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AbstnC't-A procedure of total energy release rate and stress intensity factors is developed for 
general non-homogeneous laminated composite laminates. The total energy release rate is obtained 
by using the J-integral for a one dimensional model of plane stress, plane strain and cylindrical 
bending. Decomposition of it into mode I and mode II, by which the mode mixity calculation is 
carried out, is based on the assumption of equivalent orthotropic properties through the laminate 
thickness. The process is straightforward and can be used as a criterion for delamination onset and 
growth of one dimensional structural model under general loading in the pre- and post-buckling 
states. Published by Elsevier Science Ltd. 

INTRODUCTION 

The extensive use of composites in the last decade for high performance, low weight 
structures motivates the need for modeling and prediction of their structural behavior. 
One of the most severe problems concerning laminated composites is the formation of 
delaminated zones which may grow under service loading. These delaminations, when 
compressed, may lead to a deterioration in the load carrying capacity, due to local buckling 
(Simitses et al. (1985), Shienman et al. (1989)) and possibly crack propagation (Chai et al. 
(1981), Sallam and Simitses (1985), Kardomateas (1990)). Local buckling in itself does not 
imply the ultimate load, and usually, if the delamination does not grow, the laminate is 
capable ofcarrying on in a post-buckling mode under higher loading (Sheinman and Soffer 
(1991)). With delamination growth, the carrying load capacity is reduced further, which 
detracts from the high potential of the composites. Therefore an extensive research is needed 
to gain insight into the factors that influence the energy release rate and the mode I and 
mode II stress intensity factors, which in tum control the delamination onset and growth 
phenomenon. 

Both subjects of energy release rate and stress intensity factors have been studied by 
many researchers since the early 1960s. Most of them confined their research to homo­
geneous isotropic materials, some of them to homogeneous bimaterial or to orthotropic 
(Yin and Yang (1984), Suo and Hutchinson (1990), Hutchinson and Suo (1992), Kar­
domateas (1993) (1994)), very few to anisotropic materials (see, for example, Suo (1990)) . 
and almost none to non-homogeneous laminated composites with mixed mode macro­
cracks. A comprehensive review on mixed mode cracking is given by Hutchinson and Suo 
(1992). 

The difficulty in non-homogeneous laminated composites is due to the fact that the 
process is three-dimensional in character. Consequently most (if not all) papers concerning 
this issue use the numerical finite element analysis (see for example O'Brien (1982), (1984), 
Whitcomb (1984), Law (1984), Suo et al. (1991), Bao et al. (1992), and Davila and Johnson 
(1993)). The 3-dimensional analysis using finite elements is sensitive to the element length 
and, even for very simple cases, a large number of elements through the thickness are 
required. Furthermore, the element refinements do not guarantee the convergence and 
accuracy of the numerical solution due to the singular nature of the boundary layer in the 
crack tip neighborhood. 

tOn sabbalicalleave at the Technicon Israel Ins!. of Technology. 
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The total energy release rate can be computed exactly, even for non-homogeneous 
laminated composites. However, using it as a criterion for delamination onset and growth 
(like Yin and Wang (1984) or Sallam and Simitses (1985)) is limited when mixed mode is 
involved (see Hutchinson and Suo (1992». The interface toughness is not a single material 
parameter, rather it is a function of the relative amount of mode II to mode I acting on the 
interface. The criterion for initiation of crack advance along the interface, when the crack 
tip is loaded in a mixed mode state (either for monotonic or cyclic loading-see 
Kardomateas et al. (1995» is characterized by the mode II to mode I ratio. Hence the 
motivation for decomposition of the total energy release rate into its modes. 

___ ._The purpose of the present work is to .develop a set Qf new fonnulae for decomposition- . 
of the total energy release rate into -its mode I and mode II, by which the stress intensity 
factors are derived. It may be used as a criterion for the onset of delamination growth in 
non-homogeneous laminated composites. The emphasis here is on delamination between 
the composite layers, rather than cracking through the layers. The procedure does not 
require a three-dimensional analysis and is used for any non-homogeneous laminated 
composite with small thickness-to-span ratio, for which it is assumed that pre-defonnation 
plane sections and nonnals remain plane and nonnal after defonnation. It is based on an 
exact fonnulation of the total energy release rate and on the assumption of orthotropic 
material properties through the thickness (that assumption is used by all the works of three­
dimensional analysis by finite element). These formulas are straightforward and can be 
used as a criterion for the onset of growth in any general analytical or numerical procedure. 

For developing the algorithm, the forces and moments at the crack tips are needed. 
They can be obtained by any analytical or numerical process (see for example Sallam and 
Simitses (1985) or Sheinman and Soffer (1991». The model is confined here to a one­
dimensional procedure for a laminated composite of thickness t and with possibly a parallel 
plane crack between the laminated layers at a distance h from the top, see Fig. I, for which 
the constitutive equations in the x-y plane are required. Then, by using the i-integral, the 
exact total energy release rate is obtained. Next, we assume an equivalent orthotropic 
behavior in the x-: plane for the stress singularity asymptotic solution, yielding the energy 
release rate in terms of its modes. Finally, comparing it to the total energy release rate gives 
the stress intensity factors. 

CONSTITUTIVE RELATION 

Let (x, y) be the in-plane coordinates of the reference surface and z the nonnal 
coordinate (through the thickness of the delaminated composite, Fig. I). For small thick­
ness-to-span ratios. the Kirchhoff-Love hypothesis can be used and the stress-strain relation 
for each laminaj is: 
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Fig. I. Laminate with a delamination through the width. 
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(1) 

where 

(2) 

{l} and {~fare -the strain of the reference surface and the change of curvature vec;tQrs, 
respectively. (1ij are the laminate transfonned stiffnesses. 

Under the classical laminate theory, the force-strain relation can be written as: 

(3) 

{N} = {Ntx' N,y, Nx.·} is the membrane force vector, and {M} = {Mx.n My)" MxJ is the 
bending moment vector. A, Band D are matrices of order 3 x 3 given by 

(4) 

Using a one-dimensional model (in the x-z plane) leaves only two dependent variables 
(displacement in axial (u) and nonnal (w) directions, respectively) and the strain and change 
of curvature can be given in tenns of the axial force (N;u;) and bending moment (Mxx) 
(needed for the total energy release rate) as: 

(5) 

Two different one-dimensional models are considered: 
(a) Classical beam model for which one can get the lX coefficients directly from eqn (3) 

as: 

I 
lX 4 =----- (6)

D11-Bfl/A 11 · 

Cn = (111 +e5(C I (112+ C2(113) 

«(123(113 - (133(112) 
C1 =
 

(QZZ{!33 - (1L)
 

«(112(123 - (122(113) 
C2 = (7) 

«(122(133 - (1~3) 
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_ {O for assumption of plate sides constrained eyy = Yxy = 0 (referred as plane strain) 
lJ - I for assumption of plate sides free Uyy = t xy = 0 (referred as plane stress). 

It should be noted here that the constitutive equations based on un = t xy = 0 for each 
lamina would be inconsistent. Instead, one should set the resultants NyY' Nxy and M xy to 
zero which is applied in the cylindrical bending theory (described next). 

(b) Cylindrical bending model (see Sheinman (1989)). Here the strain and bending 
moment vectors can be written as: 

{t} = [a]{N}-[b]{x} 

{M} ~'ib]T{N} +-[d]{;Y (8) 

where 

[a] = [A] -I; [b] = [A] - I [B]; [d] = [D] - [B][A] -I [B]. 

From eqn (8) one can get the following cx coefficients (eqn (5)): 

CX I = {[I+A-IB(D-BA-IB)-IB]A-1LI 

CX2 = { - A - I B(D - BA - I B) - ILl 
cx) = {- (D - BA -I B) -1 BA -I} II 

CX 4 = {(D-BA-'B)-IL, (9) 

The subscript II means the first term of the matrix. It is seen that the cxs are determined 
not only by All, BII , D but also by Aij, Bij, Dij (i,j= 1,2,3) For symmetric laminated 

" layup (Bij = 0) with v = 0, the cxs of eqn (9) coincide exactly with these of eqn (6), but for 
nonsymmetric layup (Bij #- 0), a significant disagreement between the approaches can be 
observed. depending on the stacking combination and on the orientation. In deriving the 
cylindrical bending model (the most suitable for representing a one dimensional laminated 
configuration), the effect of lamina orientation should be taken into account by using eqns 
(9). To illustrate the different approaches, the example of stacking combination cx/O/ - cx, 
taken from Sheinman (1989), is considered here for comparing the CX I and cx. (for cx/O/ - cx 
BII = Bu = Bn = B)) = 0, Bn , B2) #- 0 so CX2 = CX3 = 0). cx, and CX4 are plotted in Figs 2 and 
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Fig. 2. Axial force coefficient GIl vs fiber orientation GI for the GIjOj-GIlayup. 
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Fig. 3. Bending moment coefficient ~. vs fiber orientation a for the a/Of -a layup. 

3, respectively, vs the orientation angle 0:, It is observed that the cylindrical bending model 
is in between the plane strain (e.\). = (x.' = 0) and plane stress (O'yy = 'txy = 0). 

ENERGY RELEASE RATE 

The delamination subdivides the one-dimensional model into four regions (see Fig. 4, 
:rj denotes the location of the reference surface of region I) represented by equilibrium 
equations. continuity requirements at the crack tips and boundary conditions at the ends. 
The strain energy release rate and the stress intensity factors are based on the i-integral 
and depend on the stress variation only. The stress itself can be based on either a linear or 
a nonlinear analysis. For the delaminated composite laminates under axial compression 
the geometrically nonlinear procedure is called for. A general geometrical procedure, based 
on the above constitutive relations, can be developed (see for example Sheinman and Soffer 
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Fig. 5. Stress superposition scheme. 

(1991)) and be used for thestress-<itate before arb) and.aftera(Dl the.crackJipior.each load __ 
level. ­

For the delamination onset and growth the relevant stress resultants at the crack tips 
are calculated by the stress superposition as illustrated in Fig. 5 for a typical tip creating 
regions 2 and 3 next to region I, where zr2 and zr3 are the reference surfaces of regions 2 
and 3 derived from: 

(10) 

! is the normal coordinate from the reference surface. 
The stress resultants are given by 

[Pd,Md] = L(a(al_a(bJ)[I,Z]dt 

[P". M,,] =I(a(a) _a(b»)[I,!] dt (11) 

the subscripts d and u refer to the lower (d) and upper (u) regions. respectively. 
Pd and Md can also be expressed in terms of P" and M" by applying the equilibrium 

conditions: 

(12) 

The energy release rate. for the system of Fig. 5, can be computed exactly by the i-integral 
(Rice, 1968) : 

G=i di=~I(a(D)-a(h)(~. +ilc )d.2 (13)2 .\.'C xx 

r = 

Using eqn (5), the energy release rate (eqn (13» yields: 

(14) 

where 

Gpm = P"M" sin I 
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(15) 

Here, a.id and a.iM (i = 1,2,3,4) are obtained by eqn (6) (for plane stress or plane strain) or 
byeqn (9) (for cylindrical bending), using eqn (4) referred to the reference surfaces Z;. 

The energy release rate given by eqn (14) is the most general exact expression for any 
non-homogeneous anisotropic material. For homogeneous material (non-laminated or 
laminated with equal laminate properties), the coefficients are reduced exactly to the 
expression given by Suo and Hutchinson (1990) (see eqn 2.7 there). 

Finally, the energy release rate can be written by its magnitude as: 

y = lyl (16) 

The upper sign is for the case of Gpm > 0 and the lower for Gpm < 0 

STRESS INTENSITY FACTORS 

The stress intensity factors are computed from the stress fields in the neighborhood of 
the crack tip. Since the crack is positioned in the .Y-z plane, the relevant stress field is 
analyzed on this plane. For that purpose the Kirchhoff assumptions are violated and each 
lamina (k) is considered as an orthotropic material for which the constitutive relation is 

j
(J.n]_ [S I I S12
 
(J:: - Sn
SI2 (17) 

Lx: k 

where 

E::, G", "." are the modulus of elasticity, shear modulus and Poisson's ratio in the x-z 
domain. For most practical purposes they are assumed to be the properties of the matrix 
itself (E:: = E2]. G,,:, Vx: = V12) (see Kriz and Stinchcomb (1979), Whitcomb(1984)). 

Each lamina may have different properties, thus slj = slj(z). Using the smeared tech­
nique and assuming that the entire section of the layups maintains its equivalent orthotropic 
behaviort yields the properties as: 

t Generally, it is an anisotropic materiaL However, since each lamina is an onhotropic one, for most 
practical cases an equivalent onhotropic properties assumption can be used. which simplifies the calculation of 
the stress intensity factors. 



458 I. Sheinman and G. A. Kardomateas 

(18) 

k denotes lamina sequence, t. the lamina thickness and t the total thickness. 
Following Suo (1990) (see also Sih et 01. (1965», the energy release rate, for an 

orthotropic material can be written in terms of the stress intensity of mode one (K/) and 
mode two (Kll) as: 

whe~e [P] = [3'] -I is the compliance matrix and 

i. = Pli/Pn 

2Pl~ +P3J 
p= 

2JP::P:; 

11 = Jl ;p.
 
The magnitude of the energy release rate eqn (19) can also be found from: 

G = IGle;</>o 

IGI = ~nli.-318K/+ii,-li8Klll 

<p~ = arctg[i. 114 Ku/K/] (20) 

By equating eqns (20) and (16), and bearing in mind that they can differ by phase angle 
shift W, one can get the expressions for the stress intensity factors: 

(21) 

The upper sign is for the case of Gpm > 0 and the lower for Gpm < O. w = <P2(W)-rPl is a 
function of the material and geometric parameters. It can be obtained by numerical solution 
of the integral eq uation for the anisotropic plane elasticity problem (see Suo and Hutchinson 
(1990». However, one may use the approximated expression W = 52.l-3h/H (in degrees) 
as is suggested by Suo (1990). 

CONCLUSIONS 

Based on the I-integral, an exact formulation for the strain energy release rate (G) of 
any non-homogeneous delaminated laminate is derived. Decomposition of the strain energy 
release rate into mode I and mode II is based on the assumption of equivalent orthotropic 
properties for the anisotropic material. The approach of equivalent material properties may 
yield better results for the stress intensity factors than using numerical three-dimensional 
analysis. 
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