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A formulation based on the three-dimensional theory of elasticity is employed to study the buckling of an
orthotropic cylindrical sheli under combined externai pressure and axial compression. A properly defined load
interaction parameter expresses the ratio of axial compression and external pressure loading, and critical loads
are thus derived for a given load interaction. The results from this elasticity soiution are compared with the
critical loads predicted by the orthotropic Donnell and Timoshenko nonshallow classical shell formulations. Two
cases of orthotropic material are considered wlith stiffness constants typical of glass/epoxy and graphlte/epoxy.
Furthermore, two cases of load interaction are considered, representing a relatively high and a relatively low axial
load. For both load interaction cases considered and for both materials, the Donnell and the Timoshenko bifurcation
points are higher than the elasticity solution, which means that both shell theories are nonconservative. However,
the bifurcation points from the Timoshenko formulation are always found to be closer to the elasticity predictions
than the ones from the Donnell formulation. An additionai common observation is that, for a high value of the
load interaction parameter (relatively high axial load), the Timoshenko shell theory is performing remarkahly
well, approaching closely the elasticity solution, especially for thick construction. Finally, a comparison with some
available resuits from higher order shell theories for pure external pressure indicates that these improved shell
theories seem to be adequate for the example cases that were studied.

Introduction

LTHOUGH the initial applications of composite materials in-

volved thin plate type configurations for aircraft structures,
many current potential applications involve the moderately thick
shell type configuration. For example, in the marine industry, com-
posite shell structures are considered for submersible hulls or for
the support columns in offshore platforms. Furthermore, composite
shell structural configurations of moderate thickness can be poten-
tially used for components in the automobile industry and in space
vehicles as a pnimary load carrying structure.

One of the important characteristics of most of the present-day ad-
vanced composites is the high ratio of extensional to shear modulus.
This may render the classical theories inadequate for the analysis of
moderately thick composite shells. In fact, it has been well recog-
nized that predictions of critical loads from classical shell theories
can be highly nonconservative.

Regarding the classical shell formulation, the critical loads for an
isotropic material can be found by solving the eigenvalue problem
for the set of cylindrical shell equations from the Donnell theory.!
Furthermore, in presenting a shell theory formulation for isotropic
shells, Timoshenko and Gere? included some additional terms (these
equations are brieflv described in the Appendix). Both the Donnell
and Timoshenko shell theory equations can be easily extended for
the case of an orthotropic material. Although the Timoshenko and
Gere theory is also old and simple, the term classical shell has been
historically used to denote the Donnell formulation.

The recent, higher order, shear deformation theories*=* could
potentially produce much more accurate results. To this extent,
Simitses et al.% used the Galerkin method to produce the critical
loads of cylindrical shells under external pressure, as predicted from
the first-order shear deformation and the higher order shear defor-
mation theories.

The existence of these different shell theories underscores the
need for a benchmark elasticity solution, in order to compare the
accuracy of the predictions from the classical and the improved shell
theories. In fact, elasticity solutions for the buckling of cylindrical
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shells have been recently presented by Kardomateas’ for the case
of uniform external pressure and orthotropic material; a simplified
problem definition was used in this study (“ring” assumption), in
that the prebuckling stress and displacement field was axisymmetric,
and the buckling modes were assumed two dimensional, i.e., no z
component of the displacement field, and no z dependence of the r
and @ displacement components. It was shown that the critical load
for external pressure loading, as predicted by shell theory, can be
highly nonconservative for moderately thick construction. The ring
assumption was relaxed in a further study,? in which a nonzero axial

~ displacement and a full dependence of the buckling modes on the

three coordinates was assumed.

A more thorough investigation of the thickness effects was con-
ducted by Kardomateas® for the case of a transversely isotropic thick
cylindrical shell under axial compression. This work included also
a comprehensive study of the performance of the Donnell,'¢ the
Fliigge,'! and the Danielson and Simmonds'? theories for isotropic
material in the case of axial compression. These theories were all
found to be nonconservative in predicting bifurcation points, the
Donnell theory being the most nonconservative.

In a further study, Kardomateas'® considered a generally cylin-
drically orthotropic material under axial compression. In addition to
considering general orthotropy for the material constitutive behav-
ior, the latter work investigated the performance of another classical
formulation, i.e., the Timoshenko and Gere? shell theory. The bifur-
cation points from the Timoshenko formulation were found to be
closerto the elasticity predictions than the ones from the Donnell for-
mulation. More importantly, the Timoshenko bifurcation point for
the case of pure axial compression was always lower than the elastic-
ity one, i.e., the Timoshenko formulation was conservative. This case
of pure axial load from the Timoshenko formulation was actually the
only case of a classical shell theory rendering conservative estimates
of the critical load when pure axial compression is involved.

In this paper, a benchmark solution for the buckling of an or-
thotropic cylindrical shell under combined axial compression and
external pressure is produced. A load interaction parameter S, which
expresses the combination of applied axial compression P and
external pressure p, is appropriately defined. For a given value
of the load interaction parameter, the nonlinear three-dimensional
theory of elasticity is appropriately formulated and reduced to a
standard eigenvalue problem for ordinary linear differential equa-
tions in terms of a single variable (the radial distance r). with
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the applied external load the parameter. A full dependence on r,
6. and : of the buckling modes 1s assumed. The formulation em-
ploys the exact elasticity solution by Lekhnitskii'* for the prebuck-
ling state.

Results will be presented (for a given value of the load interaction
parameter §) for the critical load and the buckling modes; these will
be compared with both the orthotropic “nonshallow” Donnell and
Timoshenko shell formulations. The orthotropic material examples
are for stiffness constants typical of glass/epoxy and graphite cpoxy
and the reinforcing direction aloag the periphery.

Formulation

Letus consider the equations ot equilibrium in terms of the second
Piola—Kirchhoff stress tensor X n the form

div(Z - FT) =0 (1a)
where F is the deformation gradient defined by
F =1 ~ gradV (1b)

where V is the displacement vector and [/ is the identity tensor.
Notice that the strain tensor is defined by

E=YF' . F-D (Ic)
More specifically, in terms of the linear strains
_ Ou _lk’iv+u _ dw (22)
T MTYaTr tT
lou dv v du Jw
ey = —— —_— e e = — sl
“Trae " or © 9z ar
_dt i 1 dw 2b)
o= az r a6

1dw dv Ju Jw
w, = ——— — —, = —_———
r a8 oz T %z or 20)
dv v 10u
20, = — + — — — —
© o ar r roéb
the deformation gradient F is
1 +e, %é’rﬂ - w, %er:'*'wv
F=)leyw+w, [+ep e~ (3)

%e,: — wy :1(:,,: + w, 1+e,

Atthe critica) load there are two possible infinitely close positions
of equilibrium. Denote by ug, vy. and wg the r, 6, and z components
of the displacement corresponding to the primary position. A per-
turbed position is denoted by

U= uyg+au,; U= vy — avy; w = wy + aw 4)
where a is an infinitesimally small quantity. Here, au;(r, 6, 2),
avi(r, 6, 2), and aw(r, 8, z) are the displacements to which the
points of the body must be subpected to shift them from the ini-
tial position of equilibrium to the new equilibdum position. The
functions u;(r, 6,z).v;(r, 6, z). and w(r,6,z) are assumed fi-
nite, and « is an infinitesimally small quantity independent of 7, 6,
and z.

Following Kardomateas,” we obtain the following buckling

equations:
., 1d
QG o ' 0, 7 0
—\G, — T oW, + T, W)+ —— (T, —0Opw, + T,,w,
a'_( rr ro%: rz 0) r 39( ré 662 6z 0)
4 _a_(rl _ TO ’ + 0, v l ’ ’ 0
92\t 6: 9, ozzwti) * 7 (alr — Ogg + T, Wy

+1iw, —2t%w) =0 (5a)

) , N 13, , :

#(rrﬂ + (7,0,(1.}1 - rvozwv) + :3—9-(0'69 + '(::,w‘ - I‘?zw')
+-;?(r,;:+t:):a):_-—0;;w;) %(Zr,g*l-(’ W, ~ O,
el - haf) =0 (s

i)

= (. = b+ xhf) o (r, — el + o)

dJ L., 0 0 v
+51-( ,:—r w,,+TH )+;(T —a"a),,+r,ﬂw,):0

(5¢)

In the preceding equations, a,‘}’. and a)(}’ are the values of o;; and
wj at the inilial equilibn’um posttion, i.e., for u = uy, v = vy and
w = wyp, and a and o', are the values at the perturbed position, i.e.,
foru = u,, v—v,an w=w,.

The boundary conditions associated with Eq. (1a) can be ex-
pressed as

(F-£T)-N =1(V) (6)

where ¢ is the traction vector on the surface which has outward unit
normal N = (I, m, n) before any deformation, The traction vector ¢
depends on the displacement field V = («, v, w). Again, following
Kardomateas,’” we obtain for the lateral and end surfaces

(0!, — TS, + Thwp ) + (1) — Ogpe), + To,005 )t

+ (1, — 1.0, + 02w))A = pwih — wyh) (7a)
(1l + 02w, — T )T + (04y + T, — 19,00, )i

+(tg+tw—02w) = —poil - wA) (7b)
(1), + 15w, — opwp)l + (15, + oy, — Thwy )

+ (o), + 19,0, = 10w))A = playl — wirm) (7¢)

Prebuckling State

The problem under consideration is that of an orthotropic cylin-
drical shell subjected to a uniform external pressure p and an axial
compression P (Fig. 1). The constitutive elasticity relations for the
orthotropic body are

€rr ay, az asz 0 0 0 Orr
€0 ap an an 0 0 0 Ooa
€ | _|as an a3z 0 0 O 0z )
ve: | | 0O 0 0 aw 0 O To;
Yrz 0 0 0 0 ass O Trz
Yro 0 0 0 0 0 ag T,9

where a;; are the compliance constants (we have used the notation
l=r2=6,3=2).
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Fig. 1 Cylindrical shell under combined external pressure and axial
compression.
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In terms of the clastic constants

B, =a,;— (apra;/ay) (. j=1,2.2.56) (9a)

ﬂll (al,\—ﬂ;;)
k= _[—: = — 9b
V B2 i Bn—p_; )

Also, for convenience, set

set!

bkdl bt-:_:u
sz—ml f—k:m (9c¢)
phH1 g+l prt — ge-! I
h=x—mg— g ha=xomgma T 0d)

Then the normal stresses are given as follows:

0, = p(ﬁrk—l + f—‘r—k—l) + C(X[ _ h‘r‘—J _ h_k’_—k—-l)
(10a)

ose = p(fikr'™ = foakr™ ™) + Cxi = hakr* ™!+ hogkr ™)

(10b)
and the shear stresses are
T, =T, =T =0 (10c)
The axial stress o,, is found from Lekhnitskii'*
0, = C — (1/a33)(a130,, + ap30.4) (11a)
For convenience, set
a3+ kay a3 — kan;
a = ———; o= ————
a as:
33 3z (11b)
(a;3+ an)x,
p=1- BT B
ass
Then the axial stress is in the form
Oy = _p(ﬁ(akr‘—l + f-ka-kr—k_l)
+C(n + heor*™" + by, r ™) (11¢)
Now the constant C is found from the condition of axial load
b
/ o, 2nrdr=—P (12a)
a
which gives
Cay, = ppy — (P/2m) (12b)
where
b2 — a? bk+l — ak+l b—k+| — a—k+l
oy = +hoy—m— v h o ——————
n="mn K% A1 +h_ o T—%
(12¢)
and
8 ; K+ __ gkt —k+l _ o=kt -
1= k&kk—_H— + f—wf-kT— (12d)

Equation (12b) may be changed to a single pazameter equation
by setting

P/2m = Spb* (13)

where § is a nondimensional constant, which we shall call load
interaction parameter. The problem may then be solved for a series
of selected values of S. A case of particular inter=st is represented
by the ratio § = 0.5. For that value, P = prb?, and the cylindrical
shell is seen to be subjected to a uniform pressure » applied to both
its lateral surface and its ends, which are assumed =.> be capped. This

casc of pure hydrostatic-pressure loading has been treated in detail
in Kardomateas and Chung.*
Introduction into Eq. (12b) gives

€ = piCy C = (B — Sa?) fan, (14a)
Hence, we can write the stresses as follows:
o = p(o+ 0t + ¢r ™) (14b)
Oy = p([, + Lokrt! — (-,kr"‘_‘) (14¢)
O ZP(Q'—{&"A"—| '_{—ka—kr—‘_l) (14d)
where
G = —Che + fi: ta=—Chy+ [ (l4e)

&Hh=Cn (14f)

Therefore, it turns out that for a given load interation parameter §
the prebuckling shear stresses are zero and the prebuckling normal
stresses are linearly dependent on the external pressure p in the form

& =Cxyp;

U,-(} = p(C,-l‘o + C,’jvlfk—' -+ C,'j.zr_k_’) (]5)

This observation allows a direct implementation of a standard
solution scheme since, as will be seen, the derivatives of the stresses
with respect to p will be needed, and these are directly found from

Eq. (15).

Perturbed State
Let us define by ¢;; the stiffness constants of the orthotropic body,
iies;

Oyr Ci1 Cn2 €13 0 0 0 €y
Ogs 2 ecn ¢z 0 0 O €90
O | _|e3 €3 53 0 0 0 € (16)
Ty, - 0 0 0 Cas4 0 0 Yoz
T 0 0 0 0 Css 0 Yz
T,0 0 0 0 0 0 Ce6 Yro

(notice againthat 1 =r,2 =6,3 = 2).
Using these constitutive relations for the stresses o/, in terms of
the strains e/ ;» the strain-displacement relations (2) for the strains

e,fj and the rotations w;. in terms of the displacements u,, v;, and
w, and taking into account Eq. (9d), the buckling equation (5a) for

the problem at hand is written in terms of the displacements at the
perturbed state as follows:

0
uy,r u Ogg \ U1, 66
Ui+t — )~ + |t — | —5
r r 2 r
0 0
o Ied v
66 1,76
+ (Css + _él)“l.zz £a (CIZ + Ce6 — - )_—r

o \ Vio al
_<C22+C66+_;—9 rl—'2+ C|3+C55—7u Wi,z

"F(st—cza)irl'—z =0 (17a)

The second buckling equation (5b) gives

(70 Vi.r 171 (70 —(70 V1 Vi
4 o e 788 W T
(Cw 2 M. r r? * 2 r i r?
0 0
al ol \uy,
2t leu+ B Jup+ e ten—== | =2
2 2 r

0 0
a, u o w
+ | +en+ 2 _.1'2_9+ C3+ cas — -2 Zhee
2 /r 2 r

1 do?
oy + L) g (17b)
2 dr r

1.8
+ 2
7'2
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In a similar fashion, the third buckling equation (5c) gives

al Oy \ Wy, 66
o e __' 66 ) .90
(C55 2 wy, + ; + Caq + 2 2
al c!
+copwy o, + C|J+Css—'2— Uy, +Ccntess— —

uy . ol \ v 1do
X_L_F(CU_’_C“___“Q) Loz o o L= =0
r

2 r 2 dr

-17c¢)

In the perturbed position, we seck equilibrium modes in the form

u(r,8,2) =U((r)cosnf siniz
v (r.0,2) = V(r)sinnfsiniz (18)
w(r,0,2) = W(r)cosnfcos iz

where the functions U (r), V(r), and W (r) are uniquely deterczined
for a particular choice of n and A.
Substituting in Eq. (17a), we obtain the following linear Esamo-
geneous ordinary differential equation fora < r < b:
+ 2
Ur)en + U@y +U(r)[—cS b

r2

T A2 n? (€12 + ces)n n
0 0 / 0
_0117 _099'2_,5] + V(@) [__r_ _09057

—(cn2 +cee)n n '
+ V(f)l:——rz—— —05’95—2} + W(r) l:" (c13 —c=)A
—c3)h
+o! 5] FW(r )(023 c)r 0 - 19a)
r

The second differential equation (17b) gives fora <r < ¢
1

ol C, 1 ol Cr(f
V(T)H(Cec + 'l) + V(I‘),[;‘ﬁ + —(0,(1 - Le) + —
2 r r 2 o

2 2 0 [
2 Ce +Cnn oA 9 |, Opr |
+V"’[‘W ST %y Tty

+U(r),|:—(clz‘:'€66)"+ o :|+U( )l: (sz:zfc-e"—

onf{

122 ' =0

n
_—U&Z—ri +o, 2 } + W(f)[(tzs +C44)

. 19b)

In a similar fashion, Eq. (17c) gives fora <r <b

al a¥
W) —E = 4
) (Css+ 2)+W(f)[r +2r+ 2]

2

FW() TR Y, | o == g==
=33 —(.‘44-"—2'—039'2—'5 +U@E) | (c)xa=—c=ir

oA (c23 + css)A 0 A oA
—o®l ryyf 2B —o%Z
a’" 2] + ( )[ a” 2" a"z

A
+V(r)[(cz3+c44)n— a;’,,'z’ ]:0 £19¢)
All Eqgs. (19) are linear, homogeneous, ordinary diifer=nual
equations of the second order for U (r) V(r), and W(r). In chese
equations, 6°.(r), 09, (r), % (r) and 0% (r) depend linear’y cr the
external pressure p lhrough expressions in the formof Ec ~ %

Now we proceed to the boundary conditions on the lateral surfaces
r = a, b. These will complete the formulation of the eigenvalue
problem for the critical load.
From Eq. (7), we obtain for = 21, m =n =0
o =0; T, + (03 + p,)w: =0 (o5
1, = (on +pj)wyg =0, atr=a,b

where p; = p for r = b (outside boundary) and p; = 0forr = a
(inside boundary).

Substituting in Eqs. (8),(2), (18), and (9d), the boundary condition
o, =0atr =r; =a,b gives

U'(rj)en + [U(r)) + nV (rpl(ciz/r))

—CulW(r,’) =0, rj =a,b (21a)
The boundary condition 1/, + (¢ + p;)w, = 0 gives
Vierp)ees + (o + pj) 3] + V@) +nU))

ri=a,b (21b)
(02 + pj)wy, =0atr =

x[—cw+(of +p))3]0/r) =0
In a similar fashion, the condition 1,, —
rj =a,b gives

;\U(rl-)[css - (a,u, + p,-)-;-] + W’(r,-)[css + (a,(: + pj)%] =0,
ri=a,b (2lc)

Therefore, for a given load interaction, S, Eqgs. (19) and (21)
constitute an eigenvalue problem for differentiai equations, with
the applied external pressure p the parameter, which can be
solved by standard numerical methods (two-point boundary value
problem).

Before discussing the numerical procedure used for solving this
eigenvalue problem, one final point will be addressed. To com-
pletely satisfy all of the elasticity requirements, we should discuss
the boundary condilioqs at the ends. From Eq. (7), the boundary
conditions on the ends{ = m = 0,7 = %1, are
T+ (o) +p)oy =0, 75, — (02 +p)w, =0
(22)

a,=0,atz=0,¢
Since a,, varies as sin Az, the condition o,, = 0 on both the lower
end z = 0, and the upper end z = ¢, is satisfied if

A=mn/t (23)

It will be proved now that these remaining two conditions are
satisfied on the average. To show this we write each of the first
two exprcssmns in Eq (22) in the form S,, = 7/, + (02 + p)w,
and S5, = 1, — (0 + p)w,, and integrate U’lelr resultants in the
Cartesian coordmale system (x, y, 2); e.g., the x resultant of §,, is

b p2n
/ f S,.(cos 8)(r d6) dr
a 0

Since 7;, and w; have the form of F(r) cosné cosiz, i.e., they
have a cos nf variation, the x component of S,, has a cosnf cos 8
variation, which, when integrated over the entire angle range from
zero to 2 will result in zero. The y component has a cos nf siné
variation, which, again, when integrated over the entire angle range
will result in zero. Similar arguments hold for Sy,, which has the
form of F(r) sinn@ cos Az.

Moreover, it can also be proved that the system of resultant
stresses (22) would produce no torsional moment. Indeed, this mo-
ment would be given by

b 2
f / Se,(r d@)r dr
a 0

Since 75, and w, and, hence, Sy, have a sin nf variation, the previous
integral will be in the form

b 2w
f / r2F(r)sinn@ cos Az dr d6
" 0
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which, when integrated over the entire 6 range from zero to 2nr, will
result in zero.

Retumning to the discussion of the eigenvalue probiem, as has al-
rcady been stated, Egs. (19) and (21) constitute an eigenvalue prob-
lem for ordinary sccond-order lincar differential equations in the r
variable, with the applied extemal pressure p the parameter. This is
essentially a standard two-point boundary value problem. The relax-
ation method was used'® which is essentially based on replacing the
system of ordinary differential equations by a set of finite difference
equations on a grid of points that spans the entire thickness of the
shell. For this purpose, an equally spaced mesh of 241 points was
employed, and the procedure tumed out to be highly efficient with
rapid convergence. As an initial guess for the iteration process, the
shell theory solution was used. An investigation of the convergence
showed that essentially the same results were produced with even
three times as many mesh points. The procedure employs the deriva-
tives of the equations with respect to the functions U, V, W, U’, V',
and W', and the pressure p; hence, because of the linear nature of the
equations and the linear dependence of a,'j'- on p through Eq. (15), it
can be directly implemented. Finally, it should be noted that finding
the critical load involves a minimization step in the sense that the
eigenvalue is obtained for different combinations of n and m, and
the critical load is the minimum. The specific results are presented
in the following.

Discussion of Results
Tables 1-3 give results for the critical condition, which is defined

by the external pressure and the axial load (p, P), normalized as
pb? i P P b
E b3’ T n(b? —a?) Esh

p= 24)
The results were produced for a typical glass/epoxy material with
moduli in GN/m? and Poisson’s ratios listed below, where subscript
1 is the radial r direction, 2 the circumferential  direction, and 3
the axial z direction: E, =14.0, E,=57.0, E3=14.0, G;3=5.7,
G23=5.7, G3; =5.0, v;3=0.068, vy3=0.277, and v;; = 0.400. It
has been assumed that the reinforcing direction is along the circum-
ferential direction.

In the shell theory solutions, the radial displacement is constant
through the thickness and the axial and circumferential displace-
ments have a linear variation, i.c., they are in the form

uy(r,6.:) = Uycosnfsiniz

r— R (258)
v(r.6,2)=|V+ T(V(, + nU,) | sinn6 sinz

w(r,8,z) =[W,— (r — R)AUylcosnb cosrz (25b)

where Uy, Vi, and W, are constants (these displacement field varia-
tions would satisfy the classical assumptions of e,, = e,4 = ¢,, =0).

A distinct eigenvalue corresponds to each pair of the positive
integers m and n. The pair corresponding to the smallest eigenvalue
can be determined by trial. As noted in the Introduction, one of the
classical theories that will be used for comparison purposes is the
nonshallow Donnell shell theory formulation. The other benchmark
shell theory used in this paper is the one described in Timoshenko
and Gere.? In this theory, an additional term in the first equation,
namely, —N{(v, ¢, + u..), and an additional term in the second
equation, namely, RN%v, .., exist.

In the comparison studies we have used an extension of the orig-
inal, isotropic Donnell and Timoshenko formulations for the case
of orthotropy. The linear algebraic equations for the eigenvalues of
both the Donnell and Timoshenko theories are given in more detail
in the Appendix.

Concerning the present elasticity formulation, the critical load is
obtained for a given load interaction parameter S, by finding the
solution for p for a range of n and m and keeping the minimum
value. Table 1 shows the critical loads, as predicted by the present
three-dimensional elasticity formulation and the ones predicted by
both the nonshallow Donnell and Timoshenko shell equations for the
glass/epoxy and load interaction parameters S = 5 and 1. The two

. cases of S considered represent a relatively high and a relatively

low axial load, respectively. Table 2 shows similar results for the
graphite/epoxy material, with moduli in GN/m? of E; = 140, E, =
99, E3=9.1,G;; =59.G;; =4.7,and G,3 = 4.3 and Poisson’s

Table 1 Comparison with shell theories for glass epoxy, orthotropic with circumferential
reinforcement, £/b = §: critical loads equation (24), p, P and (n, m)

Donnell shell* Timoshenko shell®
b/a Elasticity (% increase) (% increase)
Load interaction parameter [Eq. (13)], S = 5

1.03 0.5561,0.3346 (2,1) 0.6209, 0.3736 (2,1) 0.5653, 0.3401 (2,1)
(11.7) (L7

1.05 0.3014, 0.2993 (2,1) 0.3435,0.3411 (2,1) 0.3130,0.3108 (2,1)
(14.0) 3.8)

.10 0.1971, 0.3822 (2,1) 0.2371,0.4597 (2,1) 0.2165,04198 (2,1)
(20.3) 9.8)

1.15 0.1665,0.4730 (2,2) 0.2218, 0.6300 (2,2) 0.1886, 0.5356 (2,2)
(33.2) (13.3)

1.20 0.1335,0.4940 (2,2) 0.1909, 0.7067 (2,2) 0.1624, 0.6009 (2,2)
(43.0) (21.6)

1.25 0.1167,0.5278 (1,1) 0.1753,0.7932 (2,3) 0.1241, 0.5615 (1,1)
(50.2) (6.3)

Load interaction parameter [Eq. (13)], S = 1

1.03 0.7311, 0.0880 (3,1)
1.05 0.4666, 0.0927 (2,1)
1.10 0.3038,0.1178 (2,1)
L.15 0.2758, 0.1567 (2,1)
1.20 0.2659, 0.1968 (2,1)
1.25 0.2600, 0.2353 (2.1)

{0.2488, 1.1254 (1,1)]

0.7518, 0.0905 (3.1)

0.7480, 0.0900 (3,1)

(2.8) (2.3)

0.4965, 0.0986 (2.1) 0.4829, 0.0959 (2,1)

(6.4) 3.5)

0.3386, 0.1313 (2.1) 0.3297,0.1278 (2,1)
(11.4) (8.5)

0.3235,0.1838 (2,1) 0.3152,0.1791 (2,1)
(17.3) (14.3)

0.3297, 0.2440 (2,1) 0.3214, 0.2379 (2,1)
(24.0) (20.9)

0.3418,0.3093 (2,1)
(31.5)

0.3334, 0.3017 (2,1)
(28.2)

4See Appendix.



KARDOMATEAS AND PHILOBOS

Table 2 Comparison with shell theories for graphite/epoxy, orthotropic with circumferential reinforcement,
£/b = 5: critical loads equation (24), p, P and (n, m)

b/a Elasticity

Donnell shell*
(% increase)

Timoshenko shell*
(% increase)

Load interaction parameter [Eq. (13)], S = 5

1.03 0.2511,0.5708 (2.1)
1.05 0.1826, 0.6852 (2.1)
1.10 0.1125,0.8245(2,2)
1.15 0.0754. 0.8089 (2,3)
1.20 0.0483, 0.6760 (1.1)
1.25 0.0324, 0.5540 (1.1)

Load interaction parameter [Eq. (13)], S = 1

0.2845, 0.6467 (2,1)
(13.3)
0.2137,0.8019 (2,1)
(17.0)
0.1519, 1.1125 (2.2)
(35.0)
0.1092, 1.1719 (2.4)
(44.8)
[0.1112, 1.1938 (2,3)]
0.0867, 1.2130 (2.,5)
(79.5)
[0.1003, 1.4030 (1,1)]
0.0696, 1.1895 (1,1)
(114.8)

0.2591,0.5891 (2,1)

3.2)

0.1949,0.7312 (2,1)

6.7

0.1290, 0.9449 (2,2)
(14.7)

0.0819, 0.8795 (1,1)

(8.6)

[0.0920, 0.9873 (2.3))

0.0501, 0.7009 (1.,1)

3.7

0.0348, 0.5942 (1,1)
(14)

1.03 0.3899,0.1773 (2,1) 0.4134,0.1880 (2,1) 0.4019,0.1828 (2,1)
(6.0) [€D))]
1.05 0.2834,0.2127 (2,1) 0.3090,0.2319 (2.1) 0.3005, 0.2255 (2,1)
%.0) (6.0)
1.10 0.2352, 0.3446 (2,1) 0.2793, 0.4092 (2,1) 0.2719,0.3984 (2,1)
(18.7) (15.6)
1.15 0.2140, 0.4593 (2,2) 0.2880, 0.6183 (2,1) 0.2704, 0.5805 (2,2)
(34.6) (26.3)
[0.2920, 0.6269 (2,2)]
1.20 0.1810, 0.5063 (2.2) 0.2815,0.7874 (2,2) 0.2505, 0.7007 (1,1)
(55.5) (384)
[0.2610, 0.7300 (2,2)]
1.25 0.1597, 0.5461 (2.2) 0.2743, 0.9376 (2,3) 0.1737,0.5940 (1,1)
(71.8) (8.8)
[0.2845, 0.9727 (2,2)] [0.2640, 0.9027 (2,2)]
2See Appendix.

Table3 Comparison with available higher order shell theory results boron epoxy,”* load
interaction parameter, S = 0: critical loads from the improved approaches vs classical shell

Geomeltry ElaS(icily/CL (n, m) FOSD/CL? HOSD/CL*®
Circumferential reinforcement

=0.00635m, b/a = 1.03 0.96%94 (2,2) 0.9668 0.9637
¢/R =100 (—3.06%) (—3.32%) (—3.63%)
h=0.0127m, b/a = 1.07 09148 (2,3) 0.9050 0.8933
¢/R =100 (—8.52%) (—9.50%) (—10.67%)

Axial reinforcement

h = 0.00635 m, b/a = 1.03 09817 (2,1) 0.9822 0.9822
/R =100 (—1.83%) (~1.78%) (-1.78%)
h=00127m, b/a = 1.07 0.9605 (2,1) 0.9588 0.9556
€/R = 100 (—3.95%) (—4.11%) (—4.44%)

3Simitses et al.b

ratios vj; = 0.020, vy3 = 0.300, and v3; = 0.490 (again, subscript 1
is the radial r direction, 2 the circumferential 6 direction, and 3 the
axial z direction). In all these studies, an external radius b = 1 m
and a length ratio £/b = S5 have been assumed. A range of outside vs
inside radius b/a from somewhat thin 1.03 to thick 1.25 is examined.
Since in some instances the (n, m) values at the critical load from the
shell theories differ from these of the elasticity solution, the tables
also give in brackets the values predicted from the shell theories
for the (1, m) values of the elasticity solution for comparison. The
following observations can be made.

1) For both the load interaction cases considered, the Donnell
and the Timoshenko bifurcation points are always higher than the
elasticity solution, which means that both shell theories are noncon-
servative.

2) The Timoshenko theory results are always closer to the elas-
ticity solution than the Donnell Ones. For the relatively high ax-
ial load case, § = 5, the Timoshenko shell theory is performing

remarkably well, approaching closely the elasticity results, espe-
cially for thick construction. Notice that for a shell under pure axial
load, the Timoshenko shell theory has already been found to be
conservative.'> Therefore, it can be concluded that with a very high
value of S, the Timoshenko shell theory may even render conserva-
tive estimates. Considering the results of the present study as well
as the ones from the previous studies,® ! it is concluded that the
differences in the two shell theories and also the eventual conser-
vatism of the Timoshenko shell theory when a large axial loading is
included is due to the additional term, RNZ0 v, ;;. in the second shell
theory equation (Appendix).

3) The degree of nonconservatism for the Donnell shell the-
ory is strongly dependent on the material (much higher devia-
tions from the elasticity solution for the graphite/epoxy). For the
Timoshenko shell theory, the degree of nonconservatism is de-
pendent not only on the material, but also strongly on the load
interaction.
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Fig.2a Eigenfunction U(r) vs normalized radial distance r/b,forb/a =
1.15 from the elasticity solution for two values of S and two material
cases, unit value assumed at the outside boundary r = b (classical shell
theory would have a constant value throughout, U(r) = 1 for all cases).
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Fig. 2b “Eigenfunction” W(r) vs normalized radial distance r/b, for
b/a = 1.15 from the elasticity solution for the two values of S and two
material cases, values are normalized by setting a unit value of U at the
outside boundary r = b.

At this point, a comparison with some available results regard-
ing improved shell theories would be valuable information. To this
extent, Simitses et al.> have examined the performance of the first-
order shear deformation theory (FOSD) and the higher order shear
deformation theory (HOSD) relative to the classical shell theory
(CL) by using the Galerkin method. Table 3 gives a comparison of
the predictions of the elasticity solution vs the classical shell theory
(classical refers to the Donnell shell theory) and the results from the
improved shell theories vs the classical shell theory,® for a very long
shell made out of boron/epoxy, under pure external pressure, i.e.,
S = 0, circumferential or axial reinforcement. The data indicate
that both the FOSD and the HOSD seem to be well performing for
these example case studies, i.e., they can adequately eliminate the
conservatism of the classical shell theory.

Finally, in order to examine the influence of the load interaction
parameter and the material data on the displacement field, Figs. 2a
and 2b show the variations of U (r) and W (r) at the critical point,
which define the eigenfunctions, for b/a = 1.15, as derived from
the present elasticity solution for the material data in Tables 1 and
2 [the eigenfunction V (r) has a variation similar to W (r), almost
perfectly linear]. These values have been normalized by assigning
a unit value for U at the outside boundary, r = b. Notice that the
classical shell theory assumes constant U (r), and linear V (r) and
W(r). 1t is seen that U (r) becomes more nonlinear with the more
orthotropic graphite/epoxy and also with a higher value of §, i.e., a

higher portion of axial load. Similar arguments hold for the slope
of W(r).

Appendix: Eigenvalues from Nonshallow Donnell and
Timoshenko Shell Theories
In the shell theory formulation, the midthickness (r = R) dis-
placements are in the form

u; = Upcosnf sinAz; vy = Vysinn@sinAz

w, = W,cosnf cos Az

where U,, V,,, and W, are constants.
The equations for the nonshallow (or nonsimplitied) Donnell shell

theory are'

RNZ‘: + N_-.aAn = 0
RNy .+ Npo+ (Mo a/R)+ M. .=0
Np — RN%u ;, — RM; .. — (Mp un/R) — 2M 0

24 NiBoo+ pluy+u)=0

where Rfy = v — u, ¢. The Timoshenko shell theory? has the ad-
ditional term —N%(v, s, + u, .) in the first equation, and the ad-
ditional term RNz’u, < in the second equation. We have denoted
by R the mean shell radius and by p the absolute value of the
external pressure. Notice that the external pressure p would give
NY% = 0 and Nj = —pR and the axial compression P would
give N' = —P/(2n R) = —pSR. where § is the load interaction
parameter, defined in Eq. (13).
In terms of the equivalent property constants

Cyp = Esh/() — va3vm): Cyy = Ezh/(1 — viavn)
Cy = Eyvph/(1 — va3vn); Cu = Gy3h
D;; = Ci,‘(h:/12)

the coefficient terms in the homogeneous equations system that gives
the eigenvalues are

ay =Cunki ap = (Ca+ Co)nk

o)y = —(C;;R;.: + C,ul‘l:"R)

C D 3’11 Dw:).: D )\:
oy :—(__2_2__}. N S - - 44 )I‘I

R RY ' R R

Cn’!z 1 Dggn: Dukz
‘1’22=—( R +C44R/»'+T +2——R——

o3 = (Coy + Cu)nr

sz D22ﬂ4 Dl ).3n2 e DM)\Z,IZ
a3y Z'F'*‘ I°g +2 JR + Dw:i2. R+ 4
Cyy  Dpn®  Dnk? D A?
ay = (? + R + 1; + 4 4; n
a3 = —CpA

Notice that in the preceding formulas we have used the curvature
eXPression kg = (v, , — U, ,»)/ R for both theories.

Then the linear homogeneous equations svstem that gives the
eigenvalues for the Timoshenko shell formulation for the case of
combined axial compression P and external pressure p is:

(a1 + pROUy + (12 + pRaX)Vy —anWy, =0 (Al)

anUo+ (0 + PR} /20)) Vo + auWy =0  (A2)

[(131 - P()‘Z/zn) - l’(”z - 1)]Ui) +l1'32 Vi + (£ &%} W() =0 (A})
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For the Donnell shell formulation, the additional term in the co-
cfficient of V; in Eq. (A2) is omitted, i.c., the coefficient of Vj is
only ay,, and the additional terms in the coefficients of U and V; in
Eq. (A1) are also omitted, i.c., the coefficient of Uy is only a;; and
the coefficient of V; is only a);. The eigenvalues (for a given load
interaction §) are naturally found by equating to zero the determi-
nant of the coefficients of Uy, V. and W,. Notice that the axial load
P is expressed in terms of the external pressvre p through the load
interaction parameter S defined in Eq. (13).
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