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Abstract. The effect of the end conditions, i.e. clamped-clamped vs. simply-supported ends on the initial post-
buckling and growth behavior of delaminations in plates is studied. The study does not impose any restrictive
assumptions regarding the delamination thickness and plate length. First, a closed form solution for the mode
mixity, energy release rate and deformation quantities is derived for the case of a clamped-clamped delaminated
plate, which complements the already existing solution for a delaminated simply-supported plate. A perturbation
procedure is followed, which is based on an asymptotic expansion of the load and deformation quantities in
terms of the distortion parameter of the delaminated layer, the latter being considered a compressive elastica. The
additional complication in the clamped-clamped case arises because now the amplitude at the clamped end needs
to be expanded in terms of the distortion parameter of the delaminated part, in addition to the amplitude at the
common section and the distortion parameter of the base plate. The effects of the end conditions on the growth
behavior are found to depend on the relative location of the delamination through the thickness. For the same
plate length and thickness and the same delamination length and applied strain, delaminations located closer to
the surface exhibit nearly the same energy release rate and mode mixity either in a clamped-clamped or a simply
supported configuration. However, in delaminations located further away from the surface, for the same applied
strain, the energy release rate is larger and there is-also a higher mode Il component in the simply-supported case.
Moreover, the mid-point transverse displacement of the delaminated layer as well as that of the substrate part, is
larger in the simply supported case. The same major trend that has been observed in the simply supported case, i.e.
the increased growth resistance of the delaminations located near the surface relative to the ones located further
inside the plate, is also observed in the clamped-clamped case.

1. Introduction

Fiber reinforced composites are widely used in aircraft structures due to their high specific
strength. Composite plates can be made by bonding individual layers containing unidirec-
tional fibers. Low-velocity impacts and manufacturing defects lead to local debonding, which
has been referred to as delamination, These are essentially interface cracks. In the presence
of delaminations, these materials may work well under tension; in the zones of compres-
sion, however, delamination buckling can occur. As a consequence, structural elements with
delaminations under compression suffer a degradation of their stiffness and buckling strength
and potential loss of integrity from possible growth of the interlayer crack. Besides strength,
delaminations can influence other performance characteristics, such as the energy absorption
capacity of composite beam systems [1].

Delamination buckling in plates under compression has received considerable attention
and numerous contributions have addressed related issues in both one-dimensional and two-
dimensional treatments, e.g. [2—7]. However, although the critical point can be fairly well
determined and has been extensively studied, limited work has focused on the postbuckling
behavior, which ultimately governs the growth characteristics of the delamination.
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Chai, Babcock and Knauss [2] presented a one-dimensional model by assuming essentially
a delamination in an infinitely thick plate. In this model, which has also been called the ‘thin
film’ model, the unbuckled (base) plate is assumed to be subject to a uniform compressive
strain. In the general case, the finite plate length and thickness is expected to influence the
bifurcation point and post-critical behavior of the delamination and subsequently its growth
characteristics. An additional influence may also arise from the end fixity conditions of the
base plate. To this extent, Simitses et al, [3] studied the critical load for a delamination of
arbitrary thickness and size in a finite plate; their results showed a range of critical load
vs. thin film load ratios, depending on delamination and base plate dimensions, as well as
base plate end fixity (simply-supported vs. clamped). Concerning the post-critical behavior
of delaminations of arbitrary size, Kardomateas [8] provided a formulation for studying the
postbuckling behavior by using elastica theory for representing the deflections of the buckled
layer; this work resulted in a system of nonlinear equations rather than closed form expressions.
The post-critical behavior was also studied by Sheinman and Adan [9] through a high-order
kinematic model, with the nonlinear differential equations solved by Newton’s method and a
special finite-difference scheme. .

In a recent paper, Kardomateas [10] studied the initial postbuckling behavior of general
delaminated composites (i.e. with no restrictive assumptions on the delamination dimensions)
by using a perturbation procedure based on an asymptotic expansion of the load and defor-
mation quantities in terms of the distortion parameter of the delaminated layer, the latter
being considered a compressive elastica. The analysis lead to closed form solutions for the
load versus applied compressive displacement and the near tip resultant moments and forces.
This work assumed simply supported ends because the value of the amplitude variable at the
supported end is fixed and this simplifies the analysis.

The growth behavior for the simply-supported case was studied by employing the bimaterial
interface crack solutions for the mode mixity and the energy release rate in terms of the
resultant moments and forces, as derived by Suo and Hutchinson [11]. These relations are
actually simplified because the material is assumed homogeneous. The same relations are
used in the present study for the clamped-clamped case since once the initial postbuckling
behavior is determined the resultant moments and forces at the common section are known.

The formulation presented hereby is a closed form solution, hence results can be produced
for a variety of configurations with minimum effort. Alternative numerical (finite element)
strategies have been pursued to investigate buckling induced delamination growth such as
by Nilsson and Stordkers [12]. These detailed finite element studies can provide answers to
some of the more complex questions, such as the effect of a general anisotropy (rather than
pure orthotropy), and possible contact effects that may arise after large amounts of growth
and applied strain, and which cannot be handled by the present formulation. Moreover, they
can be used to solve the more complex two-dimensional configurations. A numerical study
such as that by Nilsson and Stordkers [12] could also provide improved estimates for the
delamination tip stress intensity factors by relaxing the restrictive assumptions in the interface
crack solutions of Hutchinson and Suo [13], which are asymptotic ones for semi-infinite
cracks.

Hence, in this paper, the initial postbuckling behavior of clamped-clamped delaminated
composites (with no restrictive assumptions on the delamination dimensions) is studied by
using a perturbation procedure based on an asymptotic expansion of the load and deformation
quantities in terms of the distortion parameter of the delaminated layer, the latter being
considered a compressive elastica. The additional complication in the clamped-clamped case



Growth behavior of internal delaminations 51

20 K b 4

Delaminated
Part

Subslrate Part

e

2L 5

Figure I. Definition of the geometry. A clamped-clamped delaminated beam/platc.

relative to the simply-supported case arises because now not only the amplitude at the common
section, but also the amplitude at the clamped end, as well as the distortion paremeter of the
base plate, need to be expanded in terms of the distortion parameter of the delaminated part.
This is because the value of the amplitude variable at the clamped end has no longer a constant,
fixed value; it is rather set by the zero slope condition at this end.

The present analysis will lead to closed form solutions for the load versus applied compres-
sive displacement and the near tip resultant moments and forces. Subsequently, the bimaterial
interface crack solutions for the energy release rate and the mode mixity in terms of the
resultant moments and forces, as derived in [11] will be employed to study the growth
characteristics of the delamination in the clamped-clamped case. Results for the growth char-
acteristics for a range of relative delamination thicknesses will be produced and compared
with the corresponding ones for the simply-supported case.

2. The initial postbuckling behavior for clamped ends

Referring to Figure 1, consider a plate of half-length £ (and unit width) with a through-the-
width delamination of half-length ¢, symmetrically located. The delamination is at an arbitrary
position through the thickness 7'. Over the delaminated region, the laminate consists of the
part above the delamination, of thickness h referred to as the ‘delaminated’ part, and the part
below the delamination, of thickness = 1" — h, referred to as the ‘substrate’ part. The
remaining, intact laminate, of thickness 7" and length b = I, — (, is referred to as the ‘base’
plate. Accordingly, the subscript ¢ = d, s, b refers to the delaminated part, the substrate or the
base plate, respectively.

The solution in [10] is based on considering the buckled configuration of the delaminated
layer as part of an inflectional elastica with end amplitude ®, and distortion parameter €. At
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the critical state, the end amplitude is @2. Suppose that in the slightly buckled configuration,
¢, can be expanded in the form:

By = 0%+ ¢lVe + ¢ + O(?). 1)

Then the end rotation at the common section § is given by expanding the relevant expression
[14] in Taylor series in terms of £ (notice that at the critical state #° = 0)

0 = (sindy)e — 5;(sin @ cos? Pg)e + - -

(sin®%)e + (cos @2)@6,(1')52

(12
+ (COS (b3)¢&2) = (Sil’l (1)2)—'{2— = 2L4 sin @2 cos? (t’g 53 s
= (e + 022 L 93 L o). 2)

Due to the continuity condition, @ is the same for both the delaminated and substrate parts as
well as the base plate.

The asymptotic expansion for the end moment M, is similarly found by substituting (1)
into the relevant expression [14] and subsequently expanding in Taylor series (again Mg =
0):

My e y by (1 sinZ<I>d) 3
By = (Pgcos Py)e + 16 \3 2, (cos@y)e” +
y4
= D_(Mj‘)e+A/ff)szﬂuf)é) +0(eY), (32)
d

where Dy = ERY/ [12 (1 — uz)]. is the bending stiffness, and

e ey
P =0bcossl  “pt = (cosad -~ sinad)el @)
et o,

D’i— = (cos fbg — @2 sin fI?S)gbc(iz) — | sin (bg - 7(1 cos @2 ¢L(il)2

3 299

+:Iﬁ 1 sianbg
16

) (cos ®9). (3¢c)

Likewise, the axial force Py and the flexural contraction f; can be found in an asymptotic
expansion form.

Although the substrate part and the base plate undergo moderate bending with no inflection
point, we may also use the elastica theory to describe their (nonlinear) deformation; in this
case the inflection points are outside the actual elastic curve. For the substrate part, we have
to expand not only the amplitude ®,, but also the distortion parameter o in a perturbation
series with respect to the distortion parameter of the delaminated layer €

2, = 80+ ¢{e + ¢{7e* + O(<?), Ga)
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o— rl'gl)s + a.(sz)ez + rrg3)£3 + 0(54). (4b)

The base plate in this previous work [10] was assumed to be simply supported, so at the
simply-supported end, the amplitude ® = &, = —m /2, and at the common section ® = ®,,.
The amplitude at the common section, ®; and the distortion paremeter of the base plate a;
were expanded in terms of the distortion parameter of the delaminated part . This simplifies
the problem considerably and for this reason the assumption of simply-supported ends was
adopted in the initial work of Kardomateas [10]. However, for a clamped end, ®,, is determined
by the condition of zero slope, which introduces an additional complication in the problem
formulation, in the sense that ®. should now also admit an asymptotic expansion.

Therefore, not only the amplitude at the common section ®3, but also the amplitude at the
clamped end ®., as well as the distortion parameter of the base plate, a;, are now expanded
in terms of the distortion parameter of the delaminated part €

By = Y + qﬁl(,])e + ¢§2)52 + 0(&?), (5a)
d, = 8 + Ve + ¢Pe? + 0(e), (5b)
o) = aél)a + agz)sz o+ a'g})a} + 0(eh). (5¢)

The rotation at either the common section 8 or the end 6. is given by expanding the
relevant expression for the slope from Britvek [14] in Taylor series in terms of the distortion
parameter of the base plate o as follows:

91: — <Sin (1)1 _+. M) ap _|._ R(@t)ag + x Bgw
(bb = (I’c
= 051)5 + 052)52 + 91(3)53 +0(eh), i=b,e, (6a)

where R(®;) is defined by

7 cos Py, — cos P, 3 cos ®y — cos b,

R(®;) = (sin2®, — sin2®,)

T 48 B, -0, 32 (B D,)?
1 ®, — cos B, \3 :
. (%) — 2 sin % cos? @Y. (6b)

Substituting (5) into (6) gives explicit expressions for the 91(1), 92(2), 01(3), etc. It is helpful
to define the quantities 3, (., as follows

cos Y — cos 32

B; = sin®) 4+ W0—0 § =l e, (7a)
Also define &, and ., by
By cos $? Be cos ¢?
§ = — = ; e = + ) (7b)
®9 — ®0 2 3 — BY 2

Then the first order rotations are

o) = fiof?, i=b,e (82)
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and the second order rotations are

(1)
0 = [(cos 8?)p") + %l o{V 4 gia®, i=be. (8b)

After some algebraic manipulation, the third order rotation at the common section is found
as follows

ee — 3 ¥ —(1)2
o _ [(Cog a0 %TO% _ (sind?) P _
| (1)2 1)2
oAb e ), Gl +d; "
(q—)g B ¢0>2 ¥ (‘1’8 i (1)9)

+ [(cos @9)p!") + %} o 4 giaf + (@)l

1 =b,e. (8¢c)
Concerning the end moment My, Britvek [14] gives the following expression

M
oy _ = (®p — D.) (cos Pp)ap

Dy
1 1sin2®y — sin2d,
L = ... b £ Y s UPEReS
+16 (@6 — ) (3 g 3, _ 0. ) (cosPp)ag + - --. (9a)
For convenience, define
g = cos ) — (rp% - rb?) sin 39, (9b)

then use of (5) gives the following asymptotic expansion (again ﬂ,'[,f’ =0)

bM, b (1) (2) 2 (3),3 4
S (MY + 1P + mVe?) + 0(<h, ©c)
where
b.LV[(l) . 1
M (2)
P {0951(,” — (cos <bg)¢>£l]] oV + <q>g - ‘1’9) (cos 9)af, (e)
Dy
and the third order moment is
(3)
bM” = ((I)Q - (,b?_) (cos @O) [qq‘>b — (cos ‘1’2)4’9)] O’e(,z)
Dy

+[q¢£ — (cos 8¢ — ¢! (¢>b — ¢! )sm‘b"

9
- (@2 - (I??) (cos (I)g)bT} rxl(,[)

1 1sin2®? — sin26° , 03
+15 (85 — 82) (5—5 @é_fpo )(costﬁ?)aé)- 9
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Likewise, the axial force at the base plate (which is also the applied force) is given by

2
"L @ e @ -y
b
1 Lsin?,(_bb — sin2®, i (cos By — cos <I)€>2 2
8 16 by — P, 2 P, — @, b
b2
=5 (P°+ PUe 4+ PDe?) 4 O(e?), (10a)
where
BP0 0 50)\2 L 0 _ 50) (4D
b"P7 _ re0 _ 40)2. _ _ 00 (4D _ 4
5= (89— 20)%; o (@8 — @) (43" - 4LV}, (10b)

and the second order force 1s

»2pPQ)

o = (4 - o) 42 (98 - 08) (4 - o)

8 16 &) — a0

2
1 { cos ‘I)g — cos ®9 (1)2
o D BRI NS Ce ) (10
2 ( 39 — 0 % S

Finally, the flexural contraction f; between the clamped end and the common section is

>2 {1 1 sin2®Y — sin 280

, b 1 sin2®; — sin2®, cos By — cos @, \ 2
f”zill'i B, — &, ( B, — @ ) o
) e e
= P2 4 oY), (11a)
where
) _ bl 1sin2®) —sin24? 5 [ €08 P9 — cos Y ? 02 (11b)
g 2 90— 90 3 — 30 L

Therefore, in the case of clamped ends, additional quantities to be determined (versus the
simply-supported case) are the @0, ¢£” and ¢£3),

Having obtained the asymptotic expressions for the force and deformation quantities, we
shall discuss the formulation of the equilibrium and compatibility requirements that will ulti-
mately define the nonlinear post-critical path. Force and moment equilibrium at the common
section require

Py+P,—P=0, (12a)

" h
Mg+ Ms+ My, — P, E+P‘9; = 0. (12b)



56  G.A. Kardomateas and A.A. Pelegri

The deflections of the delaminated and substrate parts should be geometrically compatible.
Thus, a second condition necessary for a solution involves the compatible shortening of
the delaminated and substrate parts, which consist, in turn, of the compressive and flexural
shortening

<fd '16) (fs + 2f[§) + 07T = 0. (13)

As the compressive load P is applied, the plate remains flat and a primary state solution
(pure compression) is characterized by PO = POT/h and P? = P9 H /h, which gives from
(10b)

(14a)

b [D4T
b

(1)

Moreover, the first order zero slope at the clamped end 6.’ = 0 gives from (8a):

()0 — (¢ 0

B, = sin®° + % =, (14c)

Although determination of the critical point is not a primary objective of this paper and
the buckling analysis has been thoroughly carried out in other works, e.g. [3], we shall briefly
describe the equations for the critical point (in terms of ®9 ;) for the sal\e of completeness,
and because the formulation for the initial postbuckling naturully follows that for the critical
point.

(1)

By equating the first order rotation at the common section, we obtain a5 ' and a( )

(1) sin tﬁg (1) _ sin ‘I)g,_
_ ; ol = 5 d

b
Writing the moment equilibrium (12b) and the geometric compatibility (13) for the first
order terms, and eliminating the quantity [PCEI)H - s(l)h} leads to the characteristic equation,

= 14d
sin $0’ (14d)

for the determination of @2

o o\ cos®)  EThH
(2§ - 9?) AT

Equations (14c) and (14e) constitute a system of two nonlinear equations in (I)S and (I)g.
Notice that ib_f and (I?? are determined in terms of (1)2 and (Dg by use of (14a,b). These two
nonlinear algebraic equations were solved by using Powell’s method [15].

Next, the initial postbuckling behavior for the clamped case is considered.

D, D D
: ei ®Y cos &Y + sin ©J |75@Scol P04 =2

] =0. (l4e)

2.1. FIRST ORDER FORCES

Determination of the first order forces requires determining the five quantities quil), ¢(l)
¢( ) and u( ),
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Force equilibrium, (12a) for the first order terms, i.e.,
PV 4+ P = PO,
and use of the expressions for the first order forces (the expressions for l’(gl) and P{" are

given in [10] and the expression for P(1) is (10b)) gives one equation

8% Dab? () 8 Dby ) ()
o Db€2¢" + 30— 30 D,,ﬁ‘bs + e’ — ¢ (15a)

A second equation is obtained by the condition of end fixity

9> =0,

and by use of (8b), as follows
cos (:DO + _&_ (:‘7(1) - qu(l) O.'(l) 4 HAO{(z) -0 (15b)
e (D(b) - (Dg e @2 N (I')g b b et :

By equating the second order terms in the expressions for the slope at the common section
6\?) (8b) and that of §%) (which is given in [10]) we can find the third equation as follows

—(cos @2)(/5“) + ng(l) + [ cos @) — by - (ogl) a'l()l) + Bbagz) = 0. (15¢)

% ®) — 97° T80 -0 )" '

Furthermore, by equating the slope from the delaminated layer and the substrate at the

‘ . 2) . 1 1) .
common section, we can find an expression for ag(s ) in terms of qb((i ) and ng,. ) in the form

a®) = 748y + 7,8, (16a)

where
cos ® (cos ®9) 0
= ——% =- 3 ’ 16b

74 Sin U’ o sin ®¢ “s {ton)

Next, the moment equilibrium (12b) for the second order terms is

MP + M+ u = 3 [PPH - PO (16¢)
The geometric compatibility (13) for the second order terms gives

) _ ) 4 g@p — [p@p _ p@ g 2
1P = 1O+ 091 = [POh - PPH| o (16d)

Eliminating the quantity [Psfz)h — Pf)H] from (16¢) and (16d) gives the following fourth
linear equation

D .
a6y + apgl) + Tb [—(cos 3ol ol) + gaf V) + (@g = ‘1’9> (cos <I>2)al(,2)J

14 sin 299 14 sin2®9\ | EhH
= | = _ 5 (H2 _ * . d 17
{2 (] 200 )as 2 (1 200 )l a e
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where
D g D ERHT
aj; = Td(cos 39 — 8% sin @) + TS‘bg(cos 3%)y, + (cos Y) T (17b)
D : .
G2 = =5~ [(costi?g — 3%5in 8%)alV) + ®(cos @2)75} ‘ (17¢c)

The fifth linear equation needed to find qb((il), "), o, ¢£1) and al()z) is the first order
geometric compatibility (13) at the common section, which becomes after the expressions
for the first order delamination and substrate forces, and for the first order rotation (these are
given in [10]) are substituted

Dy Dy _ERHT

~F<b2ff¢fi')+g—2¢2h¢g”_ 2 Sin®d. (17d)

The foregoing system of five linear equations, (15a,b,c) and (17a,d), allows finding ¢§1),
gégl), cﬁg”, ¢£1) and 0,{()2) hence the first order forces Pél), PS,(I) and the first order applied force
PO = pi 4 pY),

2.2. SECOND ORDER FORCES

For the second order forces, a procedure similar to the first order leads to five linear algebraic

equations for qﬁ((iz], ¢§2), ¢<(92), ¢§2) and nl(,S). In particular, a second order force equilibrium
(12a)

PP + PP = PO,

together with (10c) for P?) and the corresponding expressions for P‘Ez) and Ps(z) from [10],
gives one linear equation

Dab* o .2) , Dsb* 1o ) 0 &0) (+(2) _
Dbc2§d¢d o Db£2¢s¢s T ((pb_q,e) <¢e _¢b )
2
(68 - ot LIRS :
- 2 ]
e 15in2®) — sin282 [ cos &) — cos BY ? L2
4 8 39— a0 39 — 30 b
_ Dab? A0 ®F (| _ sin2®
2D, |7 8 289
Db* | 1, B9 sin209) 1,
—W{qﬁg) et~ 250 al?| (18a)

A second equation is obtained from the condition of end fixity, i.e.

83 =0,

e
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which, by use of (8c), gives

3
(cos (b? + — ) agl)g‘)(z) B ‘ a(l)qb[(jz) + ﬂeat(,})

80 — oY el a0t

€

(1)2 1)2 (1)2
— __—‘Bb + ’Be ¢(l)¢(l) + (sin¢°)¢>£ ) . EFC’[’r(" ) + £b‘f’£ ) a(l)
(®) - 8927 *° 2 (9§ — 29) ’

{ﬂb(/)ﬁ,” — B!

T0_ 0 (COS‘I’SW@] o) — R(8%)al. (18b)
b e

By equating the third order terms in the expressions for the slope at the common section

for the delaminated and the substrate parts, 60) (these are given in [10]), we can find ag3):

A = 1,67 + 7,62 + 7., (192)

where 74, v are, as in (16b), and v, is given in terms of the following quantities

¢(1)2 1

by = — (J’z_ e cos’ ¢3> sin ®9, (19b)
(1)2

o= — ( 5’2 + ﬁag[)zcos2 @S) alV sin 89 + ¢V cos ®9, (19¢)

as follows
d)d — Y

Te T ing? (oD

S

Moreover, in a similar fashion to the first order forces, by equating the third order terms
in the expressions for the slope at the common section for the delaminated and the base parts

0&3) = 0§3) and using (8c) we obtain a third equation as follows

Be B
—(cos ¢S)¢§2) 4 m@(él)gﬁg) + (cos o) — 30 j¢)0> agl)¢£2) A ﬂbaé”
b € b e

(12 (1)2 (1)2
_ I: ,[f)b 5 ﬁg ¢§,l)¢’,(»l) s (sin(bg) ¢b _ Eede L 3 (fb:)b J gl)
O~ 2 (B — %)
(1) (1
; ePe” — )
- (cosatie + BB o maal”
h e
¢(1)2 C052 @O
— sin ®Y (dT + Td> : (20a)

Now the moment equilibrium equation (12b) for the third order terms is

U+ MO + ul = 4P - PO (20b)
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The geometric compatibility (13) for the third order terms gives

20
EhH’

F3 ) 40T = [Pp)h - Pf)ﬂ] (20c)

Eliminating now the quantity [Psmh - Pf) 11] from (20b,c) gives the following fourth

linear equation for c_b( and (>( )
(Lllc’)((iz) + a12¢g2)
D

where the coefficients ay; and a|, are the same as in the first order problem, (17b,c), and ¢;
is given in Appendix I.

The fifth equation needed to find <;’v&2> and ¢>£2) is the second order geometric compatibility
(13), which becomes after the expressions for the second order forces, and for the second

order rotation (these are given in [10]) are substituted

— B0 H P + &(pghqsg”
Dy

50 T
_ l] ~ sin2d} (] _ sin 207 ) a£1)2+ %qﬁ&”cos‘b%}

pL 7(1)9
/,hw2 o2 4 _sin289\ | H
8Dg 209 2
9% 249 Dyh
yzy Bal [ 810 (N2} s
{ + == 3 (1 20 o 3Dy (20e)

The foregoing system of five linear equations (18a,b) and (20a,d,e) allows finding d>c(iz),

(,.»)E?), <,f>£2), <;">,()2) and uz(?), and hence the second order forces Péz), Ps(z) and the second order

applied force P = [)52) 3 B2,

2.3. DISPLACEMENTS

Once the first and second order forces have been determined for the clamped-clamped case,
the displacements can be found in the same manner as in [10]. For example, the mid-point
deflection of the delaminated layer and that of the substrate part, can be found by integrating
between the mid-point (z = 0) and the common interface (z = £)

Vi D
Wiy = 2sin <9> Z2 (cos B; — 1). (21a)
2 Py

Substituting the asymptotic expansions for the force F; and for the amplitude ¢;, gives the
mid-point displacement of the delaminated layer or the substrate part (¢ = d, s), as in [9], in
the form

wim = wie + wPe? ... (21b)
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Finally, the previous analysis allows finding a direct expression for the applied strain ¢q as
follows

por [Py PYe n
e — 1)
eol L'l‘+[ET+ Eh+20 €
£(2) I"(Z)E Py
dd o 5d = AB . T a2y 2.
+{ it S }5 oo, (22)

3. Delamination growth characteristics

The initial postbuckling solution that has just been briefly described will now be used in
conjuction with an interface crack solution. For the special case of a ‘thin film’ delamination,
a fracture mechanics solution for the basic one-dimensional problem was given in [16]. The
stress intensity factors or energy release rates depend on the ratio of delamination thickness
over length h/{. For h/{ — 0, these reduce to

, Mp\ 1 : Mny 1
i s <c[ By e csz) VR K1 = (C}Pm + C4T> AV

where P,,, and M,, are the force and moment at the mid-point of the delamination and
c; = 0.434, ¢y = 1.934, c3 = (.558, cq = —1.503.

These solutions were also used in the three-dimensional fracture analysis of thin-film debond-
ing by Chai [17].

However, unlike these ‘thin film’ delamination papers, our present study imposes no
restrictive assumptions on the relative delamination thickness or length. To this extent, we
shall use the interface crack solutions summarized in [13], in the same manner as for the
simply-supported case [10]. For a general bimaterial interface crack, these solutions depend
on the Dundurs [18] parameters, &, /’3 and the bimaterial constant £. For the homogeneous
system under consideration, & = 3 = £ = 0. Therefore these formulas will be presented with
the homogeneous material assumption taken into consideration.

For the plane-strain interface crack shown in Figure 1, the energy release rate ' is

1—v | P M*? P*M*
e | o+ e i}
4u Ah 1h v/ ATh2

¥

siny |, (23a)

where 1 is the shear modulus. P* and M ™ are linear combinations of the loads from the
previous postbuckling solution
My

h, 7

P =P~ C P =0 (23b)
M* = My — C3M,. (23¢)

Moreover, A and I are positive dimensionless numbers and the angle - is restricted such
that v < %vr. These quantities as well as C, C, and C3, depend only on the ratio /A .
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The preceding formula does not separate the opening and shearing components. Instead,
the following two expressions give the mode I and mode II stress intensity factors

23

1 P* J
K :—[—cosu)+—sinw+ '}, 24a
=7 v et e ) (240
Ky = — [—)x sinw — Ll cos(w + )] (24b)
"= Van VIR L

Accurate determination of w, which depends only on 7 (for a fixed set of Dundurs constants
@, 3), requires the numerical solution of an integral equation and has been reported in [11].
The extracted w, however, varies slowly with 1 in the entire range 0 < n € 1, in accordance
with the approximate formula [13]: w = 52.1° — 3°7. The mode mixity is defined by

¢ = tan~(Ky7/Kr). (24c)

Substituting the asymptotic expressions for the forces and moments from the postbuckling
solution already presented, gives

Pr=ePMygp®yp.... Mz=eMOilpM@ ... (25a)

where the first and second order terms (i.e., k = 1, 2) are (notice that the zero order quantities
in the expression for P* cancel out)

Pk = by — o 7 M,", (25b)
o W _ Bk
M = My — M, (25¢)

In the previous relations, the first and second order forces and moments ng), P®), Mrgk),
M,fk), k = 1,2 have already been found from the initial postbuckling solution described thus
far.

Now the energy release rate and the mode I and II stress intensity factors can be written in

the form

G =¢e*G? +360) ..., (26a)

Kyn = sI,('l("I% + 521(1(,2") S RRE (26b)

4. Discussion of results

The limiting, closed form solution for a very large value of the ratio A /T, i.e. for a delamination
in an infinitely thick and infinitely long base plate subjected to an applied strain gq, is
represented by the thin film model of Chai et al. [2]. Hence, by its assumptions, this solution
is insensitive to the end conditions. The energy release rate predicted is expressed in terms
of the Euler's critical strain for the delaminated layer ., (treated as a column with built-in
ends)

72h?

G(Eo,ﬁ) = %Eh(l — 1/2) (g —eer) (e + 360«,); Eer = m (27a)
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Figure 2. Energy release rate, (2G// ER)10°, as a function of the applied strain for both the clamped-clamped (C-C)
and the simply-supported (5-S) cases.

For this model, the mode mixity is given by the following relation [13]

4 cost i 4 L
ol = co-w + V3¢ sinw : S [_ (5_0 3 1)] . 27b)
—4sinw + \/§£ cosw 3 Nty

For an illustration of the results from the previous analysis, consider a delaminated plate
with £ = 10GPa and » = 0.3 and delamination and plate length £ = 20mm and L =
60 mm, respectively, and delamination thickness A = 0.4 mm. These dimensions correspond
to our specimen dimensions (a width of 10 mm has also been considered and is appropriately
accounted for in the results). To keep the critical strain e, constant, we keep the delamination
length and thickness constant and vary only the plate thickness to get a varying ratio h/T’;
this would ensure the same thin film model solution.

Figure 2 shows the energy release rate (2G'/ )10, as a function of the applied strain for
h/T = 0.10and h/T = 0.20 for both the clamped and simply-supported cases. It is seen that
for the same applied strain, the effects of the end conditions are found to depend on the relative
location of the delamination through the thickness. Specifically, delaminations located closer
to the surface, h/T = 0.10, exhibit nearly the same energy release rate either in a clamped-
clamped or a simply supported configuration. However, in delaminations located further away
from the surface, h/T = 0.20, there is a marked difference, the energy release rate being
larger in the simply-supported case. The same major trend that has been observed in the
simply supported case, i.e. the increased growth resistance of the delaminations located near
the surface relative to the ones located further inside the plate, is also observed in the clamped-
clamped case. Specifically, a larger energy release rate is found to be present during the initial
postbuckling phase for the delaminations of increasing ratio of delamination thickness over
plate thickness, h/T = 0.20 (i.e. delaminations further away from the surface) in comparison
with the ones closer to the surface, h/7T = 0.10. Experimental results on clamped delaminated
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Figure 3. Mode mixity 4" versus applied strain for both the clamped-clamped (C-C) and the simply-supported
(S-S) cases.

plates that have been previously reported by Kardomateas [19-20] confirm clearly the reduced
growth resistance of the ‘large ratio’ (deeply located) delaminations, versus the ‘small ratio’
ones.

Notice that in the beginning, i.e. for relatively small applied strain, the curves tend toward
the thin film solution for a decreasing ratio h /T (as expected); however as the applied strain is
increased, the thin film model solution rises at a fast pace and predicts a much higher energy
release rate.

Another very interesting result is the variation of the mode mixity (mode II versus mode
I) at the delamination tip. Figure 3 shows the mode mixity ¢ versus applied strain. Again, it
is seen that delaminations located closer to the surface, A/7" = 0.10, exhibit nearly the same
mode mixity either in a clamped-clamped or a simply supported configuration. However,
in delaminations located further away from the surface, A/7T = 0.20, there is a noticable
difference; a higher mode II component exists in the simply-supported case.

The major trend of a higher mode I component in the delaminations located further away
from the surface, A/7 = 0.20, than the ones closer to the surface, h/T = 0.10, is again
observed in the clamped-clamped case. Notice that the thin filrn model predicts a higher mode
II component in all cases and that the value of the applied strain at which the delamination tip
loading becomes pure mode I (¢ = —90%) is at Eg/8e = 7.55.

Figure 4 shows the mid-point deflection of the delamination wy,, /h and Figure 5 shows
the mid-point deflection of the substrate part wy,, /h both as a function of the applied strain.
The mid-point transverse displacement of the delaminated layer as well as that of the substrate
part, is clearly larger in the simply supported case for A/7 = 0.20, i.e. for delaminations
located further away from the surface, but nearly the same for delaminations near the surface,
h/T = 0.10. The difference between the clamped-clamped and the simply supported cases
for h/1" = 0.20 is particularly noticeable for the mid-point displacement of the substrate
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Figure 4. Mid-point deflection of the delamination wy,» /h as a function of the applied strain
clamped and the simply-supported cases.
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Figure 5. Mid-point deflection of the substrate part ., /h versus applied strain for both the clamped-clamped

and the simply-supported cascs.

(Figure 5). Both curves for both end conditions show a trend toward the th

in film solution for

a decreasing ratio h/T' and the mid-point deflections are always higher for a larger value of

h/T (delaminations located further away from the surface).
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Appendix [

The constant ¢ in (20d) is given as follows (it includes terms from the expressions of Mf),
MP and M)

| =Gt s + e+ e, (A1)
where
‘bg 0 .0\ ()2 Q)g of1 SiﬂZ‘I’?
Clg = (7 cos @y + sindy 9){(,) ~ T <0 i 37 249 L, (A2a)

0 50 ; 0
Cls = agl) K&cos @ + sin <b8) ¢§‘)2 - %cos 39 (l — szq}s) agm]

2 3 280
- (cos 4’2 — <I)g sin (I)?) ¢>§1)ag2) - 751)2 cos QS, (A2b)
cip = — [q&,(,l) — (cos ¢g)¢>£l)] a,()z)

(1)2
+ {o&,ﬁl) (q’)l()[) " @S}l)) sin ® + (@2 - @8) (cos @8)(/)“7] a,()l)

ol (5 Rmep™,oe
and
e Ksirﬁg@g % g 2‘]’.?) f’(‘:g# 4 (1 = Si;;§g> MONOMN
5 (““TZ(}‘” 2008 2<r>3) jgé . j’} =2 (A20)
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