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Buckling of Thick Orthotropic Cylindrical Shells Under 
Combined External Pressure and Axial Compression 
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A formulation based on the three-dimensional theory of elasticity Is employed to study the buckling of an 
onhotropic cylindrical sbell under combined external pressure and axial compression. A properly defined load 
iDt.eraction panuueur expresses the ratio of axial compression and exurnal pressure loading, and critical loads 
an thus derived for a given load Inuraction. The results from this elasticity solution an compand with the 
aiticalloads predicted by the orthotropic Donnell and Timoshenko nonshallow classical shell formulations. Two 
cases of ortbotroplc material are colISldered with stiffness colIStants typical of glass/epoxy and grapblte/epoxy. 
Furthenuore. two cases of load Inuraction are considered, representing a relatively blgh and a relatively low axial 
load. For both load Interaction cases considered and for both materials, the Donnell and the Timoshenko bifurcation 
points are bigher than the elasticity SOlution, which means that both shell theories are nonconservative. However, 
the bifurcation points from the Tlmoshenko formulation are always found to be closer to the elasticity predictions 
than the ones from the Donnell formulation. An additional common observation Is that, for a higb value of the 
load inuraction parameter (relatively high axial load), the Tlmoshenko shell theory Is performing remarkahly 
-ell, approaching closely the elasticity SOlution, especially for thick cOlIStroction. Finally, a comparison with some 
..-ailable results from higher order shell tbeories for pure external pressure Indicates that these improved shell 
theories seem to be adequate for the example cases that were studied. 

A
Introduction shells have been recently presented by Kardomateas7 for the case 

LTHOUGH the initial applications of com~site materials in­ of unifonn external pressure and orthotropic material; a simplified 
volved thm plate type configurations for aircraft structures, problem definition was used in this study ("ring" assumption), in 

many current potential applications involve the moderately thick that the prebuckJ ing stress and displacement field was axisymmetric, 

shell type configuration. For example, in the marine industry, com­ and the buckling modes were assumed two dimensional, i.e., no z 
posite shell stnIcwres are considered for submersible hulls or for component of the displacement field, and no z dependence of the r 

the support columns in offshore platfonns. Furthennore, composite and () displacement components. It was shown that the critical load 

shell structural configurations of moderate thickness can be poten­ for external pressure loading, as predicted by shell theory, can be 
tially used for components in the automobile industry and in space highly nonconservalive for moderately thick construction. The ring 
vehicles as a primary load carrying structure. assumption was relaxed in a further study,S in which a nonzero axial 

One ofthe imponant characteristics ofmost of the present-day ad­ displacement and a full dependence of the buckling modes on the 
vanced composites is the high ratio of extensional to shear modulus. three coordinates was assumed. 
This may render the classical theories inadequate for the analysis of A more thorough investigation of the thickness effects was con­
moderately thick composite shells. In fact, it has been well recog­ ducted by Kardomateas9 for the case ofa transversely isotropic thick 

nized that predictions of critical loads from classical shell theories cylindrical shell under axial compression. This work included also 

can be highly nonconservative. a comprehensive study of the perfonnance of the Donnell,lO the 

Regarding the classical shell fonnulation, the critical loads for an FlOgge,l! and the Danielson and Simmonds 12 theories for isotropic 

isotropic material can be found by solving the eigenvalue problem material in the case of axial compression. These theories were all
 
for the set of cylindrical shell equations from the Donnell theory. 1 found to be nonconservative in predicting bifurcation points, the
 
Furthennore, in presenting a shell theory fonnulation for isotropic Donnell theory being the most nonconservative.
 

shells, Timoshenko and Gere2 included some additional tenns (these In a further study, Kardomateas 13 considered a generally cylin­


equations are briefly described in the Appendix). Both the Donnell drically orthotropic material under axial compression. In addition to
 
and Timoshenko shell theory equations can be easily extended for considering general orthotropy for the material constitutive behav­

the case of an orthotropic material. Although the Timoshenko and ior, the latter work investigated the perfonnance ofanother classical
 
Gere theory is also old and simple, the tenn classical shell has been fonnulation, i.e., the Timoshenko and Gere2 shell theory. The bifur­


historically used to denote the Donnell fonnulation.
 cation points from the Timoshenko fonnulation were found to be 

The recent, higher order, shear defonnation theories3- S could c1oserto the elasticity predictions than the ones from the Donnell for­

potentially produce much more accurate results. To this extent, mulation. More importantly, the Timoshenko bifurcation point for 

Simitses et al.6 used the Galerkin method to produce the critical the case ofpure axial compression was al ways lower than the elastic­

loads ofcylindrical shells under external pressure, as predicted from ity one, i.e., the Timoshenko fonnulation was conservative. This case 

the first-Qrder shear defonnation and the higher order shear defor­ of pure axial load from the Timoshenko fonnulation was actually the 

mation theories. only case ofa classical shell theory rendering conservative estimates 

The existence of these different shell theories underscores the of the critical load when pure axial compression is involved. 

need for a benchmark elasticity solution, in order to compare the In this paper, a benchmark solution for the buckling of an or­

accuracy ofthe predictions from the classical and the improved shell thotropic cylindrical shell under combined axial compression and 
theories. In fact, elasticity solutions for the buckling of cylindrical external pressure is produced. A load interaction parameter S, which 

expresses the combination of applied axial compression P and 
external pressure p, is appropriately defined. For a given value Received June 28. 1994; revision received Jan I I, 1995; accepted for 

publication Jan. 17. 1995. Copyrighl © 1995 by the American 1nstilule of of the load interaction parameter, the nonlinear three-dimensional 
Aeronautics and Astronautics. Inc. All rights reserved. theory of elasticity is appropriately fonnulated and reduced to a 

• Associale Professor. School of Aerospace Engineering. standard eigenvalue problem for ordinary linear differential equa­
tDoctoraJ Research Student. School of Aerospace Engineering. tions in tenns of a single variable (the radial distance r). with 
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!he applied external load the parameter. A full dependence on r, 

8, and ~ of the Ouckling modes IS assumed. The formulation em­
ploys the exaCI elasticilY solutioo by Lekhnitskii 14 for the prebuck­
ling state. 

Results wi II be presented (for:l given value of the load interaction 
parameter S) for the crilicalload and the buckling modes~ these will 
be compared with both the orthou-opic "nonshallow" Donnell and 
Timoshenko shell formulations. The orthotropic material examples 
are for stiffness constants typical of glass/epoxy and graphite epoxy 
and the reinforcing direction alocE, the periphery. 

Formulation 
Let usconsidertheequations ofequilibrium in terms of the second 

Piola-Kirchhoff stress tensor E in the form 

(I a) 

where F is the deformation gradient defined by 

F = I ~ gradV (I b) 

where V is the displacement vector and I is the identity tensor. 
Notice that the strain tensor is defined by 

(lc) 

More specifically, in terms of the linear strains 

au l:av u 
err =:-, eM = -- +-, (2a) 

ar r iW r 

I au av I au aw
e,~ = - - + - - -_ e.=-+­r ae ar r '. az ar 

at law 
eo, = - +-- (2b) 

a: r ae 

and the linear rotations 

law av au aw 
2w 

, 
= ­ -

r ae 
- -

az' 

av 

2wo = ­
az 

v I au 

- -
ar 

(2c) 

2w. = - or - - - ­
- ar r r ae 

!he deformation gradient F is 

1+ ell ~e,,+wu] 
F= ~e,u + w, ; + eoe leB, - w, (3) 

[ 
'i e" -wo 1+ ell 

At the critical load there are t1.l.0 possible infinitely close positions 
of equilibrium. Denote by uo, vo_.and Wo the r, e, and z components 
of the displacement corresponcliDg to !he primary position. A per­
turbed position is denoted by 

w = wo+awl (4) 

where a is an infinitesimally small quantity. Here, au I (r, e, z), 
aVI(r.e,Z), and aWI(r,e,z) ar.e the displacements to which the 
points of the body must be subjected to shift them from the ini­
tial position of equilibrium to tbe new equilibrium position. The 
functions ul(r,8,z),vl(r,8,Z) . .and·wl(r,e,Z) are assumed fi­
nite, and a is an infinitesimally small quantity independent of r, e. 
and z. 

Following Kardomateas,? we obtain the following buckling 
equations: 

(5b) 

.1 ( , ", n ') I a (' ", u ')
- f,. - o"w~ + f,,,W, + - il" f u_ - f,u W" + 0uu w,ar • r u • 

a (' ", "') 1(, ", n ') 0+:;- 0 .. - f,_W" + f".W, + - f,_ - ""W" + f,eW, = 
IlZ" - • r' 

(5c) 

In the preceding equations. a ,n and w~ are the values of ail and 
Wj at the initial equilibrium pos(tion, i.e., for u = Un. v = Vn and 
w = Wo, and aij and w'. are the values at the pel1urbed position, i.e., 
foru = UI, v = VI and w = WI' 

The boundary conditions associated with Eq. (I a) can be ex­
pressed as 

(6) 

where I is the traction vector on the surface which has outward unit 
normal N = d. m, n) before any deformation, The traction vector I 
depends on the displacement field V = (u, v, w). Again, following 
Kardomateas,? we obtain for the lateral and end surfaces 

, 0' 0' )/' (' 0' 0" ' (a" - f,oW, + f"WO + f,O - aoow, + fO,wOjm 

(7a) 

, 0' 0' )/' (' 0' 0') ,( f,B + a"w, - f"W, + aB" + f,BW, - fo,W, III 

(7b) 

, 0' 0')1 (' 0' 0') ,( f" + f,pW, - a"wo + f B, + aoow, - f,OWo m 

' 0' 0')' 'I' " (7c)+ (au + f",W, - f"WO n = p(WB - w,m) 

Prebuckling Slat~ 

The problem under consideration is that of an ol1hotropic cylin­
drical shell subjected to a uniform external pressure p and an axial 
compression P (Fig. I). The constitutive elasticity relations for the 
011 hotropic body are 

a[2 au 0 0 
an a"3 0 0 o aOB 
a23 a33 0 0 o a zz:::] = [::~ o ] [G" ] (8)

Yo, 0 0 0 a44 0 o fO,


[ y" 0 0 0 0 ass Of"
 

Y,u 0 0 0 0 0 aM f,O
 

where aij are the compliance constants (we have used the notation 
I == r, 2 == e, 3 == z). 
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Fig. 1 Cylindrical shell under combined external pressure and axial 
(Sa) compression. 
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In terms of the clastic constants case of pure hydrostatic-pressure loading has been treated in detail 

(9a) 

(alJ -a::.,) 
(9b)

fin - P_: 

Also, for convenience, set 

(9c) 

Then the normal stresses are given as follows: 

an = P ( lir ri-I + I _t r-i-I) + c(X, - h i r i-J - h _t r-i-I) 

(lOa) 

a99 = P(/ikri-1 - I_ikr-i-I) + C(x, - hikr' -I + h _ikr-i-') 

(lOb) 

and the shear stresses are 

r8z = rft = r,8 = 0 (lOc) 

The axial stress all is found from Lekhnitskii 14 

(lIa) 

For convenience, set 

ai = 
(II b) 

Then the axial stress is in the form 

+ C(YI + htatri-I + h_ta_ir-i-') (lIe) 

Now the constant C is found from the conditioo of axial load 

I b 

a,,271'rdr =-P (l2a) 

which gives 

Call = P{31 - (P/271') (l2b) 

where 

b-k+1 _ a-k+1 

+ h_tCL. --I---k-­
(l2c) 

and 

bk+1 _ ak+1 b-k+1 _ c-k+' 

{31 = liCit + I-ia-i (I2d)
k+I l-k 

Equation (I2b) may be changed to a single p:cameter equation 
by selling 

P/271' = Spb2 (13) 

where S is a nondimensional constant, which .... 'e shall call load 
interaction parameter. The problem may then be s;olved for a series 
of selected values of S. A case of particular interest is represented 
by the ratio S = 0.5. For that value, P = p71'b2

, a..::ld the cylindrical 
shell is seen !o be subjected to a uniform pressure P applied to both 
its lateral surface and its ends, which are assumed ':' be capped. This 

in Kardomateas and Chung,~
 

Inlroduction into Eq. (12b) gives
 

C = pC: (14a) 

Hence, we can write the stresses as follows: 

(l4b) 

I, t-l r k -i-I)
aHH = P ( S' + Si"r - \-i r (I4c) 

( 14(1) 

where 

Si = -Chi + It; S-i = -Ch_i + I-i (l4e) 

S, = CXI; SJ = CYI (I4f) 

Therefore, it turns out that for a given load interation parameter S 
the prebuckling shear stresses are zero and the prebuckling normal 
stresses are linearly dependent on the external pressure p in the form 

o (C C t-\ + C -i-I) (15)a;j=p ;),0+ ii,lr ii.2 r 

This observation allows a direct implementation of a standard 
solution scheme since, as will be seen, the derivatives of the stresses 
with respect to P will be needed, and these are directly found from 
Eq. (15). 

Perturbed State 
Let us define by cli the stiffness constants of the orthotropic body, 

i.e., 

CI3 o o 
C23 o o o "-88 

C33 o o o "-" o ] ["-"] (16)o o o Y8z 
o C55 o Y,z 
o o CM Y,8 

(notice again that I == r, 2 == e. 3 == z). 
Using these constitutive relations for the stresses a:i in terms of 

the strains e;i' the strain-displacement relations (2) for the strains 
e;j and the rotations wj in terms of the displacements U I, VI, and 
WI, and taking into account Eq. (9d), the buckling equation (Sa) for 
the problem at hand is written in terms of the displacements at the 
perturbed state as follows: 

UI,) UI ( a~8)UI88 
CII ul.rr + -:- - C22-;2 + C6fl +"2 ~( 

az~) ( a~8) VI ,8+ ( C55 +"2 ul.zz + CI2 + CM -"2 -;­

WI z+ (CI3 - C23)-' = 0 (l7a) 
r 

The second buckling equation (5b) gives 

a,~ ) ( VI.' VI ) (ar~ - a~8 ) (VI.' VI ) CM + - + - - - + - + ­( 2 VI ," r r2 2 r r2 

lda~,( VI U1.9)+--- VI.,+---- =0 (l7b)
2 dr r r 
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In a similar fashion, the third buckling equation (5c) ~ 

(1,~ ) ( WI , ) ( a~e) WI ee 
( C~~ + T wI." + -:- + C404 + T ~ 

u 
"I' ( t7~~) VI H, I dt7x-"+ C2,+C404-- -·-+_-!.!..(w, -11·.·=0 

r ' 2 r 2 dr J .• 

. ]7c) 

In the perturbed position, we seck equilibrium modes m tbr= fonn 

",(r,B,z) = U(r)cosnBsinAZ 

VI (r, B, z) = V (r) sin nB sin AZ (18) 

wl(r,B.z) = W(r)cosnBcosAZ 

where the functions U (r), V (r), and W (r) are uniquely ~ned 

for a particular choice of nand A. 
Substituting in Eq. (l7a), we obtain the following linear b..-.rno­

geneous ordinary differential equation for a ~ r ~ b: 

2 
" /CII [ 2 Cn + C6f,nU(r) Cll + U(r) - + U(r) -C55A - 2 

r r 

+aO.~] + W(r) (CD - CI3)A = 0 . ]9a) 
,. 2 r
 

The second differential equation (17b) gives for a ~ r ~ i:
 

"(C6f, + -a::') - + -I( 0 -a~e) + -C~I:
V(r) + V(r) /[C6f, a ­
2 r r "2 : I-

,[-(CI2 + c66)n 0 n] [-(cn + 4+U(r) +0',,- +U(r) _ ,,0: 

r 2r r­

. : 9b) 

In a similar fashion, Eq. (17c) gives for a ~ r ~ b 

0'0) 0'0 O'Ot]W(r)" 
( 

C55 +...!!.. + W(r)' [c~ + ...!!.. + ...!!.. 
2 r 2r 2 

nA onA]+ V(r) [ (C23 + C44)- - 0'00- = 0 I ] 9c) 
r 2r 

All Eqs. (19) are linear, homogeneous, ordinary diif=tial 
equations of the second order for U(r), V(r), and W(r'). In dlese 
equations, 0'::' (r), O'~o(r), O',~(r) and O',o;(r) depend line~ C"C the 
external pressure P through expressions in the fonn of Ec . "" 

Now we proceed to the boundary conditions on the lateral surfaces 
r = a, b. These will complete the formulation of the eigenvalue 
problem for the critical load. 

From Eq. (7), we obtain for i = ± I, m= ii = 0 

a;, = 0; 

r:, - (O':~ + Pj)W~ =0, at r =a, b 
(20) 

where Pj = P for r = b (outside boundary) and Pj = 0 for r = a 
(inside boundary). 

Substituting in Eqs. (8), (2), (18), and (9d), the boundary condition 
a;, = 0 at r = rj = a, b gives 

U'(rj)cll + [U(rj) + nV(rj)](cl2/rj) 

-cuAW(rj) =0, rj=a,b (2Ia) 

The boundary condition r:o+ (a:~ + Pj)w; = 0 gives 

V'(rj)[c66 + (a,~ + pjH] + [V(rj) +nU(rj)] 

x[-cl\(o+(a~+pjH]ojrj)=O, rj=a,b (2Ib) 

In a similar fashion, the condition r;, - (a,~ + Pj )w~ = 0 at r = 
rj = a, b gives 

W(rj)[c~~ - (a::' + pjH] + W/(rj)[c~~ + (O',~ + pj)t] = 0, 

rj = a, b (2Ic) 

Therefore, for a given load interaction,S, Eqs. (19) and (21) 
constitute an eigenvalue problem for differential equations, with 
the applied external pressure p the parameter, which can be 
solved by standard numerical methods (two-point boundary value 
problem). 

Before discussing the numerical procedure used for solving this 
eigenvalue problem, one final point will be addressed. To com­
pletely satisfy all of the elasticity requirements, we should discuss 
the boundary conditions at the ends. From Eq. (7), the boundary 
conditions on the ends i =m= 0, ii = ± I, are 

r;, + (O'~ + p)w~ = 0; r~, - (a~ + p)w; = 0 

a;, = 0, at Z = 0, e 
(22) 

Since a:.z. varies as sin AZ, the condition O'~ = 0 on both the lower 
end Z = 0, and the upper end Z = e, is satisfied if 

A = mrrje (23) 

It will be proved now that these remaining two conditions are 
satisfied on the average. To show this we write each of the first 
two expressions in Eq. (22) in the fonn 5" = r;, + (O'~ + p)w~ 
and So, = r~, - (a~ + p)w;, and integrate their resultants in the 
Cartesian coordinate system (x, y, Z); e.g., the x resultant of 5" is 

I b 

1'18 S,,(cosB)(rdB)dr 

Since r;, and w~ have the fonn of F(r) cosnB cos AI, i.e., they 
have a cos nB variation, the x component of 5" has a cos nB cos B 
variation, which, when integrated over the entire angle range from 
zero to 2rr will result in zero. The y component has a cos nO sin B 
variation, which, again, when integrated over the entire angle range 
will result in zerO. Similar arguments hold for So" which has the 
form of F (r) sin nB cos AI. 

Moreover, it can also be proved that the system of resultant 
stresses (22) would produce no torsional moment. Indeed, this mo­
ment would be given by 

("Ia

b 

10 so, (r dB)r dr 

Since r~, and w; and, hence, So, have a sin nB variation, the previous 
integral will be in the fonn 

f b j'18 r2 F(r) sin nB cos AZ dr dB 
(/ 0 
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which, when integraled over the entire 0 range from uro to 211' , will 
result in zero. 

Returning to the discussion of the eigenvalue problem, as has al­
ready been stated, Eqs. (19) and (21) constitute an eigenvalue prob­
lem for ordinary second-order linear differential equations in the r 
variable, with the applied external pressure p the parameter. This is 
essentially a standard two-point boundary value problem. The relax­
ation method was used 1j which is essentially based on replacing the 
system of ordinary differential equations by a set of finite difference 
equations on a grid of points that spans the entire thickness of the 
shell. For this purpose, an equally spaced mesh of 241 points was 
employed, and the procedure turned out to be highly efficient with 
rapid convergence. As an initial guess for the iteration process, the 
shell theory solution was used. An investigation of the convergence 
showed that essentially the same results were produced with even 
three times as many mesh points. The procedure employs the deriva­
tives of the equations with respect to the functions V, V, W, V', V', 
and W', and the pressure ['; hence, because of the linear nature of the 
equations and the linear dependence of C1,~ on p through Eq. (15), it 
can be directly implemented. Finally, it should be noted that finding 
the critical load involves a minimization step in the sense that the 
eigenvalue is obtained for different combinations of nand m, and 
the critical load is the minimum. The specific results are presented 
in the following. 

Discussion of Results 
Tables 1-3 give results for the critical condition, which is defined 

by the external pressure and the axial load (I', P), normalized as 

(24) 

The results were produced for a typical glass/epoxy material with 
moduli in GN/m2 and Poisson's ratios listed below, where subscript 
I is the radial r direction, 2 the circumferential 0 direction, and 3 
the axial Z direction: £1 = 1'4.0, £2 = 57.0, £] =14.0, G 12 =5.7, 
G 23 =5.7, G 31 = 5.0, Vl2 =0.068, ~3 ~ 0.277, and V3' =0.400. It 
has been assumed that the reinforcing direction is along the circum­
ferential direction. 

In the shell theory solutions, the radial displacement is constant 
through the thickness and the axial and circumferential displace­
ments have a linear variation, i.e., they are in the form 

u,(r,O,:) = VncosnOsinAZ 

(25a)
r - R ]v,(r, 0, z) = \r() + -R-(Vn + nVn) sinnO sinAZ[ 

WI (r, 0, Z) = [Wn - (r - R)AVol cosnO cos AZ (25b) 

where Vo, Vo, and Wo are constants (these displacement field varia­
tions would satisfy the classical assumptions of err =e,R = ell =0). 

A distinct eigenvalue corresponds to each pair of the positive 
integers m and n. The pair corresponding to the smallest eigenvalue 
can be determined by trial. As noted in the Introduction, one of the 
classical theories that will be used for comparison purposes is the 
nonshallow Donnell shell theory formulation. The other benchmark 
shell theory used in this paper is the one described in Timoshenko 
and Gere.2 In this theory, an additional term in the first equation, 
namely, -N~(v, 8, + u, ,), and an additional term in the second 
equation, namely, RN~v,::, exist. 

In the comparison studies we have used an extension of the orig­
inal, isotropic Donnell and Timoshenko formulations for the case 
of orthotropy. The linear algebraic equations for the eigenvalues of 
both the Donnell and Timoshenko theories are given in more detail 
in the Appendix. 

Concerning the present elasticity formulation, the critical load is 
obtained for a given load interaction parameter S, by finding the 
solution for I' for a range of nand m and keeping the minimum 
value. Table I shows the critical loads, as predicted by the present 
three-dimensional elasticity formulation and the ones predicted by 
both the nonshallow Donnell and Timoshenko shell equations for the 
glass/epoxy and load interaction parameters S = 5 and I. The two 
cases of S considered represent a relatively high and a relatively 
low axial load, respectively. Table 2 shows similar results for the 
graphite/epoxy material, with moduli in GN/m2 of £2 = 140, £1 = 
9.9, £3 = 9.1, GJj = 5.9. G I2 = 4.7, and G23 = 4.3 and Poisson's 

Table 1 Comparison with sbell theories for glass epoxy, orthotropic with circumferential 
reinforcement, lib = 5: critical loads equation (24), p, Pand (n, m) 

Donnell shell" Ttmoshenko shell· 
b/u Elasticity (% increase) (% increase) 

Load interaction parameter [Eq. (/3)J. 5 = 5 

1.03 0.5561,0.3346 (2,1) 0.6209,0.3736 (2,1) 0.5653,0.3401 (2,1) 
(11.7) (1.7) 

1.05 0.3014,0.2993 (2,1) 0.3435.0.3411 (2,1) 0.3130,0.3108 (2,1) 
(14.0) (3.8) 

1.10 0.1971,0.3822 (2,1) 0.2371,0.4597 (2,1) 0.2165,0.4198 (2,1) 
(20.3) (9.8) 

1.15 0.1665,0.4730 (2,2) 0.2218,0.6300 (2,2) 0.1886,0.5356 (2,2) 
(33.2) ( 13.3) 

1.20 0.1335,0.4940 (2,2) 0.1909,0.7067 (2,2) 0.1624,0.6009 (2,2) 
(43.0) (21.6) 

1.25 0.1167,0.5278 (t,t) 0.1753,0.7932 (2,3) 0.1241,0.5615 (1,1) 
(50.2) (6.3) 
(0.2488, 1.1254 (1,1)) 

Load intuaction paromLter [Eq. (13)], 5 = / 

1.03 0.7311,0.0880 (3,1) 0.7518,0.0905 (3,1) 0.7480,0.0900 (3,1) 
(2.8) (2.3) 

1.05 0.4666,0.0927 (2,1) 0.4965,0.0986 (2,1) 0.4829, 0.0959 (2,1) 
(6.4) (3.5) 

1.10 0.3038,0.1178 (2,1) 0.3386,0.1313 (2,1) 0.3297,0.1278 (2,1) 
(11.4) (8.5) 

1.15 02758,0.1567 (2,1) 0.3235,0.1838 (2,1) 0.3152, 0.1791 (2, I) 
(17.3) (14.3) 

1.20 0.2659,0.1968 (2,1) 0.3297,0.2440 (2,1) 0.3214,0.2379 (2,1) 
(24.0) (20.9) 

1.25 0.2600,02353 (2.1) 0.3418, 0.3093 (2,1) 0.3334,0.3017 (2,1) 
(31.5) (28.2) 

aSee Appendix. 
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Table 2 Comparison with shell theories for graphite/epoxy. orthotr::oPIc with drromfCftlllial reinforcement. 
lib =S: critkalloads equation (24).;, P and (II, 1ft) 

Donnell shell" Timoshenko shell" 
bla Elaslicily (~ increase) (~ increase) 

Load intauction ,.uram~ta [Eq. (/3)). S =5 

1.03 

1.05 

1.10 

1.15 

1.20 

1.25 

0.2511. 0.5708 (2.\) 

0.1826, 0.6852 (2.1) 

0.1125,0.8245 (2,2) 

0.0754,0.8089 (2,3) 

0.0483.0.6760 (1.1) 

0.0324, 0.5540 (1,1) 

0.2845, 0.6467 (2,1) 
(13.3) 

0.2137,0.8019 (2,1) 
(17.0) 

0.1519,1.1125 (2,2) 
(35.0) 

0.1092,1.1719 (2,4) 
(44.8) 

(0.1112,1.1938 (2,3)] 
0.0867, 1.2130 (2,5) 

(79.5) 
(0.1003, 1.4030 (1,1)] 
0.0696,1.1895 (1,1) 

(114.8) 

0.2591.0.5891 (2,1) 
(3.2) 
0.1949.0.73\2 (2,1) 

(6.7) 
0.1290,0.9449 (2,2) 

(14.7) 
00819.0.8795 (1,1) 

(8.6) 
(0.0920.0.9873 (2.3)] 
0.0501. 0.7009 (1,1) 

(3.7) 

0.0348,0.5942 (1,1) 
(7.4) 

Load interaction ,.aram~ta [Eq. (/3)), S =J 

103 

1.05 

1.10 

1.15 

1.20 

1.25 

0.3899,0.1773 (2,1) 

0.2834,0.2127 (2,1) 

0.2352,0.3446 (2,1) 

0.2140,0.4593 (2.2) 

0.1810,0.5063 (2,2) 

0.1597,0.5461 (2,2) 

0.4134,0.1880 (2,1) 
(6.0) 
03090.0.2319 (2,1) 

(9.0) 
0.2793. 0.4092 (2,1) 

(18.7) 
0.2880.0.6183 (2,1) 

(34.6) 
[02920.0.6269 (2,2») 
0.2815,0.7874 (2,2) 

(55.5) 

0.2743.0.9376 (2,3) 
(71.8) 

[0.2845,0.9727 (2,2») 

0.4019.0.1828 (2,1) 
(3.1) 
0.3005, 0.2255 (2,1) 

(6.0) 
0.2719.0.3984 (2.1) 

(15.6) 
0.2704,0.5805 (2,2) 

(26.3) 

0.2505.0.7007 (1,1) 
(38.4) 

[0.2610,0.7300 (2,2») 
0.1737.0.5940 (1,1) 

(8.8) 
(0.2640,0.9027 (2.2») 

'See Appendi,. 

Table 3 Comparison with available higher order shell theory results boron epoxy," load 
interaction parameter. S =0: critical loads from the improved approaches vs classical shell 

Geometry Elaslicily/CL (n, m) FOSD/CL' HOSD/CL' 

Circumferential reinforcement 

h = 0.00635 m, blu = 1.03 09694 (2,2) 0.9668 0.9637 
lIR=IOO (-3.06%) (-3.32%) (-3.63%) 
h = 0.0127 m. bla = 1.07 0.9148 (2.3) 0.9050 0.8933 
llR = 100 (-8.52%) (-9.50%) (-10.67%) 

Axial reinforcement 

h = 0.00635 m, bla = 1.03 0.9817 (2,1) 0.9822 0.9822 
llR = 100 (-1.83%) (-1.78%) (-1.78%) 
h = 0.0127 m, bla = 107 0.9605 (2,1) 0.9588 0.9556 
llR = 100 (-3.95%) (-4.11%) (-4.44%) 

"Simitses el aJ.6 

ratios lil2 = 0.020, lin = 0.300. and li31 = 0.490 (again. subscript I remarkably well. approaching closely the elasticity results, espe­
is the radial r direction, 2 the circumferential edirection. and 3 the cially for thick construction. Notice that for a shell under pure axial 
axial z direction). In all these studies. an external radius b = I m load, the Timoshenko shell theory has already been found to be 
and a length ratio lib =5 have been assumed. A range ofoutside vs conservative,I3 Therefore. it can be concluded that with a very high 
inside radius bla from somewhat thin 1.03 to thick 1.25 is examined. value of S, the Timoshenko shell theory may even render conserva­
Since in some instances the (n, m) values at the critical load from the tive estimates, Considering the results of the present study as well 
shell theories differ from these of the elasticity solution. the tables as the ones from the previous studies,s.13 it is concluded that the 
also give in brackets the values predicted from the shell theories differences in the two shell theories and also the eventual conser­
for the (n, m) values of the elasticity solution for comparison. The vatism of the Timoshenko shell theory when a large axial loading is 
following observations can be made. included is due to the additional term. RN~u, ", in the second shell 

I) For both the load interaction cases considered, the Donnell theory equation (Appendix). 
and the Timoshenko bifurcation points are always higher than the 3) The degree of nonconservatism for the Donnell shell the­
elasticity solution, which means that both shell theories are noncon­ ory is strongly dependent on the material (much higher devia­
servative, tions from the elasticity solution for the graphite/epoxy). For the 

2) The Timoshenko theory results are always closer to the elas­ Timoshenko shell theory, the degree of nonconservatism is de­
ticity solution than the Donnell Ones. For the relatively high ax­ pendent not only on the material, but also strongly on the load 
ial load case, S = 5, the Timoshenko shell theory is performing interaction. 
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Fig. 2a Eigenfunction U(r) vs normalized radial distance rib, for bIa = 
1.15 from the dasticity solution for two values of S and two material 
cases, unit value assumed at the outside boundary r = b (classical shell 
theory would have a constant value throughout. U(r) = 1 for all cases). 

0.0.-----------------------, 

.0.1 

·0.2 

-0.3 L-__~____'_____~_____' ~_ ___" 

0.85 0.90 0.95 1.00 

rib 

Fig.2b "Eigenfunction" W(r) vs normalized radial distance rib, for 
bla = 1.15 from the elasticity solution for the two values of S and two 
material cases, values are nonnalized by setting a unit value of U at the 
outside boundary r =b. 

At this point, a comparison with some available results regard­
ing improved shell theories would be valuable infonnation. To this 
extent, Simitses et al.6 have examined' the perfonnance of the first­
order shear defonnation theory (POSD) and the higher order shear 
defonnation theory (HOSD) relative to the classical shell theory 
(eL) by using the Galerkin method. Table 3 gives a comparison of 
the predictions of the elasticity solution vs the classical shell theory 
(classical refers to the Donnell shell theory) and the results from the 
improved shell theories vs the classical shell theory,6 for a very long 
shell made out of boron/epoxy, under pure external pressure, i.e., 
S = 0, circumferential or axial reinforcement. The data indicate 
that both the FOSD and the HOSD seem to be well perfonning for 
these example case studies, i.e., they can adequately eliminate the 
conservatism of the classical shell theory. 

Finally, in order to examine the influence of the load interaction 
parameter and the material data on the displacement field, Figs. 2a 
and 2b show the variations of V (r) and W(r) at the critical point, 
which define the eigenfunctions, for bla = 1.15, as derived from 
the present elasticity solution for the material data in Tables I and 
2 [the eigenfunction VCr) has a variation similar to W(r), almost 
perfectly linear). These values have been nonnalized by assigning 
a unit value for V at the outside boundary, r = b. Notice that the 
classical shell theory assumes constant V (r), and linear V (r) and 
W(r). It is seen that V (r) becomes more nonlinear with the more 
orthotropic graphite/epoxy and also with a higher value of S, i.e., a 

higher portion of axial load. Similar arguments hold for the slope 
ofW(r). 

Appendix: Eigenvalues from Nonshallow Donnell and 
TImoshenko Shell Theories 

In the shell theory fonnulation, the midthickness (r = R) dis­
placements are in the fonn 

III = VllcosnesinA~; VI = Vo .. in nO sin A~ 

WI = IVII cosnO cos ).~ 

where Vo, V.h and Wo are constants. 
The equations for the nonshallow (or nonsi mph tied) Donnell shell 

theory are' 

where RAJ = V - u, 6. The Timoshenko shell theory2 has the ad­
ditional tenn -N;(v. Hz + u. ,) in the first.equation, and the ad­
ditional tenn RN/v. u in the second equation. We have denoted 
by R the mean shell radius and by p the absolute value of the 
external pressure. Notice that the external pressure p would give 
Nil = 0 and Nil = - pR and the axial compression P would 
gi~e N2 = -p1(2rr R) = - pS R. where S is the load interaction 
parameter, defined in Eq. ( 13). 

In tenns of the equivalent propeny constants 

the coefficient tenns in the homogeneous equations system that gives 
the eigenvalues are 

all = CnA: alC = (C:.l + C-,-,)nA 

Notice that in the preceding fonnulas we have used the curvature 
expression KzO = (v, z - u. zH)/R for both throries. 

Then the linear homogeneous equations system that gives the 
eigenvalues for the Timoshenko shell fonnulation for the case of 
combined axial compression P and external pressure pis: 

(all + pR).,)Vo + (al2 + pRnA) Vo ~ alJ Wo = 0 (A I) 

(12IVO + (an + P(A2/2rr») \-(1 + U:.l Wo = 0 (A2) 

[a31 - P(A2/2rr) - p(n
2 

- I)]Uo + a.l' K + a.lJ Wo = 0 (A3) 
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For the Donnell shell formulation, the additional term in the co­
efficient of Vo in Eq. (A2) is omilled, i.e., the coefficienl of Vo is 
only au, and the addilionalterms in the coefficienls of Uo and Vo in 
Eq. (A I) are also omilled, i.e., the coefficient of Uo is only all and 
the coefficient of Vo is only a12' The eigenvalues (for a given load 
interaction S) are naturally found by equating to zero the determi­
nant of the coefficients of Un, Vo, and Woo Notice that the axial load 
P is expressed in terms of the external press:';e p through lhe load 
inleraction parameter S defined in Eq. (13). 
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