁw -7 w,’,)n =0. (7)

Prebuckling State. We consider the case of a cylindrical
rod compressed by an axial force, P, applied at the one end,
which is free. The other end of the rod is fixed. Denote the
length of the rod by / and the area of the transverse section
by A. The material is transversely isotropic, obeying the
stress-strain relations:
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where ¢;; are the elastic constants (we have used the notation
= =gr 8 =2

If we assume that the stresses along the loaded upper end
(z =) and the reaction along the lower (z = 0) end of the
rod are distributed uniformly and are normal to the bounding
planes, then the components of stress tensor that satisfy the
equations of equilibrium and the traction conditions on the
surfaces are simply

L

/. Q

p 0
Op= == =00 O =0 =Ty=Ty=T=0

rr

Perturbed State. Using (5) and (9), the three-dimensional
elasticity equilibrium equations for the perturbed position
can be written as follows (primes denote values at the per-
turbed position):

('/U’,’, 1 1‘77',',, ( 1 .
+ =2 (e~ o)) + (0 — o) = 0,
ar r 98 azne 0 %) r( )
(10a)
dTp 1 day, a e
= i A (5 =0, (10b
ar r a6 (7 (106)
a7, 1 g7, da, T
——= ~ — =0. 10¢
ar r do az r ( )

'

In the above equatlons a, a;; are expressed in terms of
e,‘;, e,’/, respectively, in the same manner as the stress-strain
law; Le., Egs. (8), for o;; in terms of €. The strains €/, are
in lurn CXpI‘LﬂQLd in terms of the displacements, u,, v,, w,, in
the same manner as the linear strain displacement rclauons
(2). Substituting, we obtain the equations of equilibrium in
terms of the displacements at the perturbed state, u,, vy, w,

as follows:
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(9w, 1 dw, 1 3%w, a*w,
Coc| —5 = * = > o =20
5 ar? r or re 8- = az=
4 [ du, i, 1 ﬂu[)
+(cx+Cee)—|—+—+——]=0. (11c)
( 13 DS)d»z \ Jr r r 36

We seek a first group of solutions in terms of a function ¢
in the form

o6 1d ad

o = s oW mk—. 12

“ ar’ “i r 6 "1 dz (12)

A similar form had been used by Elliott (1948) for Cartesian
coordinates. Then equations (11a) and (116) are satisfied if

3% 1add 1 3%
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ar r dr re o6
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) 2 adz-
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¢
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)
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A nonzero solution of these Egs. (13a) and (13b) can be
found only if they are identical; this occurs if

¢ss + k(cpy + cs5) + (k= 1)(09/2)

€y

kess
(€13 + css + kess)

=s5%. (l4a)

This %ivcs a quadratic equation for s® or k. The equation for
x = 52, with roots s7 and s, depending on the compressive
stress oy, IS

g
cpi€ssx” + [(CB + Css)(cm + Cs5 t+ T)

T To
—Cq<(655 — —2—) - C“C.Uilx - (‘11((.‘55 -~ 7} =0, (14b)
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ste), — css + (/2
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A second group of solutions is sought in terms of the
function ¢ in the form
1 9y
r o8’

o

or’

u; = w; = 0.

(15)

Then Egs. (11a) and (11b) are satisfied if
1oy 1 9%
S b

r< a6~

a 21//

1
;((11 = 512)(_ +

ar?

gy A
7)1722 —O’ (16)

and Eq. (11¢) is identically satisfied.

Finally, an obvious third group of solutions is the rigid-body
displacement field with components V,, V,, and ¥, along the
Cartesian x, y, z coordinate system:
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up =V, cos 8+ V,sin 8; v, = —V,sin 6 + V| cos 6;

w=V,. (17)

The displacement is a superposition of these three fields.
Now, the functions ¢ and ¢ are sought in a separable
form:

¢(r,0,z)=2Z(z)A;(Ar)cos 6;

i = 1, 2 corresponding to s,, 5,, (18a)
y(r,8,z)=2Z(z)B(Ar)sin 6. (18h)

Set
p=Ar. (18¢)

Substituting in (13a), we obtain the ordinary differential
equations:

1 1
Ai(p) + ;A’i( p) — (s,-: + F)AI-( p) =0 (19a)

where s7 are given in (14a). In a similar fashion, substituting
in (16), we obtain the ordinary differential equation

1 1
B"(p) + =B'(p) — (42 * —Z)B(p) =0
P p

where g2 = a3t (196)
i~ Cp2
Moreover, Z(z) is found to satisfy
2"(z) + A*Z(z) = 0. (19¢)
The assumption
Z(z) = cos Az (194d)

satisfies the third differential equation, (19¢).
The solution to the two Egs. (19a) and (195) involves only
the modified Bessel functions of first order of the first kind:

A(p) = Cili(s;p): B(p) =Coli(qp),  (20)

where the constants C; are in general complex conjugates
and C; is real.

Before satisfying the boundary conditions at the lateral
surface, which will ultimately provide the system of equations
for the cigenvalue problem, we shall discuss the boundary
conditions at the ends. From (7) the boundary conditions on
the ends are

Tt osw=0; 1,— 0w =0; o,=0, atz=0,L

1)
Since o/, varies as cos Az, the condition o,. = 0 on the

upper end z = [ is satisfied if

A= (22)

In a cartesian coordinate system (x, y, z), the first two of
the conditions in (21) can be written as follows:

R 3

T, + ol =0; 7. - alw,=0. (23)
It will be proved that these remaining two conditions are
satisfied on the average. At this point, it should be noted that
for some of the boundary conditions. a form of resultant
instead of pointwise conditions has been frequently used in
clasticity treatments, and can be considered as based on
some form of the Saint-Venant’s principle. For this reason,
they are sometirnes referred to as relaxed end conditions of
the Saint-Venant's type (Horgan, 1989). Now the lateral
surface boundary conditions in the cartesian coordinate sys-
tem, with 7 the normal to the circular contour are from (7):
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o/, cos (A, x) + T

XX

y cos (A, y) =0, (24a)

7., cos (A, x) + oy, cos (A, y) =0, (24b)

with 7 the normal to the circular contour. Using the equilib-
rium equation in cartesian coordinates, Green’s theorem for
transformation of an area integral into a contour integral,
and the above conditions on the contour, we obtain

(—lff/l(réz + olw)dA = —[[ (d(; {ji")dA. (25a)

The previous integral then becomes

A_L[ax’x cos (7, x) + 7/, cos (7, y)]ds = 0,

where A denotes the area of the annular cross-section and vy
the corresponding contour. Therefore

f/ 7.+ 0w )(IA = const. (25b)
A
Since at z = 0, 7/, = w, = 0 because 7., 7,. and w,, o, all
have a sin[7z/2/)] variation (and so do 7., 7,. and wp, w)),
it is concluded that this constant is zero. Similar arguments
hold for 7,..
Moreover, it can also be proved that this system of stresses
would produce no torsional moment. Indeed,

2 gfue
AR B e

\

- olw,) —y(rl, + ow,)]d4

Again, using the divergence theorem, the prewous integral
becomes

_L[X[T«\I.v cos (#, x) + gy, cos (A, y)]

—y[ a¥, cos (, x) + 7, cos (A, y)]}ds =0, (25¢)
hence

ff ~ o0w,) = y(rl. + ol w,)]d4 = const, (25d)

’ ’

and this constant is again zero since 7;, = 7,, = w, = w, =0
at z = 0.
Finally, it should be noted that concerning the variation
along z,
ou, du,

Wiy ———3

0z dz

~ Z'(z) ~ sin Az, (25¢)

therefore at z =0, w, = du,/dz = dv,/dz =0 and u; and
v, and can be made equal to zero at some point of the end
z = 0 by the choice of the constants V; in (17). In this sense,
the end z = 0 is “clamped.”
Notice that based on the previous analysis, we have found
that
¢i(r, 8,2) = Cid\(s;Ar) cos B cos Az; =12 (26a)
and
Y(r, 8,z)=Cyli(gAr)sin 6 cos Az. (26h)

Now we proceed to the boundary conditions on the lateral
surface r = R. From (7), we obtain

o,=0; 7,=0; 7,=0, at r=R. (27)
Substituting in (27), (15), (12), (2), and (8), and using the
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identities for the derivatives of Bessel functions, we obtain a
system of three linear homogeneous equations in C,, i = 1,2
and Cy:

= [2(A(IR)
Coley — ‘712)‘]‘—R—“
I,(As;R
+ Y Clcy| AP (As;R) _5‘__—¥
i=1.2 R
I,(As;R)
+(~l2s,_LT_ = ('”k,/\[l()\.SIR)} =0, (28a)
- [2g22R) 2 L L(AsR)
U[ il i M/'l.()\qR)] 2 C2s—%— =0,
i=1.2
(28b)
. Ti(AgR)
C’“T

I (As;R
+ ), Gk, + 1)[‘—(#—) + /\3‘,13()\311\’)] =0. (28¢)

i=1,2

By equating the determinant of the above system (28) to
zero, we obtain an equation for o, (characteristic equation)
which can be solved to obtain the critical load. In general,
the roots s, and s, are either both real or complex conju-
gates, whereas ¢, defined in (1954), is normally a real variable.
In the case of real s, 5, the determinant of the linear system
(28) is real.

In the case of a complex conjugate pair {s,, s,}, the Bessel
functions have complex arguments and the constants €|, C,
arc complex conjugates, whereas C is a real number. Fur-
thermore, {/,(As\R), I,(As,R)} and {/,(As,R), I,(As,R)} are
also complex conjugate pairs. The 3 X 3 matrix of coeffi-
cients of the linear system (28) has one real column (corre-
sponding to C,) and the remaining two are two pairs of
complex conjugates. Therefore, it turns out that in this case
the determinant of (28) is pure imaginary. In either case,
equating the determinant to zero results in a nonlinear real
equation for oy,

In performing the numerical calculations, the modified
Bessel function of zero and first order can be evaluated from
polynomial coefficients given by Abramowitz and Stegun
(1964) and that of the second order from the associated
recurrence relations.

A New, Improved, Direct Formula for Isotropic
Column Buckling: The Euler Load Revisited

In the case of isotropy, in which s, = 1 and s, = g. expan-
sion of the determinant for the system of linear homoge-
neous Egs. (28) and use of the series expansion of the Bessel
functions can lead to direct formulas for the critical load.
Notice that for isotropy, ¢, = ¢\3 = ¢;; — 2¢ss.

Set

- R

A= A2yI/A = AR = ETR (29a)
where 4 = mR? is the cross-sectional area and I = 7wR*/4 is
the moment of inertia of the cross-section. Furthermore, we
can define the quantity e by using (195):

€=1—QZ=T. (29b)

From (14c¢), since for isotropy s, = 1 and s, = g, we_ tmd
that k, = 1, and k, = k is expanded by substituting ¢* =
= &
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‘/:(Cu Css) €y C11Css 5
= 1 = € —€*
€y — Cssq” €1 ~ Css (¢, ss)
Cll Z 3
S € s e (29()
(<n —f’=>)

The Bessel functions in (28) are then expanded in powers
of A or Ag by using the series expansions: [(x) =x/2 +
p /m +x3/16.24 + x'/16.2448 + ..., and I(x) = x%/8 +
x°/6.16 + x°/8.16.24 + x5/10.16.24.48 + . ...

Now since € = O(A?), in the first approximation (ln char-
acteristic equation would include the terms: €, A%, )\e
de A in the second dppru\(lmatmn it would also mulud‘. €,
A%2, A%, and A°. Therefore, in performing the calculations,
only terms up to A° need be retained. The detailed L\pxc&~
sions for the resulting coefficients of the system (28) are
given in the Appendix. Equating the 3 X 3 dcterminant Lo
zero results in the following equation:

A3 Css 3.]-. c g
('“q— ded o | — et
e 2(cyy —css) 2 (1

19 dey, €y1Css A
+|— + = 2 | A%2
6 3(cn —¢€ss)  2(eqy — €s5)

Tess 2 iy 0. €3
+ | ————— — — | X%} = 0.
48(cy —c55) M| ° &

Notice that the coefficients of e, A2, A*, and A° turn out to
be zero.

In terms of the Poisson’s ratio, v, and the Young’s modu-
lus, E,

i

& e i 31
C“-Im, Css e e ( )

2(1 +»)

Substituting into (30) gives in the first approximation, i.e.,
terms O(e~):

T (32a)

Notice that the parameter € = o A2c<s) comes naturally
from the formulation of the problem. It can also be written
as € = oy(1 + v)/E, hence it is a suitable small parameter
since the axial stress, oy, is much smaller than the modulus,
E

Now, using the definitions (29a.b) gives

A’R?
0y = [;‘T. (32b)
Hence, the critical load is
wR* n
P,=0,A = EA:—T = X°EI, (32¢)

e., from the first approximation we recover the classic Euler
load.
In the second approximation, we keep all the terms in (30)
and, substituting (31), we obtain the following quadratic
equation in €:

2

8(1 — v)e® — +f("9*"u—171/)

14

. A
+ A1+ ») + Z(9 +7v) =0. (33)

The solution to this equation can be written in the form
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bilpns €

= A== ’ 4
e 16(1 — ») (34a)
where
€:=\"I—4~Z(5 + 2v + 1202), (34b)
and
A =16+ —(20 + 8v + 48¢?)
14
o (409 + 2120 - 35607 — 48v3 + 144v%). (34c¢)
D
Using (294, b) gives now the critical load as follows:
€,
P, = AXEI - - (35)

s
16(1 — v*)

Therefore, in the second approximation, the Euler load, \*EI,
is reduced by the quantity €, EA /[16(1 — v?)]. Equation (35)
provides a new, improved, direct formula for isotropic col-
umn buckling. As with the Euler load, the end fixity is
accounted for in A, which for the fixed-free case is: A = /21
Results that will be presented in the next section will show
that formula (35) provides estimates that almost coincide
with the elasticity results, therefore providing an excellent
account of the thickness effects for isotropic columns.

Discussion of Results
The Euler critical load for a compressed fixed-free column
is
P g EiIN = E A 2ot
Euler — 413 G Ty 4

where 7 is the moment of inertia of the cross section.

Concerning the present elasticity formulation, the critical
load is obtained by finding the solution o, of the determi-
nant of (28). The ratio Pgyer/Puuse = Exm R 0y41?) of
Table 1 compares the critical load, as predicted by the
present three-dimensional eclasticity formulation, with the
Euler load. The other numbers in hrackets and in parenthe-
ses represent the predictions of the two Timoshenko trans-
verse shear correction formulas that will be discussed later.

Three material cases have been considered with the fol-
lowing properties (we have used the notation 1 =r, 2 = 0,
3=z). (a) [sotropic material with modulus E = E; and
Poisson’s ratio » = 0.3. (h) Material No. 1 (which approxi-
mates glass/epoxy with reinforcement along the z-axis) with
moduli in GPa: E; =57, E,=E, =14, Gy, = G,y =5.7
and Poisson’s ratios: v, = 0.400, v,; = v,; = 0.068. (c) Ma-
terial No. 2 (which approximates graphite/epoxy with rein-
forcement along the z-axis) with moduli in GPa: E; = 140,
E,=E; =10, G5; = G,; = 5.0 and Poisson’s ratios: v, =
0.53, vy3 = v;3 = 0.02.

[t can be proved that for an isotropic material, which is
characterized by the two stiffness constants ¢,, = c¢;; and
— 2c¢55), the roots of (14b) are

g’
2¢55 F

(36)

Csss (€ = ¢35 = ¢y

s;=1 and .v2=q=(l— (37)

For a transversely isotropic material, like the two cases (b)
and (c), the roots are in general complex conjugates.

The critical load from the elasticity solution, is presented
graphically in Fig. 1. From both Fig. 1 and Table 1, it can be
concluded that the critical load for isotropic bodies is in
general lower than the Euler value. The difference is, how-
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Table 1 One end fixed, the other free

Table 2

Both ends pinned

Critical Loads, P ../Puias:
Material |

[[’;I/IL n\l] (1“ /I\.IM

/R Isotropic Material 2

Critical Loads, P{../Pua  [PF/Prias

I/R Isotropic

Material 1

1 (P#3/Pyuq)

Material 2

15.0 1.000[0.992] (0.992) l.()l7 [0.988] (0.988) 1.050 [0.968] (0.973)
13.0 1001 [0.991](0.991) 1.022 [0.982] (0.984) 1.065 [0.956] (0.966)
11.0° 1.006 [0.991] (0.991) 1.031 [0.975] (0.978) 1.093 [0.943] (0.960)
9.0 1.012 [0.990] (0.990) 1.047 [0.965] (0.971) 1.138 [0.921] (0.950)
7.0 1.017[0.981] (0.982) 1.080[0.947] (0.961) 1.228 [0.883] (0.944)
5.0 1.036 [0.968] (0.971) 1.159 [0.910] (0.947) 1.449 [0.820] (0.961)
3.0 1.101[0.919] (0.941) 1.439[0.817](0.955) 2.227[0.713] (1.091)

Prieo/Pogy = Eym'RY (0417), where oy is from the elasticity solu-
tion (the determinant of (28)).

“Timoshenko's first and second transverse shear correction formulas,
Egs. (40a, b).

1.0 '.-.—"H"'“m' m:gﬂ
’— - . o_a_c_e-a-ﬂ*’ 060000 00000
. 08 [
e Isotropic
o osf
Material 1
04
Materlal 2
FIXED-FREE
02 2 o ) . 5 s
2 4 6 8 10 12 14 16 18 20
/R
Fig. 1 Eigenvalues P, / Pg,er from the elasticity solution as a

function of the length over radius ratio, | / R, for three cases of
material data (isotropic plus two transversely isotropic: material 1
approximating glass / epoxy and material 2 approximating graphite
/ epoxy, both with axial reinforcement). One end is fixed, the other
free.

ever, very small for relatively long rods and indeed, it con-
verges to the Euler load for values of length-over-radius ratio
greater than about 15. The two examples of transversely
isotropic bodies had lower critical loads in comparison with
the Euler value based on the axial modulus, and the reduc-
tion was larger than that corresponding to isotropic rods with
the same length over radius ratio. Especially for material no.
2, which has a markedly reduced shear and radial modulus
compared to the (axial) extensional one, reductions of more
than ten percent occurred for a length-over-radius ratio less
than 10.

The case of a bar with hinged ends is probably an equally
important and fundamental case of buckling of a prismatic
bar. In this case

-, - 7T
Z(z) =sin Az; A= T (38a)
and the Euler load is
w2E. ] .
PEulcr = —[T— == I':(Il\_. (38[7)

Table 2 provides a comparison of the critical load for a
simply supported bar, as predicted by the present three-di-
mensional elasticity formulation, with the Euler load. Again,
the same three material cases have been considered. The
critical load from the elasticity solution, normalized with the
Euler load for a simply supported beam, is also given graphi-
cally in Fig. 2. It can be concluded that the thickness effect is
stronger in this case of end fixity. Again, the critical load is
always lower than the Euler value. The two examples of
transversely isotropic bodies also had lower critical loads in
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17.0
15.0
13.0

1.012 [0.988] (0.989)
1.014 [0.983] (0.984)
1.019 [0.978] (0.979)
11.0 1.028 [0.970] (0.973)
9.0 1.045[0.960] (0.967)
7.0 1.074 [0.938] (0.952)
5.0 1.148 [0.893] (0.932)
3.0 1.414[0.789] (0.930)

1.054 [0.962] (0.970)
1.068 [0.933] (0.962)
1.093 [0.941] (0.957)
1.131 [0.922] (0.950)
1.195 [0.893] (0.943)

21[0.848] (0.944) 1
1 ()’9 [0.777] (0.981)
2.717[0.671] (1.174)

1.155[0.912] (0.948)
1.198 [0.894] (0.944)
1.266 [0.871] (0.946)
1.370 [0.838] (0.951)
1.555 [0.799] (0.975)

1.908 [0.744] (1.032)
2.755 [0.678] (1.187)
5.682[0.597] (1.642)

Peuied/Patiisi .I‘»,-’T.‘R;/(tf“-‘[?), where o is from the elasticity solu-
tion (the determinant of (28)).

“Timoshenko’s first and second transverse shear correction formulas,
Egs. (40a. b).

107 oea
W a
.'.r._._'.-t oo e 0-<
I -04;—047 oo
- 08t
=
e o.s
Isotroplc
04
Materlal 1
0.2
Ma‘e”a‘ 2 BOTH ENDS PINNED
00 s . A N . . : " "
2 4 ) 8 10 12 14 16 18 20
‘R

Fig. 2 Eigenvalues P_, / Pg e, from the elasticity solution for the
three cases of material data (isotropic plus two transversely
isotropic) in the case where both ends are pinned

comparison with the Euler values based on the axial modu-
lus, and the reduction was larger than that for isotropic rods
with the same length over radius ratio. Furthermore, the
reduction was larger than that for the fixed-free case. For
this case, material no. 2 has reductions of more than 30
percent for a length over radius ratio less than 10.

If the displacements of the elasticity solution in the fixed-
free case are set in a form

mZ T2z
= U(r)cos 0 cos—, v, =V(r)sin 6 cos —. (3%)
21 21
Tz
wy = W(r) cos @ sin LR (395)
we can write these r-dependences as follows:
Agr) 5 (As;r
U(r)y=C I(,_ % (‘,[—ir—) + )\silz()\s‘-r)}.
i=1.2
(39¢)
I,(Agr Li(As;r
V(r) = —{c[—"—) + Aql:(mr)} 4 ) c(—)}
i=1.2 E
(394d)
W(r)=—x ) ChkJ(Asr). (3%¢)

=12

As an illustration, for the critical load of the previous exam-
ple of a transversely isotropic rod made out of Material No. 2
and of length I/R =5 and 8, Figs. 3(a, b, ¢) show the
eigenfunctions U(r), V(r), and W{r). It has been assumed
that U = 1.0 at the boundary r = R. In all cases the shorter
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1.0005 [ { 1.0005

1.0004 + 1.0004

1.0003 + 1.0003
< 1.0002 - 1.0002
=)

1.0001 - 1.0001

1.0000 - 1.0000

t =3
0.9999 -__/ /8 -0.9999
0.9998 = = - 4 0.9998
0.0 0.2 0.4 0.6 0.8 1.0
r'R

Fig. 3(a) ‘Eigenfunction” U(r) versus normalized radial distance
r/ R for a transversely isotropic rod made out of Material No. 2
and of length / /R =5 and 8. A unit value for U at the lateral
surface r = R has arbitrarily been set (column theory would have a
constant value, U = 1.0).

r-0.9898
~-1.0000
I -1.0002
F-1.0004
-1.0006 - 4 4 — -1.0006
0.0 0.2 0.4 0.6 0.8 1.0
r'R

Fig. 3(b) ‘“Eigenfunction” V(r) versus normalized radial distance
r/ R for a transversely isotropic rod made out of Material No. 2
and of length | /R = 5 and 8 (column theory would have a linear
variation for V)

002 -0.02
0.00 - 0.00
[
002} ¢/R=8 L 002
<
= 004 / +0.0a
A
0.06 - ¢/R / ) N 005
=5
\\\\
L +-0.08
0.08 %
-0 1% \'— 0.10
0.12 - - A % 0.12
0.0 0.2 0.4 0.6 0.8 1.0
r'R

Fig. 3(c) ‘Eigenfunction” W(r) versus normalized radial distance
r /R for a transversely isotropic rod made out of Material No. 2
and of length | /R = 5 and 8 (column theory would have a linear
variation for W)
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1.1 {
1.0 Elasticity
= 09 Equation (35)
o == Elasticity
—~ —O— Equation (35)
R osh
Second Timoshenko, eq (40b)
07 F First Timoshenko, eq (40a)
ISOTROPIC
FIXED-FREE
0.6 i o e L L A 1 — L :
0 2 4 6 8 10 12 14 16 18 20

¢/R

Fig. 4 Comparison of the different direct formulas for isotropic
column buckling. Eigenvalues P, / Pg,,., from the elasticity solu-
tion, Eq. (35), and the two Timoshenko formulas, Py, and Py,, Egs.
(40a, b) as a function of the length over radius ratio, / / R.

beam, [/R =5, in which transverse normal strains are ex-
pected to be of greater importance, shows a higher variation
in the displacement fields and a highly nonlinear radial
displacement {U(r). For the longer beam, //R = 8, the varia-
tion is smaller. Notice that classical column theory would
have a constant value of U = 1.0 and a linear variation for V
and W.

A comparison with an improved beam theory will be
considered next. Timoshenko suggested two formulas that
provide a correction to the Euler load, P., due to the
influence of transverse shearing forces. The Timoshenko
formulas for the critical load, Py, and P, are (Timoshenko
and Gere, 1961):

P,

Prp=—— 40
™" 1+ aP,/AG’ ()

V1 + 4aP,/AG — 1
Py = -
he 2a/AG

: (40b)

where « is a numerical factor depending on the shape of the
transverse section, A is the cross-sectional area (= wR?),
and ( is the shear modulus. For a circular cross-section,
a= 111

Tables 1 and 2 compare results for the Timoshenko formu-
las with the Euler load and the elasticity solution for the two
cases of fixed-free and pinned-pinned rod, respectively,
isotropic case and the case of material no. 2 (in the trans-
versely isotropic case we have used G,; = G, in place of G
in (40); the Euler load P, is always based on the axial
modulus, £,).

Finally, Fig. 4 compares results from formula (35) with the
exact elasticity solution and the two Timoshenko formulas,
Egs. (40a, b), for a range of [/R values. It is seen that
formula (35) almost coincides with the elasticity results.

Conclusions from the comparison of the results in Tables 1
and 2 and from Fig. 4, are summarized next.

Summary and Conclusions

(1) The first Timoshenko estimate, Pr,, always underes-
timates the elasticity solution, for both cases of end fixity
considered (i.e., fixed-free and pinned-pinned). It is, there-
fore, a conservative estimate.

(2) The second Timoshenko estimate, Pr,, (which is
larger than P, ) is always closer to the elasticity solution
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than P, and it is, therefore, a more precise estimate of the
transverse shear effects for both cases of end fixity consid-
ered.

(3) For the isotropic material and for both end fixity
cases examined, P, also underestimates the elasticity solu-
tion, hence both P, and P, are conservative estimates.

(4) For the transversely isotropic materials considered,
the second estimate, P,, (which is always closer to the
elasticity solution than P,) may be larger than the elasticity
solution for rods of sizable thickness (e.g., this occurs for
material no. 2 in the pinned-pinned case for /R less than 9)
and therefore it may provide a nonconservative estimate for
rods of sizable thickness.

(5) The new, direct formula (35) that was derived in the
present work for isotropic column buckling, gives results that
almost coincide with the elasticity solution. Hence, this for-
mula provides the best agreement to the elasticity solution
and the best account of the thickness effects in the isotropic
case.

In short, the previous results show that the thickness, the
end fixity, and the material data have to be jointly considered
in assessing the performance of the classical column buckling
formulas for cases beyond the traditional long, isotropic rods.
If a conservative estimate is desired, then P,, can be used.
Py, is more accurate but it may be nonconservative for
nonisotropic rods of sizable thickness. If the column is
isotropic, the simple direct formula (35) provides an excellent
account of the thickness effects.
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APPENDIX
Using the series expansion of the Bessel functions results
in a determinant of order three with elements a;;, 4, j = 1,3
as follows. From the first equation, (28a),

. A%q A# X%
ay = (¢ey 'C]z)fllz()“I):C«T 1+E‘“€—T
A A% XQE Xﬁ \
it S Bee F mere s bt $AD
16.24 12 8.16 6.15.16.16

2= C'l]Q[qul(;“l) - 12(;“1)]

a,
~ . X2q 5
+c,2[q[:(/\q) - k/\ll()\q)] = (557{3 + A
(‘11""55\ 2¢¢), > (7Cn_4fss)x2€
\Cip 7 Css ) (e — Css)2 \ €~ Css 12
7 . 2¢4i013Ces 3¢;,C55 Ae?
& 54 1 lu‘.“€1+ uss g
16.24 (e — €ss5) (c1) —css) 12
[ 17c,, — 13¢5 A'e A6
—l = + , (A2)
L €1 — €55 16.24 10.16.16
a3 = (cyy — C!2)[Xll()~‘) - ]:()_\)]
) 3 > 3? ’ A4 A A3
=(e.c— |34+ —A% + "], (A
e 12 16.24 10.16.16 ) W)
From the second equation, (285), we obtain
5 . & Xq A2
a2,=q[21_,(/\q)—/\q[,(/\q)] 2 1 ke €
Ne Al A%? 3 . X0
et —+ — — ——A%e+ ——— |, (BI)
3 8.16 6 8.16 5.6.12.16
- A% e N
azz=—?_qlz(/\q)=~—4— 1+E_E——6_
A Ae? Xe A°
+ + - + ——1, (B2)
16.24 12 8.16 6.15.16.16
’)l B /-\2 / XI Xd Xﬁ
= —2I(A) = —— |1+ — + + ,
“a () 4( 12 1624 6.15.16.16
(B3)
Finally, the third equation, (28¢), gives
, Aq G A
== A = —— 4+ — = —
an =h(Ag) = |1+ 5~ 5 * 53
/\JE 6
~ . (C1)
8.12 8.24.48
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ayn = (k + 1)[I[(Xq) + ):qlz():q)] +13_6[_l_)“):2€2 _ 16524 (5611 - 4655)X“e
¢~ Css . €11 7 Css
- 3. ci C1(Css 76

=Aq|l + —A% - €+ = €’ * ezt | (€D

[ 8 2(cyy —es5) 2(cyy — css)2 loi2e

ay; = 2[1,(X) + Ay(X)]
3 30y — 2055\ - S . (G o 5 7 =
| =22 %+ Mo 2 8 =X(1+—A2+ Mg ——— 38|, (€3

16( Gy — Css 12.16 2(cyy — c55)36 8 12.16 16.24.24 (€3)

FIRST ANNOUNCEMENT AND CALL FOR PAPERS
11th European Conference on Fracture—ECF 11

Mechanisms and Mechanics of Damage and Failure
of Engineering Materials and Structures

ENSMA, Site de Futuroscope
September 3-6, 1996

Conference Chairman: Dr. J. Petit, Directeur de Recherche CNRS
Co-chairman: Dr. A. Dragon, Directeur de Recherche CNRS, (technical program)

Historical: The European Conferences on Fracture (ECF) started with the ECF1 in Compitgne (France) in 1976. On the
20th anniversary falling in 1996, the Eleventh ECF returns to France: it will be held at the Futuroscope near Poitiers. The
ECF’s are the major biennial forum for European scientists and engineers in the fields of Fracture Mechanics and Structural
Integrity. They represent also one of the most efficient means for the European Structural Integrity Society (ESIS), formerly
EGF-European Group on Fracture, to fulfill its statutory objectives.

Motto of ECF 11: The headline of ECF 11 is MECHANISMS and MECHANICS OF DAMAGE AND FAILURE OF
ENGINEERING MATERIALS AND STRUCTURES. It covers a wide spectrum of subjects related to engineering mechanics
and material science dealing with damage and fracture phenomena in a broad range of materials including metals and
metalilic alloys, intermetallic compounds, polymers, ceramics, composites, laminates, and other nonmetallic solid materials.

Problems pertaining to mechanical loading (sustained, low/high rate, cyclic, multiaxial, etc.) as well as to nonmechanical
factors (temperature, environmental agents, extreme conditions) leading to damage and failure in materials and structural
components are included in the scope of the Conference.

Venue: The ECF11 will be held at the Futuroscope area near Poitiers, an historic city with many medieval treasures of
architecture. Poitiers is linked to Paris by the TGV high-speed train, the journey takes 90 minutes from Paris-Montparnasse.
Moreover, the A10 Aquitaine-highway makes Poitiers and the Futuroscope area easily accessible by car. The Futuroscope
is a modern site comprising the European Park of the Moving Image and a major centre of research and training, notably
in the fields of engineering, media and international law. The campus includes the ENSMA (Ecole Nationale Supérieure
de Mécanique et d’Aérotechnique).

Exhibitions: Booths will be available for displays of the latest in material testing equipment and possibly for other services.
Inquiries can be made to the Organizing Committee.

Call for Papers: Contributors are requested to submit an extended abstract of about 500 words including essential figures
and references, until September 2, 1995 at the latest to
Dr. A. Dragon, Directeur de Recherche CNRS,
Technical Program Chairman
of ECF11, ENSMA, B.P. 109
F-86960 FUTUROSCOPE Cedex (France)
Phone: (33) 49.49.82.24 Fax: (33) 49.49.82.38
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