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Abstract— The objective of this paper is to answer the question of how accurately the simple Euler
or transverse shear correction Engesser/Haringx/Timoshenko column buckling formulae are, when
orthotropic composite material and moderate thickness are involved. The column is in the form of
a hollow circular cylinder and the Euler or Timoshenko loads are based on the axial modulus. For
this purpose, a three-dimensional elasticity solution 1s presented. As an example, the cases of an
orthotropic material with stiffness constants typical of glass/epoxy or graphite/epoxy and the
reinforcing direction along the periphery or along the cylinder axis are considered. First, it is found
that the elasticity approach predicts in all cases u lower than the Fuler value critical load. Moreover,
the degree of non-conservatism of the Euler formula is strongly dependent on the reinforcing
direction ; the axially reinforced columns show the highest deviation from the elasticity value. The
degree of non-conservatism of the Euler load for the circumferentially reinforced columns is much
smaller and 1s comparable to that of isotropic columns. Second. the Engesser or first Timoshenko
shear correction formula is in all cases examined conservative, i.e., it predicts a lower critical load
than the elasticity solution, The Haringx or second Timoshenko shear correction lormula 1s in most
cases (but not always) conservative. However, in all cases considered, the second estimate is always
closer to the elasticity solution than the first one. For the isotropic case both Timoshenko formulas
are conservative estimates. Examination of a new formula for column buckling that adds a second
term to the Euler load expression and is supposed to account for thickness effects, shows that this
estimate is a non-conservative estimate but performs very well with very thick sections, being closest
to the elasticity solution, but in general no better than the Timoshenko formulas for moderate
thickness. Copyright © 1966 Elsevier Science Ltd

I. INTRODUCTION

The thrust of the initial applications of fiber reinforced composite materials was thin plate
construction for aircraft parts. However, much attention is now being paid to configurations
classified as moderately thick column-type structures. Such designs can be used, for example,
as support members in civil and offshore structures, as well as for suspension and powertrain
components in automobiles. Moreover, composite laminates have been considered in space
vehicles in the form of circular cylinders as a primary load carrying structure.

In composite structural members, the buckling strength is an important design par-
ameter because of the large strength-to-weight ratio and the lack of extensive plastic yielding
in these materials. The case of a slender, ideal column, which is built in vertically at the
base, free at the upper end, and subjected to an axial force P, constitutes the first problem
of bifurcation buckling. the one that was originally solved by Euler (1744, 1933). The Euler
solution is based on the well known Euler-Bernoulli assumptions (i.e., plane sections remain
plane after bending, no effect of transverse shear) and for an isotropic elastic material.
Nontrivial solutions (nonzero transverse deflections) are then sought for the equations
governing bending of the column under an axial compressive load, and subject to the
particular set of boundary conditions ; thus, the problem is reduced to an eigen-boundary-
value problem (e.g., Simitses, 1986).

Columns made out of composite materials for structural applications are envisioned
in the form of a hollow cylinder of moderate thickness, produced mainly by filament
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winding or pultrusion. Composite materials have one important distinguishing feature,
namely extensional-to-shear modulus ratio much larger than that of their metal counter-
parts. The resulting effects of transverse shear may render the calculations of the critical load
from simple classical column formulas highly non-conservative. Morcover, an additional
deviation is expected because composites are anisotropic and these classical column for-
mulae are based on isotropic material assumption. The objective of the present paper is to
investigate the extent to which the classical Euler load represents the critical load, as derived
by three dimensional elasticity analyses for a generally orthotropic rod with no restrictive
assumptions regarding the cross sectional dimensions.

In a related article, Kardomateas (1993a) presented a three-dimensional elasticity
formulation and solution for the problem of buckling of cylindrical orthotropic shells
subjected to external pressure. It was shown that the critical load predicted by shell theory
can be quite non-conservative for thick construction. This work was based on the sim-
plifying assumption that the pre-buckling stress and displacement field was axisymmetric,
and the buckling modes were assumed two dimensional (ring assumption). i.e., no z (axial)
component of the displacement field, and no z-dependence of the r and 6 displacement
components. In a subsequent article, Kardomateas and Chung (1994) presented a solution
that relaxes this ring approximation, i.e., based on a nonzero axial displacement and a full
dependence of the buckling modes on the three coordinates.

Another investigation of the thickness effects was conducted by Kardomateas (1993b)
for the case of a transversely 1sotropic thick cylindrical shell under axial compression. The
reason for restricting the material to transversely isotropic was the desire to produce closed
form analytical solutions. In a subsequent paper (Kardomateas, 1995a), the study was
extended to the case of a generally orthotropic moderately thick shell under axial
compression. A comparison with various shell theories showed that for the isotropic
material cases considered, both the Fligge (1960) and Danielson and Simmonds (1969)
shell theories predicted critical loads much closer to the elasticity value than the Donnell
(Brush and Almroth, 1975) theory : the elasticity approach predicted a lower critical load
than all these classical shell theories, the percentage reduction being larger with increasing
thickness. However, in that study, an additional shell theory. namely that of Timoshenko
and Gere (1961), was examined. It was found that for both the orthotropic and the isotropic
material cases, the Timoshenko bifurcation points are lower than the elasticity ones. This
means that the Timoshenko formulation is conservative, unlike all the other shell theories
examined.

Finite element studies for thick and/or laminated beam structures are also an object
of current interest. Improved kinematic approaches are called for because the classical
beam assumptions which postulate that planes normal to the beam axis before deformation
retain their planeness and normality, are violated. A variety of elements, based primarily
on an assumed high order in terms of thickness power have been proposed in the literature.
Recent work by Sheinman er al. (1995) on the buckling of laminated plane frames has
shown that the first order model with an appropriate shear correction factor vields results
close to its higher-order counterparts. The study presented in this paper can be used as a
benchmark for evaluating the performance of various finite element formulations in pre-
dicting column buckling.

Regarding the formulas for the stability loss of elastic bars. the only alternative direct
expressions to the Euler load that exist in the literature are two formulas described by
Timoshenko and Gere (1961). These are actually the Engesser (1891) and Haringx (1948,
49) formulae (Haringx obtained the formula in connection with helical springs and Timo-
shenko applied Haringx’s approach to bars; Timoshenko also referred to the Haringx
analysis as the “modified” approach). These two formulas will also be referred to in this
paper as the first and second Timoshenko shear correction formulae. These formulae were
intended tc account for the influence of transverse shearing forces. The specific load
expressions, denoted by P, and Py, are given in the Results section. Despite the simplicity
of the derivation of these formulas, it will be seen that they perform remarkably well in
accounting for the thickness effects as well as for the effects of a low ratio of shear versus
extensional modulus.
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In a more recent study, Kardomateas (1995b) conducted a study on the buckling of
solid transversely isotropic rods. By performing a series expansion of the terms of the
resulting characteristic equation from the elasticity formulation for the isotropic case, the
Euler load was proven to be the solution in the first approximation ; consideration of the
second approximation gave direct expression for the correction to the Euler load, therefore
defining a new, yet simple formula for column buckling, which herein will be referred to as
the Euler load with a second term.

In view of possible structural applications of anisotropic columns with sizable thick-
ness, it is desirable to conduct a comprehensive study of the performance of the Euler and
Engesser/Haringx/Timoshenko column buckling formulae. Therefore, the study conducted
in this paper includes specific results for the critical load and the buckling modes of a
cylindrical column in the form of a hollow cylinder under axial compression for various
ratios of length over external radius, L/R,, and ratios of external over internal radii, R,/R,.
The effect of the material orthotropy is examined by considering two material cases:
glass/epoxy and graphite/epoxy, and with reinforcing direction either along the cir-
cumferential (6) or along the axial (z) direction.

Again, the non-linear three dimensional theory of elasticity is appropriately formu-
lated, and reduced to a standard eigenvalue problem for ordinary linear differential equa-
tions in terms of a single variable (the radial distance r), with the applied axial load P the
parameter. The formulation employs the exact elasticity solution by Lekhnitskii (1963) for
the pre-buckling state. A full dependence on r, 6 and z of the buckling modes is assumed.
The results from the elasticity formulation will be compared with the classical Euler load
predictions and with the Engesser or Haringx column buckling with transverse shear
correction formulas which are described in Timoshenko and Gere’s (1961), as well as with
the Euler load with a second term, as derived by Kardomateas (1995b). To this extent, the
present paper also extends the latter one by treating the case of orthotropy rather than
transverse isotropy and the more practical tubular section rather than a solid circular one.

2. FORMULATION

The equilibrium of a column, considered as a three dimensional elastic body, can be
described in terms of the second Piola-Kirchhoff stress tensor X in the form

div (Z+FT) = 0, (1a)
where F is the deformation gradient defined by
F = I4gradV, (1b)

where V is the displacement vector and | is the identity tensor.
Notice that the strain tensor is defined by

|
E=;F"F-I). (1)
Since we consider a circular section, we can employ cylindrical coordinates and we can
specifically write the components of the deformation gradient F in terms of the linear

strains:

du 1dv u
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and the linear rotations:
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At the critical load there are two possible infinitely close positions of equilibrium.
Denoting by u,, vy, w, the r, 8 and z components of the displacement corresponding to the
primary position, a perturbed position is denoted by

U=uytou ; v="0U+0o0,; W=wy+aw,, (4a)

where « is an infinitesimally small quantity. Here, au,(r, 0. z), 2v,(r, 8, z), 2w (r. 0, z) are the
displacements to which the points of the body must be subjected to shift them from the
initial position of equilibrium to the new equilibrium position. The functions u,(r, 8, z),
v,(r. 0, z), w,(r, 6, z) are assumed finite and « is an infinitesimally small quantity independent
of r, 8, z. Also, notice that, as was shown in Kardomateas (1993a), the linear strains (2)
rather than the nonlinear ones can be used in the first order problem.

Substituting into the strain-displacement relations and then using the orthotropic stress
strain relations gives

(] ’ . 0 ’
e;=eytae,+...; o0;=0;+ac;+ ... (4b)

Following Kardomateas (1993a), we obtain the following buckling equations :

0 / 0 ¥ g i 73 IF s (4] ’ 0 ’
E{; (arr — T G rrzwf).) 1= F ;TO (Trt) —OpW- + Tf)za)g)

&
¢ ¥ g, Aes g , ,
+ E’ (T:: i ‘C((”:(UIZ + 69:(')0) ST r (O—rr U 0-,90 + Ti(’)zw,G i 7.'3:(0, - 21',(.)90)2) = 0’ (Sa)
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0 1
+ = (the + 100, —0lw)+ ~ Rt +olw. —ofw. +1h.wy—1lw!) =0, (5b)
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é 0
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0

In the previous equations, of; and w] are the values of ¢,;and w; at the initial equilibrium
position, i.e., for u = uy, v = v, and w = w,, and ¢; and w| are the values at the perturbed
position, L.e., for u = u, v = v, and w = w,.

The boundary conditions associated with (l1a) can be expressed as:

(F-Z7) N = t(V), (6)

where t is the traction vector on the surface which has outward unit normal N = (I, i, i)
before any deformation. The traction vector t depends on the displacement field
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Fig. I. Axially compressed column in the form of a hollow cylinder.

V =(u,v,w). Again, following Kardomateas (1993a), we obtain for the lateral and end
surfaces :

(O—;r - 'C?g(l); + I?zwz?)i_’" ('C:(, —O—(())G(’); 7 Tz(}:U)'e)lfl + (T;z - ng(l); T O'S:Cl);;)ﬁ = 0, (73)
(tr9+ 050, — L)+ (07 + thw! — th.w)f + (1), +1hw, — ohw)i = 0, (7b)
(t7: + T, — op o)+ (T4, + 00, — Trpwe) M+ (07, + 1.0, — Th.wp)ii = 0. (7¢)

2.1. Pre-buckling state

The problem under consideration is that of an orthotropic hollow cylinder compressed
by an axial force applied at one end. The stress-strain relations for the orthotropic body
are

(cr,,_ (Cn Ci2 Ci3 0 0 &
Tgo Cia €22 (23 0 0 £00
02z €3 €3 ¢z 0 0 0 €.
wl| 1o o ca 0 0| |7l ®)
Ty R0 ™ W NG g ¥,
L Tro | L 0, 8. 0, .0 el |9l

where ¢; are the stiffness constants (we have used the notation 1 =r,2=6, 3 = z).

Let R, be the internal and R, the external radius (Fig. 1).

Lekhnitskii (1963) gave the stress field for an applied compressive load of absolute
value P, in terms of the quantities:

P T _“j‘. (92)
Ayrdy3 —dz;
(ays —ay5)as,

(a—ay)as;+ (‘1%3 —at;)

h= (9b)
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2nA] R3— R} (R = RA)? 0y +kays
2 R R k+1

_&"—'R’f I)Z(Rle)Zflz_—kazi (9¢)
R — R k=1 |

The stress field for orthotropy is as follows :

0% = P(Co+Ci*~" + Cor ™Y, (10a)
ol = P(Cy+ Ciler*= — CRr*=1; (10b)
agz—;—%qmzf“ a“jf”‘*+qﬂ%fﬁr“), (10¢)
T =T = Tg: = 0, (10d)
where

Co= B o _RE-RYE (10¢)

7 RE—RF T
C2=Ri;:§;lUQRg“‘%. (10f)

Notice that for general orthotropy, both ¢’ and ¢, are non-zero. For an isotropic or
transversely isotropic body, these two stress components are zero.
In the previous equations a;; are the compliance constants, i.e.,

&, Haqintays iy 0 0 o
] iy dy Ay 0 0 Tog
& _ ;3 43 Qa 0 0 Oz ' (an
Yoo 0 0 0 au O 0 T
1z 0 0 0 a5 O T
| Vo | 1 0 0 0 0 0 ag| L710]

2.2. Perturbed state

Using the constitutive relations (8) for the stresses ¢, in terms of the strains e, the
strain-displacement relations (2) for the strains e}, and the rotations ) in terms of the
displacements u,, v,, w,, and taking into account (10), the buckling eqn (5a) for the problem
at hand is written in terms of the displacements at the perturbed state as follows:

0 0
Uy, U Opo \ ¥1,00 0.

Cit{ Ui+ =Cra T T Cee T 5 ) T s+ 5
r | 2 rz 2

0 0
Tog \ U1 r0 TGoo \ U1 0
+<CIZ+C66— >}' —\¢ss+Ces T+ —

2 2/,

0

oL W .
+ (CIJ + 55— 'i‘)“’j,a*‘(ﬁ} —sz)’,l_”‘ =0. (l2a)

The second buckling eqn (5b) gives:
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ay v, v\, (05—00\( Vi, ¥ U100
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| Caat 5 Prat| s HCo——F J— 1| t+C2t 5 |

2 2 r 2 /2

Wy p- 1 do?, Uy Uyg
) B <z,l‘,+ L) =0, (12b)

a’.
+ | CaztCag— 3

In a similar fashion, the third buckling eqn (5c) gives:

0 0
Oy Wi, Goo \ W00
(C55+ ) )(Wl‘”.-f— 2 + | aat S - +C33Wy -
P r“

o, oo\ Uy -
+ C13+C55"2’ Uyt | Ca3+C55— 2 ),

et raer. . Ll
fonrea B G =0 20

In the perturbed position, we seek equilibrium modes in the form:

w,(r, 6, 7) = U(r) cos fsin ”[—‘ 0,(r,0,2) = V() sinesin’iLZ ,

w,(r.0,2) = W(r) cochosnIZ . (13)

where the functions U(r), V(r), W(r) are uniquely determined. These equilibrium modes
are the “column type™ buckling modes of a single axial half-wave and circumferential wave.
Figure | shows the geometry of the structure. Notice that the rigid end caps in the figure
would simulate the {reedom of nearly-rigid rotation (tilting) of the ends, which would most
closely represent the displacement field in eqn (13) and, furthermore, would most closely
represent the effect of the surrounding/connecting structure.

The equilibrium modes in eqn (13) are a special case of the general shell buckling
modes :

u,(r,0,2z) = U(r) cosnf sin"f—:: v((r,0,2z) = V(r) sin nfsin !nz,
wy (r,8,2) = W(r) cos nf cos mLLZ - (13a)

which had been considered in the three-dimensional elasticity shell buckling formulation
of Kardomateas (1995a).

Notice that these modes correspond to the condition of “*simply supported™ ends since
u, varies as sin Az and

d?u,

d..2

Ty == =0 atz=0;L.

Let now UP(r), V(r) and W(r) denote the i-th derivative of U(r), V(r) and W(r)
respectively, with the additional notation U(r) = U(r), V'(r) = V(r) and WO(r) = W(r).
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Substituting in (12a), we obtain the following linear homogeneous ordinary differential
equation:

U(r)'c,, + U(r) C; L U@ [(Boo+boy P)r= 2+ boy P2 + by Pr* 3
+(boa +bos P) +bog Pr=" + by, Pro*~1]

|
+ Z Vw(")[(dio+di1P)"i—2+d12P"k_3+i+d13P"_k7]+[]
i=0

L
£ X WOD U+ P~ +faPA P =0 R <7< Re (142)
i=0

The second differential eqn (12b) gives:

V(N(Gos +GosP)+Gos Pr " +go, Pr ]

+ 2 V(O(r)[(gio _+_gllP)rl—2 +gi2P}.k—3+i+gl_3Pr-k_2+i]
-0

1
o+ Z U(i)(r)[(hio +hi|P)ri_2+h/2P"k_3+i+hz'3Prik¥3H]
i=0
+ W) (too+ to PYr~" + 12 P2 +15: Pr/*21 =0 R, <r<R,. (14b)

In a similar fashion, (12¢) gives:
2 [ i 1 =
W(r)%4 + Z W(')(r)[(ql.o +gn P)r:—z +ql_2P'.k— }T’_}_qi} pPr—k-3 “]
w0

1
+ Y UP(N)(si0 + 50 P~ 45, Pr M 55 Pr¥—241]
i=0
+ V(") [(Boo+Bo1 P)r~' + B2 Pr* >+ Bos Pr*"1=0 R <r<R, (l40)

All the previous three eqns (14) are linear, homogeneous, ordinary differential equa-
tions of the second order for U(r), ¥(r) and W(r). In these equations, the constants b,;, d,;,
Jo» 9 By tys qiy, S and B, are given in the Appendix and depend on the material stiffness
coefficients ¢, and k.

Now we proceed to the boundary conditions on the lateral surfaces r = R, j =1, 2.
These will complete the formulation of the eigenvalue problem for the critical load.

From (7), we obtain fori=+1,m=h0=0:
O-xlrr = O; t;6+0-9rw; == 0’ T:‘:_Gl(')rw;? = 05 atr = RlaRZ' (15)

Substituting in (8), (2), (13), and (10), the boundary condition g;, =0 atr =R, j= 1,2
gives:

i

—tuy W(R) =0, j=12 (16a)

UR)er +[UR)+V(R) 5

The boundary condition 7/, +o{w. = 0 atr = R, j = 1.2 gives
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& £ c
V(R)| [ cos+—P |+ —= PR+ =2 PR *!
2 2 2
G

C C
+[V(R)+ U(R)][(—c(,(, + = P)Rj"’ + PRY 24 5

5 3 PR;k'Z} j=1.2. (l6b)

In a similar fashion, the condition 7. —c%w) =0 atr = R, j = 1,2 gives:
o J g

% Co Ci ppi-1_C2 pp ko
U(R,)L[((‘;;— s P)— LPRY-1— =2 pR;

C G o
+W’(R,.)[<c55+2°P>+7'PR;‘ ‘+-2“ PR,“”‘} j=12. (16c)

Equations (14) and (16) constitute an eigenvalue problem for differential equations,
with the applied compressive load P the parameter, which can be solved by standard
numerical methods (two point boundary value problem).

Before discussing the numerical procedure used for solving this eigenvalue problem,
one final point will be addressed. To completely satisfy all the elasticity requirements, we
should discuss ihe boundary conditions at the ends. From (7), the boundary conditions on
the ends are:

T, 400w =0; 15,—0%w;=0; 0,=0, atz=0,L. (17)

Since ¢’,. varies as sin(x/L)z, the condition ¢’. = 0 on both the lower end z = 0, and
the upper end z = L, is satisfied.

In a cartesian coordinate system (X, y, z), the first two of the conditions in (17) can be
written as follows:

T./rz_l_agzw; = 07 T;Z_O'SZCU; =0. (18)

It will be proved now that these remaining two conditions are satisfied on the average. At
this point, it should be noted that for some of the boundary conditions, a form of resultant
instead of pointwise conditions has been frequently used in elasticity treatments, and can
be considered as based on some form of the Saint-Venant’s principle. For this reason, they
are sometimes referred to as relaxed end conditions of the Saint-Venant type (Horgan,
1989).

Now, the lateral surface boundary conditions in the cartesian coordinate system
[analogous to (7)], with N the normal to the circular contour are :

(0 — 1% l) cos(N, x) + (z7, —a},0l) cos(N, y) = 0, (19a)

(', +aw’) cos(N, x) + (o), + 10,00) cos(N, y) = 0. (19b)

Using the equilibrium equation in cartesian coordinates [analogous to (5)], gives
0 ¢ illint S e Gl
Al (sz+0-::0)y) d4d = — A (o-x.\'_txr(uz) T A, (rxy_o—vy(j)z) d4. (203)
Iz ] 1 .| Ox . dy ;

Using now the divergence theorem for transformation of an area integral into a contour
integral, and the condition (19a) on the contour, gives the previous integral as
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—J (67 — To,2) cos(N, x) + (1}, — o5,w?) cos(N, )] ds = 0,

where 4 denotes the area of the annular cross section and y the corresponding contour.
Therefore

J ( (t'+0%w))dA4 = const. (20b)
JA

’

Since based on the buckling modes (13), /., @}, 7. and w; and hence 1., w), 7). and w},
all have a cos(nz/L) variation, they become zero at z = L/2. Therefore, it is concluded that
the constant in (20b) is zero. Similar arguments hold for ..

Moreover. it can also be proved that the system of resultant stresses (18) would
produce no torsional moment. Indeed,

0 i o(t), + 0’ w
” [x(t}: — 0%0}) =yt + 0%0))] dA = —j J H‘ Vi Pt
A A

0x

ay 0

o(a’, + 10w Hote— ol Bt —od W]

Aot foe—ther) | oo,
0x dy

Again, using the divergence theorem, and taking into account (19), the previous integral

becomes:

- J {x[(z}, + 0200) cos(N, x) + (a7, + 10, ?) cos(N, y)]

— (o =120 cos(N, x) + (v}, — ol w) cos(N, )]} ds = 0,  (2la)

hence
j[ [x(1}. —a2w,) — y(tl. + 6%w})] d4 = const, (21b)
A

and this constant is again zero since 7. = 7,. = @, = @, = 0atz = L/2.

As has already been stated, eqns (14) and (16) constitute an eigenvalue problem for
ordinary second order linear differential equations in the r variable, with the applied
compressive load P the parameter. This is essentially a standard two point boundary value
problem. The relaxation method was used (Press ez al., 1989) which is essentially based on
replacing the system of ordinary differential equations by a set of finite difference equations
on a grid of points that spans the entire thickness of the section. For this purpose, an
equally spaced mesh of 241 points was employed and the procedure turned out to be highly
efficient with rapid convergence. As an initial guess for the iteration process, the classical
column theory solution was used. In the solution scheme, seven functions of r are defined
as: y=U, o =U, =V, ys=V,ys= W, yo= W and y, = P. The seven differential
equations are: y; = v,, eqn (14a), y5 = y,, eqn (14b), p5 = yg, eqn (l4c), and y5 = 0. The
corresponding seven boundary conditions are: atr = R,eqns (16a,b,c);atr= R, U =1.0;
and at r = R, eqns (16a, b, c). The solution gives the eigenfunctions y,. y;, and ys, as well
as the eigenvalue y;.

An investigation of the convergence showed that essentially the same results were
produced with even three times as many mesh points. It is also first verified that the structure
behaves as a column rather than a shell (which would buckle at multipie axial half-waves
or circumferential waves). This is accomplished by considering the structure as a shell and
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using the Kardomateas (1995a) solution to find if it would buck!e at multiple axial half-
waves or multiple circumferential waves. Finally, consideration of n =0, m =1 in eqn
(13a) gives in all cases eigenvalues higher than for n = 1, m = 1 (which is the characteristic
column buckling case).

3. DISCUSSION OF RESULTS

The Euler critical load for a compressed simply-supported column is:

anj{l

Py = o = EyiY A= 22)

where 7 is the moment of inertia of the cross section.

Timoshenko describes two formulae that provide a correction to the Euler load due
to the influence of transverse shearing forces. These formulae for the critical load, P, and
P, are (Timoshenko and Gere, 1961):

P — PEqu (23)
N PP, |AGT
/1+4BP .| AG—1
Pr‘ . N + ﬁ LA’.’,J T (24)

# 2B/AG

where f is a numerical factor depending on the shape of the transverse section, A4 is the
cross sectional area [=m(R3 — R?})], and G is the shear modulus. For a tubular cross section,
B = 2.0 (Gere and Timoshenko, 1990).

The first formula P, is actually the Engesser (1891) formula and second one P, is
the formula obtained by Haringx (1948, 49) in connection with helical springs and applied
by Timoshenko to bars.

By performing a series expansion of the terms of the resulting characteristic equation
from the elasticity formulation for an isotropic column of solid circular cross section,
Kardomateas (1995b) proved that the Euler load is the solution in the first approximation ;
consideration of the second approximation gave a direct expression for the correction to
the Euler load, therefore defining a revised, yet simple formula for column buckling.
Although this formula was derived by considering a solid cylinder, it can be heuristically
extended for the case of a hollow cylinder. In terms of

T=n/ia=" [Ri=Ri (25a)
= A / / _—— o a
N LN RI— R}
and the Poisson’s ratio, vs,. the Euler load with a second term is:
Po = PE -2 Y (25b)
16(1—v3,)
where
% = o B—8— %(5+ 2y +1202,), (25¢)

and
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& 4
A=16+ % (20+8vy, +48v2,) + ;ié (409 +212v5, — 356v3, — 48y, + 144v4,). (25d)

Results are produced for two common polymeric composites, namely the mildly
orthotropic glass/epoxy and the strongly orthotropic graphic/epoxy. The elastic constants
of the materials are given in the tables of the results, with the notation: 1, the radial (r), 2,
the circumferential (f) and 3, the axial (z) directions. Two reinforcing configurations are
considered with each material, namely along the circumferential (8) or along the axial (z)
direction.

Regarding the glass/epoxy material, Tables 1a and 1b give the predictions of the Euler,
Ptuer» the Engesser/Haringx/Timoshenko P, and P;., and the Euler with a second term,
P, formulae, as a ratio over the elasticity solution, P,,,,, for radii ratio R,/R, = 1.20, and
column length ratios, L/R,, ranging from 10 to 20. Tables 2a and 2b give the same data for
graphite/epoxy material and Table 3 for isotropic material with Poisson’s ratio v = 0.300.

Table 1. (a) Comparison with column buckling formulae. Glass/Epoxy with axial reinforcement, R,/R, = 1.20
(R, =1.0 m); moduli in GN/m*: E,=E, =14, E; =57, Gy, = 5.7, G, = 5.0, G- = 5.7; Poisson’s ratios:
v, = 0.400, v3 = 0.068, v;, = 0.277

L/R, Ytee! Pesast PhatlPosg PP PLolPoius
10 1.598 0.870 1.036 1.502
12 1.414 0.894 1.002 1.354
14 1.304 0914 0.986 1.263
16 1.232 0.929 0.978 1.203
18 1.183 0.941 0.976 [.161
20 1.149 0.950 0.975 1.131

T Column buckling formulae are based on the axial modulus; Euler load, eqn (22); Engesser and Haringx
(also referred to as Timoshenko first and second formulas), eqns (23,24) with § = 2.0; Euler formula with a
second term. eqns (25).

Table 1. (b) Comparison with column buckling formulae. Glass/epoxy with circumferential reinforcement,
Ry/R, =120 (R, = 1.0 m); moduli in GN/m?: E, =57, E, = E; = 14, G;, = 5.0, G, = G»; = 5.7; Poisson’s
ratios: vy, = 0.068, v,; = 0.277, v;, = 0.400

LiR, P}zw‘rr“Pﬂ!{zsl P;'l Piiai P.I:"Pr.'u'l P'L.‘ ‘IP.mv
10 1.145 0.950 0.974 1.081
12 [.100 0.963 0.976 1.057
14 1.073 0.971 0.979 1.042
16 1.056 0.977 0.982 1.032
18 1.044 0.982 0.985 1.025
20 1.035 0.985 0.987 1.020

+ Column buckling formulae are based on the axial modulus: Euler load, eqn (22) ; Engesser and Haringx
(also referred to as Timoshenko first and second formulas), eqns (23,24) with = 2.0; Euler formula with a
second term, eqgns (25).

Table 2. (a) Comparison with column buckling formulae. Graphite/Epoxy with axial reinforcement, R./R, = 1.20
(R, = 1.0m); moduliin GN/m?: E, = 9.1, E, = 9.9, E; = 140.0, G5, = 4.7, G;» = 5.9, Go; = 4.3 ; Poisson's ratios:
v = 0.533, vy = 0,020, vy = 0.283

L/R, :h-.'m‘P, dast P;'| 1Bt P'r; Petast P;-,z P
10 (3.948) (1.061) (1.775) (3.711) Buckles as a shell (2,3)%
12 (2.751) (0.952) (1.401) (2.634) Buckles as a shell (2,3)1
14 (2.023) (0.847) (1.136) (1.959) Buckles as a shell (2,4)1
16 1.774 0.860 1.078 1.731
18 1.612 0.876 1.044 1.581
20 1.495 0.890 1.021 1.472

1 Column buckling formulae are based on the axial modulus; Euler load, eqn (22); Engesser and Haringx
(also referred to as Timoshenko first and second formulas), equs (23,24) with f = 2.0; Euler formula with a
second term, eqns (25).

1(n,m) in eqn (13a) for the buckled modes.
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Table 2. (b) Comparison with column buckling formulae. Graphite/Epoxy with circumferential reinforcement,
Ry/R =120 (R, = 1.0 m); moduli in GN/m*: E, = 140, E, =99, E;=9.1, G5, =59, G, =47, G,; =43,
Poisson’s ratios: v, = 0.020, v,, = 0.300, v;, = 0.490

L/R, Plvtor] Petase P [Py Pl /Py P/ Potau
10 1.121 0.952 0.972 1.060
12 1.081 0.963 0.974 1.040
14 1.058 0.970 0.976 1.028
16 1.042 0.975 0.979 1.020
18 1.032 0.978 0.981 1.014
20 1.024 0.981 0.982 1.010
+ Column buckling formulae are based on the axial modulus; Euler load. eqn (22) : Engesser and Haringx

(also referred to as Timoshenko first and second formulas), eqns (23.24) with ff = 2.0 Euler formula with a
second term. eqns (25).

Table 3. Comparison with column buckling formulae. [sotropic, v = 0.300, R,/R, = 1.20 (R, = 1.0 m)

L/R, Potee Potine P Pt PP PLa/ P
10 1.137 0.934 0.960 1.068
12 1.095 0.951 0.966 1.048
14 1.069 0.963 0.972 1.036
16 1.653 0.971 0.976 1.028
18 1.042 0.976 0.980 1.022
20 1.034 0.981 0.983 [.018

+ Euler load, eqn (22); Engesser and Haringx (also referred to as Timoshenko first and second formulas),
eqns (23, 24) with f = 2.0; Euler formula with a second term, eqns (25).

The calculations for the critical loads from these formulas are based on the axial modulus,
E5. Finally, Table 4 performs an investigation of the effects of thickness by considering
graphite/epoxy with circumferential reinforcement, a fixed length ratio /R, = 10, and radii
ratios R,/ R, ranging from 1.10 to 1.80. In all cases the external radius was kept constant at
R, = 1.0 m. Specific conclusions from these results follow in the next section.

More insight into the variation of the critical load can be obtained from Figs 2 and 3,
in which we have plotted the critical load vs the column length from all the different
formulae, in comparison with the elasticity solution, for glass/epoxy with either cir-
cumferential or axial reinforcement. Data below the unit line are conservative estimates.

It should be emphasized at this point that the present paper is a single column-
type mode treatment of a perfect rod, and compares with the Euler and Engesser/
Haringx/Timoshenko formulae, which are also derived for a single-mode perfect rod;
furthermore, all these treatments refer to the buckling (and not the post-critical) behavior.
If the postbuckling behavior of the imperfect column were to be studied, however, mode
interaction may become an issue for certain geometries for which shell-type phenomena

Table 4. Effect of thickness. Graphite/Epoxy with circumferential reinforcement, R./R, = 10 (R, = 1.0 m); moduli
inGN/m’; E; = 140, E, = 9.9, E, =9.1,G;, = 5.9, G, = 4.7, G»; = 4.3 ; Poisson’s ratios : v;» = 0.020, v5; = 0.300,

vy, = 0.490
L/R- Pliter Pt Ph [P Pp/P Ph/P
1.10 1.128 0.956 0.978 1.072
[.15 1.129 0.954 0.975 1.066
1.20 1.121 0.952 0.972 1.060
128 1.112 0.950 0.968 1.054
1.30 1.104 0.947 0.964 1.048
135 1.097 0.944 0.961 1.042
1.40 1.090 0.941 0.957 1.037
1.45 1.083 0.939 0.954 1.032
1.50 1.077 0.936 0.951 1.027

1 Column buckling formulas are based on the axial modulus; Euler load, eqn (22); Engesser and Haringx
(also referred to as Timoshenko first and second formulas), eqns (23,24) with f = 2.0; Euler formula with a
second term. eqns (25).
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Fig. 2. The critical load from the Euler (PEuler), the Engesser or first Timoshenko (PT1), the

Haringx or second Timoshenko (PT2), and the Euler with a second term (PE2) formulas, in

comparison with the elasticity solution (Pelast) for the case of glass/Epoxy material with cir-
cumlerential reinforcement. Data below the unit line are conservative estimates.
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Fig. 3. The critical load from the Euler (PEuler), the Engesser or first Timoshenko (PT1), the
Haringx or second Timoshenko (PT2), the Euler with a second term (PE2) formulas, in comparison
with the elasticity solution (Pelast) for the case of glass/epoxy material with axial reinforcement.

could appear. In particular, it is well known that for imperfection-sensitive shells, there
may exist several different buckling modes associated with the same or nearly the same
critical load. Consequently, the different buckling modes may interact during the postcritical
response and that may even cause the buckling modes to change from one mode to another
at large deflections (e.g., the Yoshimura (1955) pattern). Other complicated interaction
phenomena during post-buckling are those of the purely flexural and flexural-torsional
overall modes of buckling with local buckling in thin walled columns (e.g., Ali and Srid-

haran, 1988).
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Another important issue is that of the relation of compression strength to buckling
strength. Indeed, in practical applications, the strength in compression has to be considered
in conjunction with the results on the critical load, since compressive failure may precede
buckling. For example, for the graphite epoxy with circumlerential reinforcement (Table
2b), assuming a typical compressive strength of ¢, = 0.246 GPa, the critical load P, is
below the load corresponding to the compressive strength ¢, for length ratios ./ R, beyond
12, which means that buckling would precede compressive failure. In some of the other
configurations, compressive failure would precede buckling. Although this simple cal-
culation does not take into account the complex phenomena of composite failure that would
involve among others, the influence of layer/fiber waviness, it illustrates the importance of
considering buckling in compressively loaded composite structures.

Next follows a list of conclusions, drawn from the results of Tables 1-4 and Figs 2-3.

4. CONCLUSIONS

(1) In all cases the elasticity solution predicts a lower than the Euler value critical load,
1.€., Pr,. 18 @ non-conservative estimate. Moreover, the degree of non-conservatism of
the Euler formula is strongly dependent on the reinforcing direction; the axially
reinforced columns show the highest deviation from the elasticity value. The degree of
non-conservatism of the Euler load for the circumferentially reinforced columns is
much smaller and is comparable to that of isotropic columns.

(2) The strongly orthotropic graphite/epoxy material shows much higher deviations from
the elasticity solution than the glass/epoxy in the axially reinforced configuration;
however the deviations from the elasticity solution for both the graphite/epoxy and
glass/epoxy are comparable in the circumferentially reinforced case.

(3) For the small length ratios (L/R, between 10 and 14), the graphite/epoxy with axial
reinforcement buckles as a shell, i.e., with n and m in eqn (13a) different than unity;
this is not the case with the glass/epoxy material.

(4) The Engesser shear correction formula (also referred to in this paper as the first
Timoshenko formula) is in all cases examined conservative, i.e., it predicts a lower
critical load than the ¢lasticity solution.

(5) The Haringx shear correction formula (also referred to in this paper as the second
Timoshenko formula) is in most cases (but not always) conservative. For the isotropic
case (Table 3) it 1s conservative. However, for a strongly orthotropic material (gra-
phite/epoxy with axial reinforcement, Table 2a) or for relatively short columns (Table
la) it may be non-conservative. Also, in all cases considered, the Haringx (second
Timoshenko) shear correction estimate is always closer to the elasticity solution than
the first one. The tubular shape shear factor § = 2.0 has been used in both shear
correction formulae (23), (24).

(6) The Euler load with a second term formula, egn (25b), which is supposed to account
for thickness effects, is a non-conservative estimate; it performs very well with very
thick sections (Table 4), being closest to the elasticity value, but in general no better
than the Engesser/Haringx/Timoshenko formulas for moderate thickness. Both the
Euler and the Euler with a second term formulas improve their predictions (i.e., they
are closer to the elasticity solution) with increased thickness ; this is because shell effects
would appear for smaller thicknesses.
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APPENDIX
For convenience define
B 1 c dyq 4 e Al
e = S Wl
s +-ka, ay;—kas,
D =—CM0 p o _c, 0T (A2)
Uy a-!:‘
The coeficients of the first differential eqn (14a) are:
boo = —(cxatecg): boy= —Cy/2.0; by =—Cik/2; bsy = Cyk/2
bos = —cssA® bos = —Do|2; bog = —DyA3[2; byy = —Dy32%2, (A3)
dio =(C1a+¢ge); dyy=—Cof2; diy=—kCy(2; diz =kC)2
doo = —(cas+eeg); doy = —Cyf2; doz= —kC[2; "dyy =KkCyi2, (A4)

Sio=—Alez+ess)s Siy =24Dof2; fia=AD[2; [fiz = AD,/2
Joo=Aen—ci3)s for =for =foa =0. (A5)
The coeflicients of the second differential eqn (14b) are given as follows :
Gag =Cses 921 =Cof2; 22 =C[2; g35 =042
Fio =¢Css3 I =Cof2; 12 =C1f2; g13=1C3/2
Goo = —(caa+cse)s Gor = —Co/25 Goa=—0C/2; gos= —0C;j2
Jos = —Caadl; gos = —DoA3[2; Gos= —D1A%2; gor = —Di A2, (A6)
Ao =—(csetCi2); My =GCof2; hiz=Cij2; hy=0Cy2

hog = —(Caa+Css)s hor = —Cyf27 hos=—C\[2; hgyy = —C,/f2, (A7)
too =(Caatcan)d; tog = —4ADg[2; oy = —AD[2; tys = —AD,/2. (A8)

Finally, the coefficients of the third differential eqn (14c) are:
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g =¢ss; qu = Cof2; g1 =Ci[2; g1 =C,f2
Gio=Css: g =0Col2; ¢ =kC,\[2; q,3=—kC,/2
oo = —Caas qor = —Cpi qoa= —kCif2; oz =kCaf2; qos = —C334%,
Sio =(css+c13)A; sy = —ACe[2; 81, = —AC\[2; s3=—2C,)2
Sop =(Cra+¢Css)h; Soy = —ACy[2; Sap = —KkACJ2; so3 = KAC, /2,

Boo = (castcag)ds Boyr = —ACy 20 oo = —kAC/2; Bor = kAC,/2.
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