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Benchmark solutions to the problem of buckling of orthotropic cylindrical shells, which are based on the 
three-dimensional theory of elasticity, are presented in this review article. It is assumed that the shell is under 
external pressure or axial compression or a combination of these loadings. These solutions provide a means 
of accurately assessing the limitations of the various shell theories in predicting critical loads. A comparison 
with some classical shell theories shows that the classical shell theories may produce, in general, highly non­
conservative results on the critical load of composite shells with thick construction. One noteworthy 
exception: the Timoshenko shell buckling equations produce conservative results under pure axial 
compression. Copyright © 1996 Elsevier Science Limited 
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INTRODUCTION can be applied to buckling problems with the potential of 
improved predictions for the critical load. To this extent, 

A class of important structural applications of fiber­ Simitses et al. 8 used the Galerkin method to produce the 
reinforced composite materials involves the configura­ critical loads of cylindrical shells under external pressure, 
tion of laminated shells. Although thin plate con­ as predicted from the first order shear deformation and 
struction has been the thrust of the initial applications, the higher order shear deformation theories. It was 
much attention is now being paid to configurations concluded that for moderately thick cylinders, the first 
classified as moderately thick shell structures. Such order shear deformation theory with a modest shear 
designs can be used in components in the aircraft and correction factor provides an adequate correction to the 
automobile industries, as well as in the marine industry. critical load (as compared with the improvements from 
Moreover, composite laminates have been considered in the higher order theories). 
space vehicles in the form of circular cylindrical shells as Regarding the classical shell formulation, the critical 
a primary load carrying structure. loads for an isotropic material can be found by solving 

In these light-weight shell structures, loss of stability is the eigenvalue problem for the set of cylindrical shell 
of primary concern. This subject has been researched to equations that are obtained following the Kirchhoff­
date through the application of the cylindrical shell Love assumptions. To this group belong the Donnell 
theory (e.g. ref. I). However, previous work2

.
3 has shown theor/ and the Sanders small strain, small rotation 

that considerable care must be exercised in applying thin about normal and moderate rotation about in-plane 
shell theory formulations to predict the resposne of theories JO 

. Furthermore, in presenting shell theory 
composite cylinders. Besides the anisotropy, composite equilibrium equations for isotropic shells, Timoshenko 
shells have one other important distinguishing feature, and Gere I I included some additional terms (these 
namely extensional-to-shear modulus ratio much larger equations are briefly described in the Appendix). Each 
than that of their metal counterparts. of the Donnell, Sanders and Timoshenko equations can 

In order to more accurately account for the above be easily extended for the case of an orthotropic material. 
mentioned effects, various modifications in the classical The existence of these different shell theories under­
theory of laminated shells have generally been scores the need for benchmark elasticity solutions, in 

6performed4
- , (see also ref. 7 for a review of shear order to compare the accuracy of the predictions from 

deformation theories). These higher order shell theories the classical and the improved shell theories. Classical 

569 



Buckling of cylindrical shells: G. A. Kardomateas 

shell theories with regard to critical loads have been 
investigated extensively and compared among them­
selves by Simitses and Aswani 12 

Several benchmark elasticity solutions for composite 
shell buckling have recently become available. In 
particular, Kardomateas 13 formulated and solved the 
problem for the case of uniform external pressure and 
orthotropic material; a simplified problem definition was 
used in this study ('ring' assumption), in that the pre­
buckling stress and displacement field was axisymmetric, 
and the buckling modes were assumed two-dimensional, 
i.e. no z component of the displacement field, and no z­
dependence of the I' and edisplacement components. The 
ring assumption was relaxed in a further study l4 in which 
a nonzero axial displacement and a full dependence of the 
buckling modes on the three coordinates was assumed. 

A more thorough investigation of the thickness effects 
was conducted by Kardomateas 15 for the case of a 
transversely isotropic thick cylindrical shell under axial 
compression. This work also included a comprehensive 
study of the performance of the Donnell9

, Sanders-type lO 

(which was also referred to as 'non-simplified Donnell­
type' theory), the Fliigge l6 and the Danielson and 
Simmonds l7 theories for isotropic material in the case 
of axial compression. In a more recent study, 
Kardomateas l8 considered a generally cylindrically 
orthotropic material under axial compression. In addi­
tion to considering general orthotropy for the material 
constitutive behavior, the latter work investigated the 
performance of another classical formulation, i.e. the 
Timoshenko and Gere formulation II. Other three­
dimensional elasticity results were provided by Soldatos 
and Ye l9 based on a successive approximation method. 
These results were provided for the buckling of complete 
hollow cylinders subjected to combined axial compres­
sion and uniform external pressure and the buckling of 
open cylindrical panels subjected to axial compression. 

Towards this objective, this work summarizes the 
elasticity solution approach to the problem of buckling 
of composite cylindrical orthotropic shells subjected to 
either external pressure or axial compression. Numerical 
results for fiber reinforced hollow cylinders made out of 
graphite/epoxy or glass/epoxy are derived and compared 
with shell theory predictions. These results can be used to 
assess the accuracy of the classical shell theory and the 
existing improved shell theories for moderately thick 
construction. Most of the results in this review article are 
extracted from these previously cited studies. 

Formulation 

At the critical load there are two possible infinitely 
close positions of equilibrium. Denoted by uo, 'Uo, Wo the 
1', eand z components of the displacement corresponding 
to the primary position. A perturbed position is denoted 
by: 

u = Uo + aUt; ·u = 'Uo + a'Ul; W = Wo + aWl, (I) 

where a is an infinitesimally small quantity. Here, 

aUI (I', e, z), aVI (I', e, z), aWl (I', e, z) are the displacements 
to which the points of the body must be subjected to shift 
them from the initial position of equilibrium to the new 
equilibrium position. The functions UI (I', e, z), VI (I', e, z), 
WI (I', e, z) are assumed finite and a is an infinitesimally 
small quantity independent of 1', e, z. 

The nonlinear strain displacement equations are: 

AU 1 [(aU) 2 (Ov) 2 (OW) 2] (2a)
Err = or +:~ or + or + or ' 

(2b) 

(2c) 

(2d) 

A _ (2e)
Yrz - ' 

'Oz = ov + ~ OW + [au (~ au _~) 
OZ I' f)() oz I' f)() I' 

+ r:v (~ ov +~) +~ OW OW]. (2f)
OZ I' f)() I' I' f)() OZ 

Substituting (1) into (2) we find the strain components in 
the perturbed configuration: 

o I 2/1 0 I 2/1 ()
Err = Err + aE rr + a Err '1'0 = 'rO + a'rO + a '1'0, 3a 

o I 2 /I 0 I 2 /I (b)
EOO = EOO + aE 00 + a Eoe 'rz = 'rz + a'rz + a I rz' 3 

o 1 2 /I 0 I 2 /I ("')
Ezz = Ezz + aE zz + a zz 'Oz = 'Oz + a,oz + a 'Oz, -,c 

where E~r are the values of the strain components in the 
initial position of equilibrium, E;'I' are the strain 
quantities corresponding to the linear terms and E;I,. are 
the ones corresponding to the quadratic terms. 

The stress-strain relations for the orthotropic body 
are: 

(J". Er,.('II ('12 ('13 0 0 0 

(JOO ('12 ('22 ('23 0 0 0 EOO 

(Jzz ('13 ('23 ('JJ 0 0 0 Erz , (4)
0 0 0 ('44 0 0To z 'Oz 

0 0 0 0 ('55 0Trz 'rz 

0 0 0 0 0 ('66TrO 11'0 

where ('ij are the stiffness constants (we have used the 
notation 1 == 1', 2 == e, 3 == z). Substituting (3) into (4) we 

AU OW (au au OV ov OW OW)
 
OZ + or + or OZ + or oz + or oz
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get the stresses as: 

o I 2 /I 0 I 2 /I (5)arr = arr + o.a rr + 0. a rr TrO = TrO + o.T rO + 0. TrO, a 

o I 2 /I 0 I 2 /I (5b)a00 = a00 + o.a BO + 0. a 00 Trz = Trz + o.T rz + 0. Trz, 

o I 2 /I 0 I 2 /I (5 )azz = azz + o.a zz + 0. a zz Toz = Tez + o.T OZ + 0. TOz , C 

OI /I ed' fO 11/h In terms 0 f ij'were aij, a ij, a ij' are express fij, fij, 
respectively, in the same manner as equations (4) for aij 
in terms of fij' 

In the following, we shall keep in (5) and (3) terms up 
to 0., i.e. we neglect the terms which contain 0.

2
. 

Governing equations. The equations of equilibrium 
are taken in terms of the second Piola-Kirchhoff stress 
tensor l: in the form (e.g. ref. 20): 

div (l:. FT
) = 0, (6a) 

where F is the deformation gradient defined by 

F = 1+ grad V, (6b) 

where V is the displacement vector and I is the identity 
tensor. 

Notice that the strain tensor is defined by 

E=!(FT.F-I). (6c) 

More specifically, in terms of the linear strains: 

ou I OV u ow 
err = or' eOO = -; f)() +-;, ezz = oz' (7a) 

I OU ov v ou ow OV I ow 
ere = -; f)() + or - -;' erz = OZ + or ' eoz = OZ + -; f)()' 

(7b) 

and the linear rotations: 

2 I ow OV ou ow 
Wr = -; f)() - oz' 2wo = OZ - or ' 

OV v I OU
2w = - + - - - - (7c) 

z or r r f)()' 

the deformation gradient F is 

(8) 

and the equilibrium equation (6a) gives: 

:r [arr (1 + err) + TrB(!ero - wz) + Trz(!erz + wo)] 

I 0 [ I I+ -; f)() Tro(l + err) + aooCierO - wz) + TOz(ierz + wo)] 

+ :z [Trz(l + err) + Toz(!ero - wz) + azz(!erz + wo)] 

+ ~ [arr ( I + err) - aBB(l + eoo) + Trk 2
Ierz + wo)

r 

(9a) 

~ ~ [Tro(!ero + wz) + aoo(l + eBB) + Toz(!eoz - wr)] 

+ :z [Trz(!ero + wz) + Toz(l + eBfJ) + azz(!eoz - Wr)] 

+ :r [arr(!ere + Wz) + Tre(1 + eOO) + TrAeoz - wr)] 

I [ I I) (I+- arr(ierO + wz) + aBB(ierO - Wz + Trz 'ieez - wr)
r 

+ Tez(!erz + wo) + Tro(2 + err + eBB)] = 0, (9b) 

:z [Trz(!erz - wo) + TOz(!eez + wr) + azz (1 + ezz )] 

+ :r [arr(!erz - wo) + Tro(!eoz + wr) + Trz(1 + ezz )] 

+ ~ ~ [TrB(!erz - wo) + aoo(!eoz + wr) + Tez(l + ezz)] 

+ ~ [arr(!erz - wo) + Tre(!eoz + wr) + Trz(1 + ezJ] = O. 
r 

(9c) 

Introducing the linear strains and rotations in equation 
(3), e.g. err = e~ + o.e~" Wz = w~ + o.w~, as weIJ as the 
stresses from equation (5) and keeping up to 0. 

1 terms, we 
obtain a set of equations for the perturbed state in terms of 

0 0 d I 'N' h . dd" hthe eij' Wj an eij' wi" olIce t at III a ItlOn to t e 
notations we adopted earlier, e?j and wJ are the values of 
eij and Wj for u = Uo, v = va and w = Wo, and e;j and wj 
are the values for U = UI, V = VI and IV = WI' 

Since the displacements Uo, va, Wo, correspond to 
positions of equilibrium, there must also exist equations 
of the form of equations (9) with the zero superscript, 
which are obtained by referring equation (6a) to the 
initial position of equilibrium. 

Thus, after subtracting the equilibrium equations at 
the perturbed and initial positions, we arrive at a system 
of homogeneous differential equations which are linear 
in the derivatives of Ul> VI and WI with respect to r, e, z. 
This follows from the fact that a;j, e;j' wj appear linearly 
in the equation, and are themselves, in virtue of 
equations (7), linear functions of these derivatives. The 
system of equations, corresponding to equation (9), at 
the initial position of equilibrium, is, on the other hand, 
nonlinear in the derivatives of Uo, va, Wo0 However, if we 
make the additional assumption to neglect the terms that 
h a dO ffi."' 00 d OO ave eij an Wj as coe clents, I.e. terms eijaij an Wj ail' 
we can use the linear classical equilibrium equations to 
solve for the initial position of equilibrium. 

Moreover, if we make the assumption to neglect the 
a dO ffi.". a'terms thh Wj as coe clents, I.e. terms eija ijat ave eij an 

and wJa;j, and furthermore, since a characteristic feature 
of stability problems is the shift from positions with 
small rotations to positions with rotations substantially 
exceeding the strains, if we neglect the terms e;p?j, thus 
keeping only the wja?j terms, we obtain the following 
buckling equations: 
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0(, 0' 0')+ oz Trz - TozW z + (JzzWo 

1(, , 0' ° 1 2 a ') 0+ - (J rr - (Joo + TrzWO + TOzW r - TrOW: = , ( lOa) 
r 

0(, A' 0,10(/0' a'or TrO+(JrrWz-TrzWr)+-; ae (JOO+TrOWz-TOzWr) 

0, 0' a ').+ oZ (TO, + TrzW z - (JzzW r 

I (2' 0' 0' 0' 0') 0 (lOb) + - Tro + (JrrWz - (JOOW z + TozWO - TrzWr = , 
r 

o(' a 0' I 0 (' a ')1 0' 
>:ILl-0 Trz - (JrrWO + TrOW r) + - Toz - TrOWO + (JOOW r r r ~ 

o (' 0' a ')+ oz (J zz - TrzWO + TOzW r 

I (' 0' 0') 0 ( IOc)+ - Trz - (J /I'W 0 + TrOW r = . 
r 

Boundary condilions. The boundary conditions 
associated with equation (6a) can be expressed as20 

: 

( II ) 

where I is the traction vector on the surface which has 
outward unit normal Ii = (l,m,n) before any deforma­
tion. The traction vector I depends on the displacement 
field V = (u, v, w). Indeed, because of the hydrostatic 
pressure loading, the magnitude of the surface load 
remains invariant under deformation, but its direction 
changes (since hydrostatis pressure is always directed 
along the normal to the surface on which it acts). 

This gives 

[(Jrr(1 + err) + TrO(~erO - wz) + Trz(~erz + wo)]! 

+ [Tro(I + err) + (Joo(~erO - wz) + Toz(~erz + wo)]m 

+ [Trz(I + err) + Toz(~erO - wz) + (Jzz(~erz + wo)]n = I" 
( 12a) 

[(Jrr(~erO +wz) + Tro(I + eoo) + Trz(~eoz - wr)]1 

+ [TrO(~erO + Wz) + (Joo(I + eoo) + Toz(~eoz - wr)]111 

+ [Trz(~erO + Wz) + Toz( I + eoo) + (Jzz(~eoz - wr)]n = 10, 

(12b) 

[(Jrr(~erz - Wo) + TrO(~eoz + w,) + Trz(I + ezz )]! 

+ [TrO(~erz - Wo) + (Joo(~eoz + W,) + ToAI + ezz)]m 

+ [Trz(~erz - Wo) + ToA~eoz + W,) + (Jzz(I + ezz)]n = Iz· 
(12c) 

If we write these equations for the initial and the 
perturbed equilibrium position and then subtract them 
and use the previous arguments on the relative magni­
tudes of the rotations wj we obtain: 

' 0' 0')1 (' a 1 0')((J rl' - TI'OW: + TI'ZW 0 + TrO - (JOOW z + TozW 0 111 

( ' 0' 0')+ TI'Z - TozW z + (JzzWo n 

I - - -}= lim- [II'( VA + 0: VI) - tr( Va)] , (13a){a-a a 
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1 0' 0')1 (' a 1 0' )
( TrO + (JrrWz - TrzW r + (Jee + TrOW z - TOzW r 111 

(13b) 

' 0' 0')1 (' 0, 0')(Trz+TrOWr-(JrrwO + Toz+(JOOWr-TrOWO m 

' a 0')I+ ((J zz + TOzW r - TrzWO n . 

I - - -}= lim - [lz{Vo + a VI) - Iz{Vo)] . (13c){a-a a 

Let lio and iii denote the normal unit vectors to the 
bounding surface at the initial and perturbed positions of 
equilibrium, respectively. Before any deformation, this 
vector is Ii = (I, m, n). For external pressure p loading at 
the initial position 

- ,0 ' II'U;O) = -pcos(li°,i); lo{Vo) = -pcos(n ,0); 
( 14a) 

IzU/o) = -pcos(lio,2), 

and at the perturbed position 

- - III'( VA + aVJ ) = -pcos(1i , f); 

- - I ' IO{VO + aV,) = -pcos(1i ,0); (14b) 

- - \Iz{VO + aV1) = -pcos(ii ,2). 

But in terms of the deformation gradient 

FO,I.Ii=(I + EnO,I)lio,I, (15) 

where E,~, E,; is the relative elongation normal to the 
bounding surface at the initial and perturbed equilibrium 
positions, respectively. More explicitly, 

cos(iiO, f) = _1_0 [( I + e~I')1 + (~e~o - w~)m 
I +En 

+ (!e~z + w3)n], (16a) 

,0 ' I [\ a a a
cos(n ,0) = I + E,? (2 el'o + wz)1 + (I + eoo)m 

+ (!e3z - w~)n], (16b) 

( ,0 ') I [( I a 0)1 (I a 0)cos n ,z = I + E O 2el'z - Wo +:1 eoz + wI' m 
n 

+ (I + e~zJn] . ( 16c) 

Similar expressions hold true for the perturbed state. 
For example, 

cos(li J , f) = __1_\ {(I + e~1' + ae~I')1 
1+En 

+ [(!e~o - w~) + a(!e~o - w~)]111 

+ [(!e~z+w3)+a(!e~z+w~)]n}. (17) 

The assumption of small strains allows neglecting EI'~ 
and E~ in comparison with unity. Substituting into the 
expressions (14) for the tractions in terms of the pressure 
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In terms of the elastic constants: 

(i,j = 1,2,4,5,6), (2la) 

(21 b) 

Also, for convenience, set: 

k+1 k+ I 2k r 2 . ri rl 
fk=-2k 2k; J-k = 2k 2k' (2Ic)

r 2 r l r 2 r l
 

k+ I k+ I k -I k-I

r2 - rl r2 -I"I k+1 k+1 

hk = XI .2k 2k h_k = XI 2k 2k rj r2 
'2 - r 1 r 2 - 1"1 

(21 d) 

Then the normal stresses are given as foHows: 

k - I f -k - I)arr = p (fjkr + _k r 

k-I h -k-I)+ C(XI - hk r - _k r , (22a) 

Iaoo = p(Jkk!-1 - f_kkr- k - ) 

+ C(XI - hkkrk - I + h_kkr-k - I), (22b) 

and the shear stresses are: 

TOz = Trz = TrO = O. (22c) 

The axial stress aze is found from Lekhnitskii 21 
: 

I 
a zz = C - - (al3arr + a23aOO). (23a)

a33 

For convenience, set: 

al3 + ka2}
ak = 

a33
 

"fl = I _ (au + a23)xl .
 (23b) 
a33 

Then the axial stress is in the form: 

(23c) 

Now the constant C is found from the condition of 
axial load: 

(24a) 

- which gives 

(24b) 

where
 
2 2 k+1 r+1


r2 - rl ri - r I 
all = "fl --2- + hkak -=--k-+-I--'-­

-k+ I -k+ I 
1"2 - rl+ h_ka_k I _ k (24c) 

and 

! + I _ ! + I -k + I -k + I 
-fja 2 I f r2 -I"I(3 (24d)I - k k k + I + -ka-k I _ k 

and subtracting the initial and perturbed state and using 
the same arguments on the magnitude of rotations to 

(18a) 

neglect e;j in comparison with w', we arrive at the 
following expressions: 

(18b) 

IzCVO + aV I ) - Iz(Vo) = pa(w~l- w:m), (18c) 

and in lieu of equation (13) for the lateral surfaces, i.e. 
for m = n = 0 and I = I, 

, 0' 0 I ,T rO + arrw z - TrzW r = -pW z, 

, 0, 0"T rz + TrOW r - arrwo = pwo, 

and for the end surfaces, i.e. £ = m = 0 and n = 

, 0' 0' 0 a zz + TOzW r - TrzWO = . 

Pre-buckling slale. The problem under consideration 
is that of an orthotropic cylindrical shell subjected to a 
uniform external pressure, p, and an axial compression, 
P (Figure 1). The constitutive elasticity relations for 
the or tho tropic body are: 

anErr all al2 al3 0 0 0 
al2 a22 an 0 0 0 aOO 

Ezz 

EOO 
al3 a23 a33 0 0 0 azz 

0 0 0 a44 0 0 TOz 
"frz 
"fOz 

0 0 0 0 ass 0 Trz 
"frO 0 0 0 0 0 a66 TrO 

(20) 

where aij are the compliance constants (we have used the 
notation I == r, 2 '= e, 3 '= z). 

--.
 
--.
 

p ---. IT

+­--. 

---. R 

--. 
---. 2~' 
--. 

3---. U
 

(19a) 

( 19b) 

(9)I c 

I, 

(19d) 

( 1ge) 

(19f) 

Figure 1 Definition of the geometry and the loading 
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Equation (24b) may be changed to a single parameter 
equation by setting 

(25) 

where S is a nondimensional constant, which we shall 
call 'load interaction parameter'. The problem may then 
be solved for a series of selected values of S. A case of 
particular interest is represented by the ratio S = 0.5. 
For that value, P = p1Tr~, and the cylindrical shell is seen 
to be subjected to a uniform pressure, p, applied to both 
its lateral surface and its ends, which are assumed to be 
capped. This case of pure hydrostatic-pressure loading 
has been treated in detail in ref. 14. 

Introduction into (24b) gives: 

C=pC; (26) 

Hence, we can write the stresses as follows: 

(27a) 

(27b) 

(27c) 

where 

(k = -Chk + fk; Ck = -Ch_k + f-k> (27d) 

(, = Cx,; (3 = C/'I' (27e) 

Therefore, it turns out that for a given load interaction 
parameter, S, the pre-buckling shear stresses are zero 
and the pre-buckling normal stresses are linearly 
dependent on the external pressure, p, in the form: 

(Jij ° = p (Cij,O + Cij, I r k-I + Cij,2r-k-') . (28) 

This observation allows a direct implementation of a 
standard solution scheme, since, as will be seen, the 
derivatives of the stresses with respect to p will be needed, 
and these are directly found from equations (28). 

Perturbed state. Using the constitutive relations in 
equations (4) for the stresses (J;j in terms of the strains 
e;j, the strain-displacement relations in equation (7) 
for the strains e;j and the rotations wj in terms of the dis­
placements UI, v" WI, the buckling equation (lOa) for the 
problem at hands is written in terms of the displacements 
at the perturbed state as follows: 

UI r Ul (Jee UI ee0)
Cil (Ul,rr + --:-) - C22 r2 + (C66 + 2 ---j.2 

(Jzz0) ( (JeeO).v Ire 
+ (C55 + 2 UI,zz + Cl2 + C66 - 2 ----:­

(Jee VI e0)- C22 + C66 + - -'( r22 

(Jzz wI,z0)+ cl3 + c55 - - WI rz + (C13 - C23) - = O. (29a)( 2' r 

The second buckling equation (lOb) gives:
 

(J~r) ( VI,r VI) ((J~r - (J~e) (VI,r
 VI)c66 + - VI rr + - - - + - +­( 2 ' r,.2 2 r,.2 

V, eo ( (J~z)+ c22 ---j.2 + C44 + 2 VI,zz
 

(J~r) til re ( (J~e)
 UI e
+ C66 + C'2 - 2 --::- + C66 + C22 + 2 ?( 

(J~z) WI ez
+ C23 + C44 - 2 -; ­( 

+ ~ d(J~r (VI r + ~ _ UI,e) = O. (29b)
2 dr ' , ,. 

In a similar fashion, the third buckling equation (lOc) 
gives: 

In the perturbed position, we seek equilibrium modes 
in the form: 

til (r, e, z) = U(r) cos ne sin AZ; 

VI (r, e, z) = V(r) sin ne sin AZ, (30) 

wl(r,e,z) = W(r)cosneCOSAZ, 

where the functions U(r), V(r), W(r) are uniquely 
determined for a particular choice of nand A. 

Substituting in (29a), we obtain the following linear 
homogeneous ordinary differential equation for 
rJ ::::; , ::::; '2: 

U(r)" CII + U(r)' ~ 
r
 

2 C22 + C66n2 °A
2 ° n2

]
+ U(r) 
[ 
-C55 A - ,.2 - (Jzz 2 - (Jee 2r2 

V() ,[(CI2+c66)n on]+ , - (Jee­
r 2r
 

V( ) [-(C22 + c66)n on]

+ r r2 - (Jee 2r2 

+ w(r)'[-(CI3 +C55)A+(J~z~] 

+ W(r) (C23 - CI3)A = O. (3la) 
r 
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The second differential equation (29b) gives for rl ~ 

r ~ r2: 

V(r)" (C66 + (T;r) + V(r)' [C;6 + ~ ((T~r _ (T~e) + (T;] 

,2 C66 + C22n2,2° /\ (Tee° (Trr0']
+ V( r) -C44/\ - - (T - - - + ­[ r2 zz 2 2r2 2r 

U( )' [-(CI2 + c66)n °!!.-]+ r + (Trr
r 2r 

-(C22+C66)n on o,n]
+ U()[ - (Tee -22 + (Trr -2r 2 r r r 

nA ° nA]+ W(r) Y23 + C44)-;:- - (Tzz 2r = O. (31 b)r 
In a similar fashion, (29c) gives for rl ~ r ~ r2: 

W(r)" (C55 + (T~r) + W(r)' [C55 + (T~r + (T~:] 
2 r 2r 2 

2 
+ W(r) [-C33 A2 - C44 n - (T~e~] 

r2 2r2 

+ U(r)' [(CI3 + C55)A - (T~r~] 

+ U(r) [(C23 + C55)A _ (To ~ _ (TO'~] 
r rr 2r rr 2 

+ V(r) [(C23 + C44) nA _ (T~e nA] = O. (3Ic) 
r 2r 

All the previous three equations (31) are linear, homo­
geneous, ordinary differential equations of the second order 
for U(r), V~) and W(r). In these equations (T~r(r), (T~e(r), 
(T~z(r) and (Tr: (r) depend linearly on the external pressure P 
through expressions in the fonn of equation (28). 

Now we proceed to the boundary conditions on the 
lateral surfaces r = r" r2' These will complete the 
fonnulation of the eigenvalue problem for the critical load. 

From equation (19), we obtain for i = ±I, m= fi = 0: 

(T~r = 0; T:e + ((T~r + Pj)w~ = 0; 

T:z - ((T~r + Pj)w~ = 0, at r = rl ,r2' (32) 

where Pj = P for r = r2 (outside boundary) and Pj = 0 for 
r = rl (inside boundary). 

Substituting in equations (20), (7) and (30), the 
boundary condition (T~r = 0 at r = rj, J = 1,2 gives: 

U'(rj)cll + [U(rj) + nV(rj)] ~~2 - c13AW(rj) = 0, 
} 

J=I,2. (33a) 

The boundary condition T:e + ((T~r + Pj)w~ = 0 gives: 

V'(rj) [C66 + ((T~r + P;)~] 

+ [V(rj) + nU(rJ] [-C66 + ((T~r + Pj)~] ~ = 0, 

J = 1,2. (33b) 

In a similar fashion, the condition T:z - ((T~r + pJw~ = 0 
at r = rj, J = 1,2 gives: 

AU(rj) [C55 - ((T~r + Pj) 1] 

+ W'(r;)[c55 + ((T~r + Pj) 1] = 0, J = 1,2. (33c) 

Therefore, for a given load interaction, S, equations 
(31) and (33) constitute an eigenvalue problem for 
differential equations, with the applied external pressure, 
P, the parameter, which can be solved by standard 
numerical methods (two point boundary value problem). 

Before discussing the numerical procedure used for 
solving this eigenvalue problem, one final point will be 
addressed. To completely satisfy all the elasticity 
requirements, we should discuss the boundary conditions 
at the ends. From equations (19), the boundary 
conditions on the ends i = m= 0, fi = ± I, are: 

T~Z - (cr~z + P)w~ = 0; 

at Z = 0,£. (34) 

Since (T~z varies as sin AZ, the condition (T~z = 0 on both 
the lower end Z = 0, and the upper end Z = £, is satisfied if 

(35) 

It will be proved now that these remaInIng two 
conditions are satisfied on the average. To show this 
we write each of the first two expressions in equations 
(34) in the form: Srz = T:z + ((T~z + p)w~ and Sez = T~z­
((T~z + p)w~, and integrate their resultants in the Carte­
sian coordinate system (x,y, z), e.g. the x-resultant of Srz 
is: J~2 J~'" Srz(cos e)(rde)dr. 

Since T:z and w~ have the form of F(r) cos ne cos AZ, i.e. 
they have a cos ne variation, the x-component of Srz has 
a cos ne cos e variation, which, when integrated over the 
entire angle range from zero to 211', will result in zero. The 
y-component has a cos ne sin e variation, which, again, 
when integrated over the entire angle range, will result in 
zero. Similar arguments hold for Sez, which has the fonn 
of F(r)sinnecosAz. 

Moreover, it can also be proved that the system of 
resultant stresses, equations (34) would produce no 
torsional moment. Indeed, this moment would be given 
by J~2 J~1T Sez(rde)rdr. Since T~z and w~ and hence Sez have 
a sin ne variation, the previous integral will be in the form 
.f,~2 J~1T r2F(r) sin ne cos Azdrde, which, when integrated 
over the entire e-range from zero to 211', will result in zero. 

An alternative method of proving these conditions by 
using the equilibrium equations in a Cartesian coordinate 
system and the divergence theorem for transfonnation of 
an area integral into a contour integral as well as the lateral 
boundary conditions in the Cartesian coordinate system 
(analogous to equations (19)) was outlined in ref. 18. 

Returning to the discussion of the eigenvalue problem, 
as has already been stated, equations (31) and (33) 
constitute an eigenvalue problem for ordinary second 
order linear differential equations in the r variable, with 
the applied external pressure, P, the parameter. This is 
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Table I Comparison with shell theories-axial compression 

Orthotropic with circumferential reinforcement, el'2 = 5 

. . - P '2 
CrItIcal loads, P = 2 2) E h 

71'('2 -'1 ) 
Moduli in GN(m2

: E2 = 57; E I = E) = 14; G31 = 5.0; GI2 = Gn = 5.7 

Poisson's ratios: !l12 = 0.068, !l2) = 0.277, !I) I = 0.400 

Elasticity Sanders-type· Timoshenko· 
(n,m) (n, m) (% increase) (n, m) (% increase) 

0.6764 (2, I) 0.7904 (4,9) (16.9%) 0.6735 (2,1) (-0.4%) 
0.6641 (2,2) 0.7883 (3,6) (18.7%) 0.6461 (2,2) (-2.7%) 
0.6284 (2,2) 0.7716 (2,3) (22.8%) 06218 (2,3) (-1.1%) 
0.6134 (2,3) 0.7505 (2,3) (22.4%) 0.5559 (1, I) (-9.4%) 
05186 (1,1) 0.7560 (2,4) (45.8%) 0.4549 (1,1) (-12.3%) 
0.4429 (l,l) 0.7771 (1,1) (75.5%) 0.3876 (1,1) (-12.5%) 

1.05 
1.10 
1.15 
1.20 
1.25 
1.30 

• See Appendix with p = 0 

Table 2 Comparison with shell theories-axial compression 

Isotropic, E = 14 GN/m2
, !I = 0.3, el'2 = 5 

P 1'2
Critical loads, P 71'lr1-,D E)h 

Danielson 
Elasticity Sanders-type Timoshenko Fliigge & Simmonds 

'2/'1 (n,m) (n, m) (% increase) (n, m) (% increase) (n, m) (% increase)-----­(n, m) (% increase) 

1.05 0.4426 (2, I) 0.5474 (2,1) (23.7%) 0.4348 (2,1) (-1.8%) 0.4525 (2, I) (2.2%) 0.4559 (2, I) (3.0%) 
1.10 03910 (2,1) 0.4871 (2,1) (24,6%) 0.3865 (2,1) (-1.2%) 0.4019 (2,1) (28%) 0.4088 (2, I) (4.6%) 
1.15 0.4547 (2,1) 0.5488 (2,2) (20.7%) 0.4373 (2,2) (-3.8%) 0.4710 (2,1) (3.6%) 0.4814 (2,1) (5.9%) 
1.20 0.4371 (2,2) 0.5272 (2,2) (20.6%) 0.4184 (2,2) (-4.3%) 0.4620 (2,2) (5.7%) 0.4705 (2,2) (7.6%) . 
1.25 0.4426 (2,2) 0.5403 (2,2) (22.0%) 0.4269 (2,2) (-3.5%) 0.4728 (2,2) (6.8%) 0.4837 (2,2) (93%) 
130 0.4487 (1,]) 0.5709 (2,2) (27.2%) 0.3895 (1,1) (-13.2%) 0.4915 (1,1) (9.5%) 0.4987 (1,1) (11.1%) 

essentially a standard two point boundary value 
problem. The relaxation method was used22 

, which is 
essentially based on replacing the system of ordinary 
differential equations by a set of finite difference equations 
on a grid of points that spans the entire thickness of the 
shell. For this purpose an equally spaced mesh of 241 
points was employed and the procedure turned out to be 
higWy efficient with rapid convergence. As an initial guess 
for the iteration process, the shell theory solution was used. 
An investigation of the convergence showed that essen­
tially the same results were produced with even three times 
as many mesh points. The procedure employs the 
derivatives of the equations with respect to the functions 
V, V, W, V', V', Wi and the pressure p; hence, because 
of the linear nature of the equations and the linear 
dependence of (J~J on p through equations (28), it can be 
directly implemented. Finally, it should be noted that 
finding the critical load involves a minimization step in the 
sense that the eigenvalue is obtained for different 
combinations of n, m, and the critical load is the minimum. 
The specific results are presented in the following. 

DISCUSSION OF RESULTS 

The critical loads for pure axial compression, P, are 

given in Tables 1 and 2. The critical loads for pure external 
pressure, p (corresponding to a load interaction parameter 
S = 0.5), are given in Tables 3 and 4. Results for combined 
external pressure and axial compression are presented in 
Tables 5 and 6; the critical condition is defined by the 
external pressure and the axial load (p, P), normalized as: 

3 _ pr 2 
(36)p = £2 h3 ; 

The results were produced for two composites; a typical 
glass/epoxy material with moduli in GN/m2 and 
Poisson's ratios listed below, where I is the radial (r), 2 
is the circumferential (0), and 3 the axial (z) direction: 
£1 = 14.0, £2 = 57.0, £3 = 14.0, GI2 = 5.7, G23 = 5.7, 
G31 = 5.0, VI2 = 0.068, V23 = 0.277, V31 = 0.400, and a 
typical graphite/epoxy material, with moduli: £2 = 140, 
£1 = 9.9, £3 = 9.1, G31 = 5.9, G I2 = 4.7, G23 = 4.3 and 
Poisson's ratios: VI2 = 0.020, V23 = 0.300, V31 = 0.490. It 
has been assumed that the reinforcing direction is along 
the circumferential direction. In all these studies, an 
external radius r2 = I m and a length ratio £/r2 = 5 or 10 
have been assumed. A range of outside versus inside radius, 
r2/ rt from somewhat thin, 1.03, to thick, 1.30, is examined. 

In the shell theory solutions, the radial displacement is 
constant through the thickness and the axial and 
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Table 3 Comparison with shell theories-external pressure circumferential ones have a linear variation, i.e. they are 
in the form: 

Glass/epoxy (orthotropic) with 
circumferentiaJ reinforcement, e/r2 = 10 u,(r,O,z) = UocosnOsin'x'z, 

Critical pressure, p= prV(E2h3
) 

Vj(r,O,z) = [vo+r~R(Vo+nUo)]sinnosin'x'z, (37a) 
Moduli in GN/m2 

: E2 = 57, E, = E3 = 14, 

e 31 = 5.0, e l2 = en = 5.7 Wt (r, 0, z) = [Wo - (r - R)'x'Uol cos nO cos ,x,z, (37b) 

Poisson's ratios: VI2 = 0.068, Vn = 0.277, v31 = 0.400 where Uo, Vo, Wo, are constants (these displacement field 
n = 2, m= I variations would satisfy the classical assumptions of 

err = erIJ = = 0).e rz 
Sanders-type· Timoshenko· A distinct eigenvalue corresponds to each pair of the 

r2/ r, Elasticity (% increase) (% increase) 
positive integers m and n. The pair corresponding to the 

1.05 0.2813 02926 (4.0%) 0.2914 (3.6%) smallest eigenvalue can be determined by trial. As noted 
1.10 0.2744 02973 (8.3%) 0.2962 (7.9%) in the Introduction, one of the classical theories that will
1.15 0.2758 0.3133 (13.6%) 0.3122 (13.2%) 
1.20 0.2764 0.3308 (19.7%) 0.3296 (19.2%) be used for comparison purposes is the non-shallow shell 
1.25 0.2755 0.3485 (265%) 0.3473 (26.1 %) theory based on Sanders-type'O kinematic relations 
1.30 02733 0.3662 (34.0%) 03649 (33.5%) (e.g. ref. 23). The other benchmark shell buckling 
• See Appendix with P = 0 equations used in this paper are the ones described in 

Table 4 Comparison with shell theories-external pressure 

Graphite/epoxy (orthotropic) with circumferential reinforcement, e/r2 = 10 

Critical pressure, p= pd/(E2h3
) 

Moduli in GN/m2
: E2 = 140, E, = 9.9, E3 = 9.1, ell = 5.9, e'2 = 4.7, en = 4.3
 

Poisson's ratios: VI2 = 0.020, v23 = 0.300, V3' = 0.490
 

n = 2, m= I
 

Elasticity Sanders-type Timoshenko 
1'2/1', (n,m) (n,m) (% increase) (n, m) (% increase) 

105 02576 (2,1) 0.2723 (2,1) (5.7%) 02713 (2, I) (5.3%) 
110 02513 (2,1) 02871 (2,1) (14.2%) 0.2861 (2,1) (13,8%) 
1.15 0.2347 (2,2) 0.3037 (2,2) (29.4%) 02995 (2,2) (27.6%) 
1.20 0.2166 (2,3) 0.3183 (2,2) (47.0%) 0.3111 (2,3) (43.6%) 
1.25 0.1978 (2,3) 0.3310 (2,3) (67.3%) 0.3198 (2,4) (61.7%) 
1.30 0.1808 (2,4) 0.3429 (2,4) (897%) 0.3261 (2,5) (80.4%) 

Table 5 Comparison with shell theories-combined external pressure and axial compression 

Glass/epoxy (orthotropic) with circumferential reinforcement, e/1'2 = 5
 

Load interaction parameter (equation (25», S = 5.0
 

Critical loads (equation (36»), (p, P) (n, m)
 

Elasticity 

1.03 (0.5561,03346) (2,1) 

1.05 (0.3014, 02993) (2, I) 

1.10 (0.1971, 03822) (2,1) 

115 (0.1665,0.4730) (2,2) 

1.20 (0.1335,0.4940) (2,2) 

1.25 (0.1167,05278) (1,1) 

Sanders-type· 
(% increase) 

(0.6209, 03736) (2, I) 
(11.7%) 

(0.3435,0.3411) (2,1) 
(14.0%) 

(0.2371,0.4597) (2,1) 
(20.3%) 

(0.2218,0.6300) (2,2) 
(33.2%) 

(0.1909,07067) (2,2) 
(43.0%) 

(0.1753,0.7932) (2,3) 
(50.2%) 

Timoshenko·
 
(% increase)
 

(0.5653, 0.340 I) (2, J)
 
(1.7%)
 

(0.3130,03108) (2,1)
 
(3.8%)
 

(0.2165,0.4198) (2,1)
 
(98%)
 

(0.1886,0.5356) (2,2)
 
(13.3%)
 

(0.1624, 0.6009) (2,2)
 
(21.6%)
 

(0.1241,0.5615) (1,1)
 
(6.3%)
 

• See Appendix 
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Table 6 Comparison with shell theories-combined external pressure and axial compression 

Glass/epoxy (orthotropic) with circumferential reinforcement, £/r2 = 5
 

Load interaction parameter (equation (25», S = J.O
 

Critical loads (equation (36», (ij, P) (n,m)
 

Sanders-type Timoshenko 
r2/r , Elasticity (% increase) (% increase) 

1.03 (0.7311,0.0880) (3, I) (0.7518,0.0905) (3, I) (0.7480,0.0900) (3, I) 
(2.8%) (2.3%) 

1.05 (0.4666, 0.0927) (2, I) (0.4965, 0.0986) (2,1) (0.4829,0.0959) (2,1) 
(6.4%) (3.5%) 

1.10 (0.3038,0.1178) (2,1) (0.3386,0.1313) (2,1) (0.3297,0.1278) (2, I) 
(11.4%) (8.5%) 

1.15 (0.2758, 0.1567) (2,1) (0.3235, 0.1838) (2,1) (0.3152,0.1791) (2,1) 
(17.3%) (14.3%) 

1.20 (0.2659, 0.1968) (2, I) (0.3297, 0.2440) (2,1) (0.3214,0.2379) (2,1) 
(24.0%) (20.9%) 

1.25 (0.2600,0.2353) (2,1) (0.3418, 0.3093) (2, I) (0.3334, 0.3017) (2, I) 
(31.5%) (28.2%) 

ref. II. In these equations, an additional term in the first 
equation, namely -NZ(V,ilz +u,,), and an additional 
term in the second equation, namely R}/jv,zz' exist. 

In the comparison studies we have used an extension 
of the original, isotropic Donne1l9

, Sanders 10 and 
Timoshenko and Gere ll formulations for the case of 
orthotropy. The linear algebraic equations for the 
eigenvalues of both the Sanders-type and Timoshenko­
type formulations are given in more detail in the 
Appendix. 

Concerning the present elasticity formulation, the 
critical load is obtained for a given load interaction 
parameter, S, by finding the solution for p for a range of 
nand m, and keeping the minimum value. The following 
observations can be made: 

•	 For pure axial compression: 

I. The	 bifurcation points from the Timoshenko for­
mulation are always closer to the elasticity predictions 
than the ones from the Sanders-type formulation. 

2.	 For both the orthotropic and the isotropic cases, the 
bifurcation point for the Sanders-type shell theory, is 
always higher than the elastici ty solution, which 
means that the Sanders-type formulation is non­
conservative. Moreover, this Sanders-type shell 
theory becomes, in general, more non-conservative 
with thicker construction. 

3.	 On the contrary, the Timoshenko bifurcation point is 
lower than the elasticity one in all cases considered, 
i.e. the Timoshenko formulation is actually conserva­
tive in predicting stability loss under pure axial 
compression. The degree of conservatism of the 
Timoshenko formulation generally increases for 
thicker shells. 

•	 For pure external pressure: 

I.	 For both the orthotropic material cases, the bifurca­
tion points from both the Sanders-type and ,the 
Timoshenko-type formulations are always higher 

than the elasticity solution, which means that both 
these shell fonnulations are non-conservative. More­
over, they become more non-conservative with 
thicker construction. 

2.	 The bifurcation points from the Timoshenko for­
mulation are always slightly closer to the elasticity 
predictions than the ones from the Sanders-type 
formulation. 

3.	 The degree of non-conservatism is strongly dependen t 
on the material; the shell theories predict much higher 
deviations from the elasticity solution for the gra­
phite/epoxy (which is also noted to have a much 
higher extensional-to-shear modulus ratio). 

•	 For the combined axial compression and external 
pressure: 

It is seen that for the relatively high axial load case, 
S = 5, the Timoshenko equations perform remarkably 
well, approaching closely the elasticity results, espe­
cially for thick construction; the degree of non­
conservatism for these theories is dependent not only 
o.n the material, but also on the load interaction, S. 
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APPENDIX 

Eigenvalues from non-shallow Sanders-type and 
Timoshenko shell formulations 

In the shell theory formulation, the mid-thickness 
(r = R) displacements are in the form: 

UI = Va cos nO sin AZ, 'VI = Va sin nO sin AZ, 

WI = WocosnOcosAz, 

where Va, Va, Wo are constants. 
The equations for the non-shallow shell theory based 

on the Sanders 10 kinematic relations are (Brush and 
Almroth 23 

): 

RNz,z + Nze,e = 0 

Mee 
RNze,z + Ne,e +R + Mze,z = 0 

a Me,eoNe - RNzu zz - RMzzz - -- - 2Mzezn , 'R ' v 

+ NZf3e,e + p(v,e +u) = 0, 

where Rf3e = v - U,e. The Timoshenko shell buckling 
equations il have the additional term -NZ(v,ez +u,z) in 
the first equation, and the additional term R~v,zz in the 
second equation. We have denoted by R the mean shell 
radius and by p the absolute value of the external 
pressure. Notice that the external pressure p would give, 
N~e = 0 and NZ = -pR and the axial compression, P, 
would give ~ = -P/(27rR) = -pSR (where S is the 
load interaction parameter, defined in equation (25)). It 
should be pointed out that in previous work 
(Kardomateas'8), these Sanders-type equations have 
been referred to as the 'non-simplified' Donnell equa­
tions (because the Donnell equations can be directly 
derived from these if some simplifying assumptions are 
made in the kinematic relations). 

In terms of the 'equivalent property' constants: 

Cn = E2h/(1 - V23 V32); C33 = E3h/(1- V23,V32), 

h2 

C44 = G23 h, Dij = Cij 12' 

the coefficient terms in the homogeneous equations 
system that gives the eigenvalues are: 

all = C23 A; aI2 = (C23 + C44 )nA; 
2 

al3 = -(C33 RA2+ C44n /R),
 
2 2
C22 Dnn2 D23 A D44 A )
 

a21 = - R+~+-R-+2-R- n,
( 

2 2 2 
2 D44 A_ (C22 n C RA2 Dn n )an-- ~+ 44 +~+ ~ , 

a23 = (C23 + C44 )nA, 
4 ,2 2 ,2 2C 2 D23 /\-....E. Dnn n D A4R 4D44/\ n 

a31 - R + R3 + R + 33 + R
 

2

Cn Dnn2 D23 A 4D44A2)

a32= -+--+--+ -- n 
- ( R R3 R R' 

a33 = -C23 A. 

Notice that in the above formulas we have used the curva­
ture expression "'ze = (v,z -U,ze )/ R for both theories. 

Then the linear homogeneous equations system that 
gives the eigenvalues for the Timoshenko formulation 
for the case of combined axial compression, P, and 
external pressure, p, is: 
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For the Sanders shell formulation, the additional term in load interaction, S, in general) are naturally found by 
the coefficient of Va in (A2) is ommitted, i.e. the equating to zero the determinant of the coefficients of Va, 
coefficient of Va is only a22 and the additional terms in Va and Wa.' Notice that in the case of combined axial 
the coefficients of Va and Va in equation (A I) are also compression and external pressure, the axial load, P, is 
ommitted, i.e. the coefficient of Va is only all and the expressed in terms of the external pressure, p, through the 
coefficient of Va is only a12. The eigenvalues (for a given load interaction parameter, S, defined in equation (25). 
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