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Abstract. The effect of the end conditions, i.e. clamped-clamped vs. simply-supported ends on the initial post
buckling and growth behavior of delaminations in plates is studied. The study does not impose any restrictive 
assumptions regarding the delamination thickness and plate length. First, a clolicd f rm solution for the mode 
mixity, energy release rate and deformation quantities is derived for the case of a clamped-clamped delaminated 
plate, which complements the already existing solution for a delaminated simply-supported plate. A perturbation 
procedure is followed, which is based on an asymptotic expansion of the load and deformation quantities in 
terms of the distortion parameter of the delaminated layer, the latter being considered a compressive elastica. The 
additional complication in the clamped-clamped case arises because now the amplitude at the clamped end needs 
to be expanded in terms of the distortion parameter of the delaminated part, in addition to the amplitude at the 
common section anel the distortion parameter of the base plate. The effects of the end conditions on the growth 
behavior are founel to depend on the r lative location of the delamination through the thickness. For the same 
plate length and thickness and the same delamination length and applied strain, delaminations located closer to 
the surface exhibit nearly the same energy release rate and mode mixity either in a clamped-clamped or a simply 
SUppOI1cd connguration. However, in delamlnations located further away from the surface, for the same applied 
strain, the energy release rate is larger and there is,also a higher mode II component in the simply-supported case. 
Moreover, the mid-point trans crse displacement of the delaminated layer as well as that of the substrate part, is 
larger in the simply supported case. The same major trend that has been observed in the simply supported case, i.e. 
the increased growth resistance of the delaminations located near the surface relative to the ones located further 
inside the plate, is also observed in the cl mped-clamped case. 

1. Introduction 

iber reinforced composit s ar widely u ed in aircraft structures due to their high pecific 
strength. Composite plates can be made by bonding individual layer containing unidirec
tional fiber. Low-velocity impact and manufacturing defects lead to local debonding, which 
has been reD rred to as d lamination. These are essentially interface cracks. In the presen e 
of delaminations, these materials may work well under tension; in the zones of compres
sion, however, delamination buckling can occur. As a consequence, structural elements with 
delaminations under compression uft I' degradation of th ir stiffness and buckling str ngth 
and potential Joss of integrity from possible growth of the interlayer crack. Besides strength, 
delaminations can inAuenc other performance characteristics, such as the energy absorption 
capacity of composite beam systems [1]. 

Dela! ination buckling in plates under compression has received considerable attention 
and numerous contributions have addres. ed related issues in both one-dimensional and two
dimensional treatments, e.g. [2-7]. However, although the critical point can be fairly well 
determin d and has been extensively studied, limited work has focused on the postbuckling 
behavior, whkh ultimately governs the growth characteristics of the delamination. 
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Chai, Babcock and Knauss [2J presented a one-dimensional model by as, uming ess ntially 
a delamination in an infinit ly thick plate. In this model, which has also been called the 'thin 
film' m del, the unbuckled (base) plate is assumed to be subject to a uniform compressive 
strain. In the gen ral case, the finite plate length and thickness i expe ted to influence the 
bifurcation point and po t-critical behavior of the delamination and subsequently its growth 
characteristics. An additional influence may also ari e from the end fixity conditions of the 
base plate. To this extent, Simitses et al. [3] tudied the critical load for a delamination of 
arbitrary thickness and size in a finite plate; their results showed a range of critical load 
vs, thin film load ratios, depending on delamination and base plate dimen ion, as well as 
base plate end fixity (simply-supported vs. clamped). Concerning the post-critical behavior 
of delamination' of arbitrary size, Kardomateas [8] provided a formulation for studying the 
postbuckJing behavior by using ela 'tica theory for repre enting the deflections of the buckled 
la er; this work resulted in a y tem ofnonlinear equations rather than closed form expres ions. 
The po't- ritieal behavior was al 0 studied by Sheinman and Adan [9] through a high-order 
kinematic model, with the nonlinear differential equations solved by Newton' method and a 
special finite-difference heme. 

In a recent paper, Kardomateas [10] studied the initial postbuckling behavior of general 
delaminated composit s (i.e, with no restrictive assumptions on the delamination dimension) 
by using a perturbatjon procedure based on an asymptotic expan ion of the load and defor
mation quantities in t rms of the distortion parameter of the delaminated layer, the latter 
being considered a compressive ela tiea. The analysis lead to cia. ed form olutions for the 
load verSl1 applied compressive displacement and the near tip resultant moments and forces. 
This work as l1med simply supported ends because the value of the amplitude variable at the 
supported end i fix d and thi implifies the analy is. 

The growth behavior forthe simply-supported case was tudied by employing the bimaterial 
intetface cra k solutions for the mode mixity and the energy release rate in terms of the 
resultant moments and fore s, a derived by Suo and Hutehjnson [11]. These relation are 
actually simplified because the material is assumed homogeneous. The same relations are 
used in the present tudy f r the clamped-clamped case sinee once the initial postbuckling 
behavior is determined the re ultant moments and forces at the common s ction are known. 

The formulation presented h reby is a closed form solution, h nce results can be produced 
for a variety of configurations with minimum effort. Alternati e numerical (finite element) 
strat gies b b en pur ud to inve, tigate buckling induced d lamination growth such as 
by Nilsson and StorMcers [12"). These detailed finite element studies an provide answers to 
some of the more c mplex questions, such as the effect of a general anisotropy (rather than 
pure orthotropy), and pos ible contact effects that may ari e after large amounts of growth 
and applied strain, and which cannot be handled by the present formulation. Moreover, they 
can be used to solve the m re c mplex two-dimensional onfigurations. A numerical study 
sucb a that by Nils on and St rakers [12] could also provide improved e timates for the 
delamination tip stress intensity factors by relaxing the restrictiv assumptions in the interface 
crack solutions of Hutchinson and Suo [13], which are asymptotic ones for, emi-infinite 
cracks. 

Hence, in this paper, the initial postbuckting behavior of clamped-clamped delaminated 
compo. ite (with no re trictive assumption. on the delamination dimensions) is studjed by 
u 'ing a perturbation procedure based on an asymptotic expansion of the load and dd rmation 
quantili S in terms of the distortion param ter of the delaminated layer, the latter being 
consid red a compres ive elastica. The additional eomplicati n in rhe clamped-clamped case 
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Figure J. Definition of the geomctry. A clamped-clamped delaminated beam/platc. 

relati ve to the imply-. upported case arises because now not only the amplitude at the common 
section, but also the amplitude at the clamped end, as well as the distortion par meter of the 
ba e plate, need to be expanded in terms of the di tortion parameter of the delaminated part. 
This is because the value fthe amplitude variable at the clamped end bas no longer a constant, 
fixed value; it is rather set by the zef slope condition at this end. 

The pres nt nalysis will lead to losed form solutions for the load versus applied compres
sive displacement and th n ar tip resultant moments and forces. Sub equently, the bimaterial 
interface crack solutions for the energy release rate and the mode mixity in terms of the 
resultant moments and forces, as derived in [11] will be employed to . tudy the growth 
chara eristics of the delamination in the clamped-clamped case. Results for the growth char
acteristics for a range f relative delamination thicknesses will be produced and compared 
with the corresponding ones for the simply-supported c e. 

2. The initial postbuckling behavior for clamped ends 

Referring to Figure 1, consider a plate of half-length L (and unit width) with a through-the
width delamination of half-I ngth e, symmetrically located. The delamination is at an arbitrary 
position through the thickness T. Over the d laminated region, the laminate consists of the 
paft above the delamination, of thickness h referred to as the 'delaminated' part, and the part 
b low the delamination, of thickness H = T - 11, ref rr d to as the' ub trate' part. The 
remaining, intact laminate, of thickness T and length b = L - e, is referred to as the 'base' 
plat. Accordingly, the ubscript i = d, 8, b refers to the delumtDated part, the substrate or the 
ba plate, respectively. 

The solution in [10] is based on considering the buckled confi uration of the delaminated 
layer as part of an inflecti nal elastica with end amplitude i.Prl and di tortion parameter c, At 
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the critical state, the end amplitude is 1'~. Suppose that in the slightly buckled configuration, 
<!>d can be expanded in the form: 

(1) 

Then the end rotation at the common section eis gi ven by expanding the relevant expression 
[14) in Taylor series in terms of [ (notice that at the critical state eO = 0) 

e (sin<Pd)[ - 2~(sin1'dcos2<T>d)c;3 +... 

(sin1'~)c; + (cOS1'~)1>~I)c;2 

¢;(1)2 ]
+ (cos 1'~)¢;~2) - (sin (j)~) + -21

4 sin 1'~ cos2 1'~ c;3 +...[ 

e(I)E +e(2)t2 + e(3)c;3 +0([4). (2) 

Due to the continuity condition, e is the same for both the delaminated and substrate parts as 
well as the base plate. 

Th asymptotic expansion for the end moment Md is similarly found by substituting (1) 
into the relevant expression [14J and subsequently expanding in Taylor series (again M3 = 

0): 

(3a) 

where Dd = Eh3j [12 (I - 1/2)]. is the bending stiffness, and 

fM(I) fM(2) 1 
__rL_ = <1>0 cos cJ>0' __d _ _ (cos 1'0 _ <pO sin 1'0)",,( ) (3b)

Dd d d, Dd - d d d 'f'd ' 

(cos (l>~ - 1'~ sin 1'S)¢;~2) - (sin l)~ + ~~ cos 1'~) ¢;~1)2 

+-1'~ (1- - sin 21'~) (cos 'J!
'1i.O)d . (3c)

16 3 2i1?~ 

Likewise, the axial force Pd and the flexural contraction ld can be found in an asymptotic 
expansion form. 

Although the substrate part and the base plate undergo moderate bending with no inflection 
point, we may also use the elastica theory to describe their (nonlinear) deformation; in this 
case th inflection points are outside the actual elastic curve. For the substrate part, we have 
to expand not only the amplitude 1's, but also the distortion parameter as in a perturbation 
series with respect to the distortion parameter of the delaminated layer c; 

(4a) 
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The base plate in this previous work [10] was assumed to be simply supported, so at the 
simply-support d end, the amplitude lP = lP = -1r/2, and at the common ection lP = lPb. 
The amplitude at the ammon section, <Pb and the distortion paremeter of the base plate 0:b 

were expanded in terms of the distort.ion parameter of the delaminated part c:. This simplifies 
the problem considerably and for this reason the assumption of simply-supported ends was 
adopted in the initial work of Kardomateas [10]. However, for a clamped end, <Pe is determined 
by t.he condition of zero slope, which introduces an additional complication in the problem 
formulation, in t.he sense that i.P e should now also admit an asymptotic expansion. 

Therefore, not only the amplitude at the common section <h, but also the amplitude at the 
clamped end il>e, as well as the distortion parameter of the base plate, O:b, are now expanded 
in terms of th di tortion parameter of th delaminat d part c; 

<Pb = <P~ + ¢i1)c; + ¢i
2

)C;2 + 0(C;3), (Sa) 

c]?e = <P~ + ¢~1)c; + ¢F)C;2 + 0([3), (5b) 

O:b = o:il)c; + O:b
2)c;2 + ap)c;3 + 0([4). (5c) 

The rotation at either the common section fh or the end Be is given by expanding the 
r levant expression for the slope from Britvek [14] in Taylor sen s in terms of the distortion 
parameter of the base plate O'b as follows: 

. cos <Pb - cos CP,,) 3 
Bi = ( smlPi+ <Pb-<P O'b+R(<Pi)ab+'" 

e 

Bl 1)[ + B~2)C;2 + BP)[3 + 0([4), i = b,e, (6a) 

wher R( <l>;) is defined by 

7 cos c]?b - cos <Pe 3 cos lPb - cos c»e (. 2"" . 2"" )
R( <Pi) = - - - sm '*'b - sm '*' 

48 <PI> - <l>e 32 (<Pb - <p )2 ee

1 (COSepb - cos<Pe)3 1-.' ",,0 2",,0 
- - .T. if. - 24 sm '*' i cos '*' i . (6b)

3 '*'b-'t"e 

ll(I) ll(2) ll(3) .Substituting (5) into (6) gives explicit expression for the 0i 'Oi 'Oi ,etc. It IS belpful 
La define the quantities fJb' fJe' as follows 

(;. _ .';r,.() cos lP~ - cos ip~
 
), - sm '*', + ip0 _ ip0 ' i = b, e, (7a)
 

be 

Also define €b and (e, by 

fJb cos <pob f3e cos <P~ 
(7b)~b = <po _ <po - -2- . ~e = cPo _ ip0 + -2-' 

b e b e 

Then th 1rst order rotations are 

n(l) = {3./..,(I) ~ - b 
0, . lU.b' • - , , (8a) 
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and the second order rotations are 

(} (2) = [( .;r,.0)..I-(1) + Pe¢~I) - Pb¢~I)] (1) + p. (2) . b 
, COS'f.'t 'f', iJ?0 _ <1>0 ab ,ab , Z = . (8b) 

b e 

After some algebraic manipulation, the third order rotation at the common section is found 
as follows 

(2) (2) (1)2 
ffi. 0)¢(2) + Pe¢e - Pb¢b ( . ffiO) ¢i(COS'l" . - sm"",· --[ ~ t <1>0 _ <1>0 ' 2 

b e 

(1)2 ([)2] _ fh + ,f3c ¢(I)¢(1) + ~e¢e +~b¢b (I)
 

(iP~ - <l?£)2 b e (<l?~ _ <p~) ab
 

(1) (I)](",,0)..1-(1) + Pe¢e - Pb¢b (2) +p' (3) +R(ffiO) (1)3+ [(cos "', 'f', <pO _ <[>0 a b lab 'i', a b , 
b e 

i = b, e. (8c) 

Concerning the end moment Ai. Britvek [l4J giv s the following expression 

bMb 
Db = (<Pb - <peH cos <[>b)ab 

...!... _;r,. (~ ~ sin2c[>b - Sin2<1>e) ( 3+16 (<Pb ""'e) 3 - 2 if?b _ if? co cI>b)ab + .". (9a) 

For convenience, define 

q = cos (T>~ - (q>~ - iPO) sin iP~, (9b) 

then use of (5) gives the following asymptotic expan ion (again M~ = 0) 

b~~b = ~b (M~I)[ + M~2)[2 +MP)[3) +0([4), (9c) 

where 
bM(l)
_b_ _ (,",,0 _ "",0) ( ;r,.o) (I)- ""'b 'I!e cos 'l!b a b ' (9d)

I.r.Jb 

bM~2) = [q ,(I) _ (cos <\>0)..1-(1)] a(I) + (<pO _ <1>0) (coscI>0)a(2) (ge)Db b b 'f'e'b b ebb' 

and the third order moment i 
bM(3)D: = (<p~ - <p~) (cos<P~)a~3) + [q¢~I) - (cosiJ?~)¢~I)] a~2) 

+ [q¢~2) _ (co if>~)¢~2) _ ¢~l) (¢~I) - ¢~I)) siniJ?~ 

¢(1)2] 
- (<t>~ - <t>~) (cos<t>~)+ a~I) 

...!... (ffiO _ .:r-O) (~ _ ~ sin 2<I>Z - sin 2<I>~) ( .,",,0) (1)3 (9f)+ 16 'l!b ""'e 0 0 COS""'b a b .
3 2 <t>b-iJ?e 
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Likewise, the axial force at the base plate (which is also the applied force) is given by 

x [~_ ~ sin2<I>b - sin2<I>e _ ~ (COS([)b - cosC[le)2] 0:2 
8 16 <Pb - 4'?e 2 ([)b - <I>e b 

b2 

- (pO + p{l)[ + p(2)[2) +0([3), (lOa) 
D" 

where 

(lOb) 

and the second order force is 

0 0) 2 [_1 __1 sin 2([)~ - sin 2([)~+ (<P b 
e 8 16 ([)g _ ([)~ 

_~ (COS<I>~ - COSC[l~)2] (1)2 (lOc)2 epo _ 4'?0 O:b'
6 . e 

Finally, the flexural contraction fb between the clamped end and the common section is 

fb = ~ [1 _~ in2C[lb - sin24'? _ 2 (COSepb - coS <1i e)2] o:~ + ...
 
4 2 <1>6 - <I>e . epb - <I>e
 

(11 a) 

where 

.(2) = ~ [1 _ ~ sin 2C[lg - sin 2([)~ _ 2 (cos C[lg - cos ([)~) 2] o:{ 1)2. (11 b)1b 4 2 <I>0 _ <po 1>0 _ cPo b 
b b e 

Therefore, in the case of clamped ends, additional quantities to be determined (versus the 

simply-supported case) are the <I>~, ¢~1) and ¢F), 
Having obtained the asymptotic expressions for the force and deformation quantities, we 

shall discuss the formulation of the equilibrium and compatibility requirements that will ulti
mately define the nonlin ar post-critical path. Force and moment equilibrium at the common 
section require 

pry +{J, - P = 0, (12a) 

(12b) 
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The deflection of he delaminated and substrate parts should be g ometrically compatible. 
Thus, a second condition necessary for a solution involves the compatible shortening of 
the delaminated and substrate parts, which consist, in tum, of the compressive and flexural 
shortening 

(13) 

As the compressive load P is applied, the plate remains flat and a primary, tate solution 
(pure compression) is characterized by pO = PJT/h and p2 = PJII /h, which gives from 
(lOb) 

o OJDdE 
(14a)<1>s = <l>d Dsh' 

(14b) 

Moreover, th first order zero slope at the clamped end ei I) = 0 giv s from (8a): 

. 0 cos <l>~ - cos if>o 
(3(: = sin <t>e + 0 0 = O. (14c)

if>b - <lie 

Although determination of the critical point is not a primary objective of this paper and 
the buckling analysis has been thoroughly carried out in other works, e.g. [3], we shall briefly 
describe the equations for the critical point (in tenns of <1>~) for the sake of completeness, 
and because the formulation for the initial postbuckling naturally follows that for the critical 
point. 

By equating the first order rotation at the common section, we obtain Cl:P) and Cl:~l) 

. ,..0 . ",,0
(1) _ m~d 

Cl:, - . ;FO' Cl: b -~. (14d)(l)_~. 
. sm "i! 

oS 

Writing th moment equilibrium (12b) and the geometric compatibility (13) for the flu 
order terms, and eliminating the quantity [p~l) IT - pJ I) h] leads to the characteristic equation, 

for the determination of <1>~ 

Da 0 ·0 . 0 [D s 0 0 Db (0 0) cos<1>~ EThE]
-e-if>dcosPd+sm<1>d e<I> s cot<1>s+b <1>b-<1>e ~+ 4£ =0. (14e) 

Equations (14c) and (14e) constitute a system of two nonlinear equations in <1>~ and if>~. 
Notice that <1>~ and <1>0 are det rmin dill t rms of <1>~ and <I>~ by use of (14a,b). These two 
nonlinear algebraic equations were solved by using Pow U's method [15]. 

Next, the initial postbllckling behavior for the clamped case is considered. 

2.]. FIRST ORDER FORCES 

Determinationofthefirstorded r..,esrequiresd t rminingth fivequantitie ¢~1),¢~1),¢~1), 
¢~ l) and ab2

). 
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Force equilibrium, (12a) for the first order terms, i.e., 

p(l) + p(l) = p(l)
d s , 

and use of the expressions for the first order forces (the expressions for p(~ I) and pJ I) are 
given in [10] and the expression for p(l) is (10b» gives one equation 

2 2

<])~ D d b ¢}L) + <])~ D s b ¢P) +¢P) _ ¢}L) = 0
 (15a)

4?~ - g>~ D6 f2 d <l?~ _ cI>~ Dbe2 s e b . 

A second equation is obtained by the condition of end fixity 

e(2) = 0 e , 

and by use of (8b), as follows 

<])0 + e) ,},(I) _ (3& ,},(l)] ,(1) +(3 (2) = 0 (15b)cos c <])0 _ <I>0 'I'c <])0 _ epO 'I/b .[ ( a6 a6 
b e 6 e 

By equating the second order terms in the expression for the slope at the common section 

e?) (8b) and that of e~2) (which is given in [1 OJ) we can find the third equation as follows 

0) (I) [ (3c ,},(l) (;';'0 (3b) (I)] (1) (2) _ - (cos <f>d ¢d + ° o'+'e + COS'l'b - 0 '0 <Pb a b + ,8&a6 - O. (15c)
<I>6-<])e <I.>&-<I>e 

Furthermore, by equating the slope from the delaminated layer and the substrate at the 

common section, we can find an expression for aF) in terms of ¢~l) and ¢~l) in the form 

0·(2) = "Vd,.~(l) + '"V /~(l) 
S I ~lf.JJ. /s ....vs' (16a) 

where 

_ cos <])~ . __ (cos({l~) (J) 
Id-~, IS - . ""0 as . (16b) 

sln'l!s SIn 'l's 

Next, the moment equilibrium (12b) for the second order terms is 

kJJ2) +M.P) + lYJ~2) = 1[pJ2) H - pJ2) h] . (16c) 

The geometric compatibility (13) for the second order terms gives 

/2) _ f(2) + e(2)T = [P(2)h _ p(2) H] ~. (16d)
d s s d EhH 

Iiminating the quantity [pJ2) h - pd2
) H] from (16c) and (16d) gi ves the following fourth 

linear equation 

a ¢(I) + a ¢(I) + Db [-(cos c]>O)a(I)¢(I) +qa(I)¢(I) + (<])0 _ 4)0) (cos <])0)a(2)]
- 11 d ,12 s b b 6 c 6 6 6 ebb 

= [~ (1 _ sin2<])~) a(I)2 _ ~ (1 _ sin2<])~)] EhH (17a) 
2 2if>~ s 2 2<])~ 4£' 



58 G.A. Kardomateas and A.A. Pelegri 

where 

(17b) 

_ D s [( ",,0 ",0, ""0) (1) ""o( n:.o)]al2-g COS'l!s-""sSlO""sO's +'I!sCOS'l!sIS'	 (17c) 

The fifth lin ar equation needed to find ¢~l), ¢~l), <p~l), <pi l) and O'i2) is the first order 
geometric compatibility (13) at the common section, which becomes after the expressions 
for the first order delamination and substrate forces, and for the fir t order rotation (these are 
given in [10]) are substituted 

_ Dd q>0 H ,~(l) D s q>0h~(l) _ EhHT . .:po (l7d)£2 d 'f/d + £2 s 'f/s - 4£ sm d' 

The foregoing system of fiv linear equations, (l5a,b,c) and (17a,d), allows finding <p~I), 

¢,~ I), <pi l ), ¢~l) and ai2
) hence the first order forces pd 1), pP) and the first order applied force 

p(l) = pj!) + p~l). 

2.2. SECOND ORDER FORCES 

For the second order forces, a procedure similar to the first order leads to five linear algebraic 

equations for ¢~2), ¢F), ¢~2), ¢i2) and O'i3). In particular, a second order force equilibrium 
(12a) 

p(2) + p(2) = p(2)
d s , 

together with (lOc) for p(2) and the corresponding expressions for pd2
) and p}2) from [10], 

gives one linear equation 

~ _ ~ sin 21]?~ - sin 2\po _ (cos c,P~ - cos c,P~) 2] (1)2
 
X [ 4 8 c,P~ _ q>~ c,P~ _ c,Po O'b
 

_	 Ddb2 [¢(1)2 c,P~2 ( _ sin2c,P~)]
 
2Db£2 d + 8 1 2c,P3
 

2 
_ Ds b [~(1)2 \p~2 ( _ sin 2q>~) (1)2] (l8a)2D £2 'f/s + 8 1 2""0 as . 

b	 ""8 
A second equation is obtained.from the condition of end fixity, i.e. 

e(3) = 0 e , 
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which, by use of (8c), gives 

<l?0+ (3 ) (1)",(2)_ {3b (1)A,(2)+{3 (3) 
cos e epa _ epa a b 'f'e epa _ (}>O a b 'f'b eab( 

b e b e 

(1)2 (i)2 ([)2]
f3b +f3e A,(I)",(J) +( inepO)~ _ ~e</Je + ~b<Pb (i)
 

[ (<I>~ - <I>~)2 'f'b 'f'e S e 2 (<I>~ _ <l?~) a b
 

(I) (1) ]
{3b¢" - {3e¢e _ ( ihO) A,( I) (2) _ R( .,,0) (1)3

+ a a cos 'Y e 'f'e ab '10' e ab . (l8b)
[ <I>b - <I>e 

By equating the third order terms in the expressions for the slope at the common section 

for the delaminated and the substrate parts, B(3) (these are given in [10]), we can find aP): 

n:(l) = ~'dA,(2) + ~, dP) + "I 
s I 'f',f Is, siC, (l9a) 

where Id, Is are, as in (16b), and IC is given in terms of the following quantities 

(1)2 )</Jd 1 2 a ' a
1/Jd = - -'- + - cos (}>d Sin q>d (19b)

( 2 24 

(l9c) 

as follows 

1/Jd - .5 
(l9d)IC = ''''0' 

S10 '*' .5 

Moreover, in a similar fashion to the first order forces, by equating the third order terms 
in the expressions for the slope at the common section for the delaminated and the base parts 

B~3) = ei3
) and using (8c) we obtain a third equation as follows 

-(cos q,0)</J(2) + e a(I)¢(2) + (cos <I>0 _ (3b ) 0(1)</J(2) + (3 a(3) 
d d q>o _ <I>0 b e b po _ <l?0 "" b b 

-b e b e 

(i)2 (i)2 (l)2]{3,,+ C A,(i)A,(i) + ( . <l?0)~ _ ~e e + ~b</Jb (i)[{3
(epa _ q>0)2 'f'b 'f/ SIO b 2 (<r>0 _ <I>0) a b 

b e b c
 

,(I) {3,,(I)l
{3 _ ( Cli.O)A,(I) + clPe - b'f'l, (2) _ R("'O) (1)3cos :1'b 'f'b a a a b .. '*'b a b[ IPI, - <I>e J 

" . ",0 (</J~1)2 cos 
2 q>~) 

- Sin '*'d -- + ---"'- (20a)
2 24' 

Now the moment equilibrium equation (l2b) for the third order terms is 

(20b) 
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The ge metric compatibility (13) for the third order terms gives 

/3) _ [(3) + e(3)T = [p(3) h_p(3)H] ~ (20c)
d ' s s d EhH' 

Eliminating now the quantity [pP) h- pJ3) H] from (20b,c) gives the following fourth 

linear quation for ¢~2) and ¢\2) 

(1) (2)
al j ¢d- + al2<Ps 

+ ~b [-(cos<I>~)a~I)¢~2) + qa~I)¢~2) + (<I>~ - <I>~) (cos<I>~)a~3)] = el, (20d) 

where the coefficients all and al2 are the same as in the tlrst order problem, (l7b,c), and c] 
is given in Appendix 1. 

The fifth equation needed to find ¢~2) and 4),~2) is the second order geometric compatibility 
(13), which becomes after the expressions for the s cond order forces, and for the second 
order rotation (these are given in [10]) are substituted 

_<I>0 H (2) + D s <I> 0 h,;,(2)
 
rI d lJd s 'Ps
 

sin2<I>~ ( sin2ill~) (1)2 2T AJI) ,.1;.0] 
[ 1 - 2ill3 - 1 - 2ill~ as + T'Pd cos 't'd 

2EhU f.x [';'())2 <I>~2 (1- Sin2<I>~)] H 
8Dd + 'I'd + 8 2<p O 2 

d 

_ [<1>([)2 1?~2 ( _ Sin2<I>2) (1)2] Dsh (20e)," + 8 1 2<I>~ as 2Dd' 

The foregoing system of five linear equations (l8a,b) and (20a,d,e) allows finding ¢~2), 
(~(2) ,;,(2) ..~(2) and (P) and hence the second order forces p(2) p(2) and the second order
1'8 ''I'e ,'1'6 b ' d ' 8 

applied force p(2) = PJ2) + p}2). 

2.3. DISPLACEMENTS 

Once the first and second order forces have been determined for the clamped-clamped case, 
the displacements can be found in the same manner as in 1I0]. For example, the mid-point 
deflection of the delaminated layer and that of the substrate part, can be found by integrating 
between the mid-point (x = 0) and the common interface (x = f) 

Wjn; = 2 sin (~i) If: (cos <Pi - 1) . (2la) 

Substituting the asymptotic expansions for the force Pi and for the amplitude illi, gives the 
mid-point displacement of the delaminated layer or the substrate part (i = d, s), as in [9], in 
the form 

(2lb) 
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Finally, the previous analysis allows finding a direct expression for the applied strain EO as 
follows 

pOL [P(I)b p(I).e 11 ]
col, = -- + --+ _d_+ -e(l) E 

E ET Eh 2 

(2) (2) (2) ]fd pd.e f(2) p b 11 (2) 2+ -+--+ +--+-e E +.... (22)
[ 2 Eh b ET 2 

3. Delamination growth characteristics 

The initial postbuckling solution that ha' just been briefly described will now be used in 
conjuction with an interface crack solution. For the special case of a 'thin film' delamination, 
a fracture mechanics solution for the ba ic one-dimensional problem was given in [16]. The 
stress intensity factor or energy release rates depend on the ratio of delamination thickness 
over length hl.e. For hl.e ----t 0, these reduce to 

where P"l and M m are the force and m ment at the mid-point of he delamination and 

CI = 0.434, C2 = 1.934, C3 = 0.558, C4 = -1.503. 

These solutions were also used in the three-dimensional fracture analysis of thin-film debond
ing by Chai [17]. 

However, unlike these 'thin film' delamination papers, our present study imposes no 
restrictive assumption' on the relative delamination thickness or length. To this extent, we 
shall use the interface crack solutions summarized in [13], in the same manner as for the 
simply-supported case llO]. For a general bimaterial interface crack, these solutions depend 
on the Dundurs [18J parameters, 0, ~ and the bimaterial constant E. For the homogeneous 
system under con ideration,o = ~ = E = O. Therefore the. e formulas will be presented with 
the homogeneous material assumption tak n into consideration. 

For the plane-strain interface crack shown in Figure 1, the energy release rate G is 

1 - lJ [p*2 JvI*2 P* M* ] 
(23a)G = ~ Ah + Ih3 + 2 VAih2 sin -( , 

where J.I is the shear modulus. P* and !vI* are linear combinati ns of the loads from the 
previous postbuckling solution 

(23b) 

(23c) 

Moreover, A and [ are positive dimensionless numbers and the angle " is restricted such 
that I ::::; 11f. These quantities as well as C I, C2 and C3, depend only on the ratio hi Ii. 
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Th preceding fonnula does not separate the opening and hearing components. tn tead, 
the followino- two expressions give the mode I and mode II str ss intensity factors 

1 [p* Jv{* ]
J(r = M !A"L COSW + ~ sin(w + ,') , (24a) 

y2 yAh y Ih3 

1 [p. M* ]h'II= M ,r-:;-;:-sinw- ~COS(W+I) . (24b)
y2 Y.Ah y Ih3 

Ac urate determination of w, which depends only on 1] (for a fixed set of Dundurs constants 
Cl', ~), requires the numerical oIution of an integral equation and has been report d in rU]. 
The extracted w, however, varies slowly with '7 in the entire range 0 ::;'7 ::; 1, in accordance 
with the approximate fonnuIa [13]: w = 52.1 ° - 3°1]. The mode mixity is defined by 

(24c) 

Substituting the asymptotic expression for th forces and moments from the po tbuckling 
solution already pr sented, gives 

M* =[ !\1*( I) +[2M*(2) +... , (25a) 

where the first and second order term (i.., k = 1,2) are (notice that the zero order quantities 
in the xpression for P* cancel ut) 

p*(k) = H p(k) _ ~p(k) _ 6hH M(k) (25b)T . d T S T3 b' 

(25c) 

In the previous relations, the first and. econd order forces and moments ptl k 
) , p'~k), A1Y), 

M~k), /;; = 1,2 have already been found from the initial postbuckling solution des ribed thus 
far. 

Now the energy release rate and the mode I and II stress int n. ity factors can be written in 
the form 

c = [2G(2) + c:3C(3) + ... , (26a) 

·· T,'( I) 2 T..(2)L"-I,ll = [1\[,[[ +[ 1'..1,11 + .... (26b) 

4. Dis ussion of results 

The limiting, closed fonn solution for a very large value of the ratio hiT, i.e. for a delamination 
in an infinitely thick and infinitely long bas plate subjected to an appli d strain £0, i, 
represented by the thin film model of Chai et al. [2]. Hence, by its assumptions, this solution 
is insensitive to the end conditions. The energy release rate predicted is expressed in terms 
of the Euler's critical strain for the delaminated lay r [cr (treated as a column with built-in 
ends) 

(27a) 
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co I cer 

Figure 2. Energy release rale, (2G / Eh) 105
, as a function of the applied strain for both the clamped-clampFd (C-C) 

and the simply-supported (S- ) cases. 

For this model, the mode mixity is giv n by the following relation [13] 

_[4 (EO )] 1/2
~- - --I (27b)

3 Eer 

For an illustration of the re ults from the previous analy i , consider a delaminated plate 
with E = 10 GPa and II = 0.3 and delamination aud plat I ngth e = 20 mm and L = 
60 mm, respectively, and delamination thickness h = 0.4 mm. These dimen ions correspond 
to our specimen dimensi ns (a width of 10 mm has also been considered and is appropriately 
ac ount d for in the results). To k ep the critical strain Eer constant, we keep the delamination 
I ngth and thickness constant and vary only the plate thickness to g t a varying ratio hiT; 
this would ensure the same thin film model solution. 

Figure 2 shows the energy release rate (2GI Eh) 105• as a fW1CLion of the applied strain for 
hiT = 0.10 and hiT = 0.20 for both the clamped aud simply- upported case. It i seen that 
for the .:ame applied strain, the effi ct 0 the end conditions are found to depend on the relati ve 
location of the delamination throuoh the thickness. Specifically, delaminations located closer 
to the surface, hiT = 0.] 0, xhibit nearly the me en rgy release rate either in a clamped
clamped or a simply supported configuration. However, in delamin tions located further away 
from the. urface, hiT = 0.20, there is a marked difference, the energy release rate being 
larger in the simply-supported case. 10 same major trend that has been observed in the 
simply supported case, i.e. the increased growth resistance of the delaminations located near 
th 'urfac r lative to the one. located further inside the plate, i also observed in the clamped
clamped cas . pecifically, a larger energy release rate is found to b present during the initial 
postbuckling pha e for the delaminations of increasing ratio of delamination thickness over 
plate thicknes', hiT = 0.20 (i.e. delaminations further away from the surface) in comparison 
with the on cia er to the urface, hiT = 0.] O. Experimental result on clamped delaminated 
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Figu!'!' 3 Mode mixity 4J() versus applied strain for both the clamped-clamped (C-C) and the simply-supported 
(5-5) cases. 

plates that have been previously reported by Kardomat as [19-20J confirm clearly the reduced 
growth resistance of the 'large ratio' (deeply I cated) delaminations, versus the 'small ratio' 
one. 

Notice that in the beginning, i.e. for relatively small applied strain, the curves tend toward 
the thin film solution for a decreasing ratio hiT (as expected); however as the applied strain is 
increased, the thin film m del solution rises at a fast pace and predicts a much higher energy 
release rate. 

Another very intere ling result is the variation of the mode mixity (mode II versus mode 
I) at the delamination tip. Figure 3 shows tbe mode mixity 'if; versus applif'd strain. Again, it 
is seen that delaminations located closer to th surface, hiT = 0.10, exhibit nearly the same 
mode mixity either in a clamped-clamped or a simply supported configuration. However, 
in delaminations located further away from the surface, hiT = 0.20, th re is a noticable 
difference; a higher mode II component exists in the simply-supported case. 

The major trend of a higher mode I component in the delaminations located further away 
from the surface, hiT = 0.20, than the on s cIa er to the surface, hiT = 0.10, i again 
observed in the clamped-clamped co. e. Notice that the thin film model predicts a higber mode 
11 component in all cases and tbat the value of the applied strain at which the delamination tip 
loading becomes pure mode 11 ('if; = -90°) is at co leer = 7.55. 

Figure 4 shows the mid-point deflection of the delamination Wei", I h and Figure 5 shows 
the mid-point deflection of the substrate part wsmlh both as a function of th applied strain. 
The mid-point transverse displacement of the delaminated layer as w II as that of the sub trate 
part, is clearly larger in the simply supported case for hiT = 0.20, i.e. for delaminations 
located further away fr m the surface, but nearly the same for delaminations n ar the urface, 
hiT = 0.10. The difference between th clamped-clamp d and the simply supported cases 
for hiT = 0.20 is particularly noticeable for the mid-point displacement of the substrate 

5 6 7 8 9 10 
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Figure 4. Mid-point deflection of the delamination 1I'u",/ h as a function of the applied strain for both the clamped
clamped and the simply-supported cases. 
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Figure 5. \!lid-point deflection of the substrate part W",,, / h versus applied strain for both the clamped-clamped 
and the simply-supported cases. 

(Figure 5). Both curves for both end condition show a trend toward the thin film solution for 
a decreasing ratio hiT and the mid-point d flections are always higher for a larger value of 
hiT (d laminations located further away from the surface). 



66 G.A. Kardomateas and A.A. Pelegri 

Appendix [ 

The constant c, in (20d) is given as follows (it in ludes terms from the expressions of MP), 
J'vr,J3) and j\!I~3) 

Dd Ds Db 
Cl = eCld + eCls +TC1b +CIc, (AI) 

where 

( <.I>~ A;. ° . '-"0) (1)2 <I>~ mO (I sin 2<P~)
C1d = - cos 'J'd + S10 'J'd d - -6 cos 'f"d - - ° ' (A2a)

2 I 3 2<p d 

- (cos <1>0 - <1>0 sin <1>0) ",( I) oP) - "V <pO cos <pO (A2b)s s s tf's s Ie s s' 

(A2c) 

and 

' 1'0 ) ",(1) (1)2 ( . .fiO)sm2<.J>s _ 2 2«)0 '/' 0:5 I _ tn2'f"s ,(1) (2)_ 
[( <1>0 cos s 4<1>0 + 2<p0 0: 5 0:., 

3 s s 

sin 2tP~ (I) ] 
- -2 os 2<P~ ¢d _ 'l/JdT EhH. (A2d)

( <1>0 ) 4«)~ e 4d 
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