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Abstracl-A closed form solution is developed for predicting the critical load of a composite beam­
plate with multiple delaminations. The characteristic equation is derived by using non-linear beam 
theory, perfornling proper linearization and by imposing the appropriate kinematical continuity 
and equilibrium conditions. The effects of the dimensions and locations of the delaminations on the 
critical load are investigated and the results are compared with previously published data. (() 1998 
Elsevier Science Ltd. 

I fRODUCTION 

Composite materials have many advantages over conventional materials such as metals 
and alloys, especially high strength to weight ratios as well as stiffness to weight ratios. The 
increasing usage of composite materials in industry requires better understanding of their 
structural behavior and failure conditions. Delamination (interlayer cracking) is one of the 
most common failure modes of laminated composite materials, and can be caused by 
manufacturing defects or impact loading. Under compression, a delaminatcd composite 
plate may buckle and possibly undergo propagation of the interla I' crack. 

Most studies in the field of delamination buckling are conc ntrated on the critical load 
prediction of an idealized single delamination in isotropic or orthotropic materials. Chai el 

af. (1981) investigated the growth of a general single delamination by determining the 
energy release rate through a numerical differentiation of the total energy with respect to 
the delamination length. Similses el af. (1985) and Yin el af. (1986) developed a simple 
model for predicting the critical load and the ultimate load capacity of a beam-plate wilh 
a single delaminalion. Davidson and Ferrie (1994) discussed the effect of stretching-shear 
coupling on delamination growth. Kardomateas (1989,1993) and Kardomateas and Pelegri 
(1994) analyzed the post-buckling and growlh behavior of an internal delamination in a 
composite plate under compression by using perturbation methods. 

Because of its complexity, the multiple delamination problem has not yet been as 
extensively studied as the single delamination problem. Most of the research conducted for 
the case of multiple delaminations was based on numerical methods. Lim and Parsons 
(1993) employed energy methods to derive a finite element solution for eguai-:ength delami­
nations. A finite element analytical and an experimental investigation was performed by 
Kutlu and Chang (1992) to study the compression response of a multiply delaminated 
composite plate. Conlacl between delaminated layers was sludied by Suemasu (1993) and 
Larsson (1991). Sheinman and Soffer (1991) and Adan el al. (1993) developed an analytical 
model for the buckling of multiply delaminated composite beams and studied the interactive 
effect between delaminations. 

In this paper. the nonlinear differential equalion for a beam is linearized and combined 
with appropriate kinematical continuity conditions, equilibrium equations and boundary 
conditions. A closed form expression of the characteristic equation of a plate with multiple 
central delaminations is derived. In this manner, the critical load of a plate with delami­
nations of different sizes and locations can be quickly calculated. The method can be 
easily extended to nonsymmetric delaminations, and also to a plate with more than two 
delaminations. 
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Fig. Definition of the geometry of the multiple delamination problem. 

ANALYTICAL FORM LATION 

Problem definilion 
The geometry of the delaminated plate employed in the study is shown in Fig. I. A 

plate of half length L. thickness T and width W has two pre-existing central delaminations. 
Both ends of the plate are clamped and the external load is symmetrically applied. Because 
of the symmetry of the structure, only the left half needs to be considered. The half plate is 
divided into five subplates, each with a size parameter pair (L" ll), L, and I, being the length 
and thickness of the ith ubplate, resp ctively. The coordinate systems for the subplates are 
also shown in Fig. I. Point A and B are the crack tips. Denole the delamination cI sest to 
the surfac as delamination I and the one furlh r inside as delamination If. Th size and 
locations of these two delamination are defined by their length a; and depth hi, Notice that 
II = T, 1'2 = hi, tJ = T-h). 14 = h2 -h l , to = T -h1, and L I = L-u\, Lz = ell, LJ = a l -C/2, 

L4 = L; = ([2' 

Basic equal ions 
According to lhc nonlinear beam theory, the differen 'al equation for a beam is: 

d"8 
D- +P 'inti = O. 

dx1 

where D is the bending stiffness of the plate, D = Ell (1- y2) for isotropic material and 
D = EIII( 1- Yll Y21) for orthotropic materials. To calculate lhe critical load, the nonlinear 
equation is linearized as: 

(I) 

The general solution for eqn (I) is: 

0= A in I:x+ Bcos ),x 

with) = PID. Thus, for subplates (1)-(5): 

where ),; = J p? /D, p? = PIJiT and j5 is the unknovvn external load. Here, uniform dis­
tribution of the compressive load at the pre-buckling state wa assumed. 

According to the boundary condition of clamped ends. (11(0) = 0, w have: 

(2a) 

Because the structure is symmetric, ti2(0) = (14 (0) = (1,(0) = 0, so: 
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(2b) 

(2c) 

(2d) 

and 

(2e) 

We have six unknown coefficients and one unknown force j5 in eqn (2). To calculate the 
critical load, the continuity conditions and eq uilibrium equations at the crack tips A and B 
must be used. 

(I)	 Continuity conditions: 

At point A: 

(3a) 

At point B: 

(3 b) 

u is the displacement along the x direction. The displacement:; at point A and B are due to 
the shortening of the mid-plane under compression loading and the rotation of the cross 
section about the midplane. So: 

(4a) 

(4b) 

(4c) 

(4d) 

In eqn (4b), c refers to the mid-thickness point of ubplate 3 at the section of the delami­
nation tip B (fig. 1). 

(2)	 Equilibrium equations: 
At point A: 

(Sa) 

(Sb) 

At point B: 

(Sc) 

(Sd) 

We denote P; = p? + P7, where P;' is the additional force due to bending of the su bplates. 
Notice that at primary state (i.e., before buckling) : 



1358 H. Huang and G. A. Kardomateas 

p? = P~+P~, (6a) 

(6b) 

(6c) 

(6d) 

(7a) 

P~L5 P~. 
(7b)

WEt = WEt. 

Substituting (6) into the equilibrium equations (5) gives: 

P'~ - [": = 0, (8a) 

(8b) 

(8c) 

(8d) 

where 1\1, = D,d()Jdx;. 
Substituting now (4), (7), (8a), (Sc) into the third egn in (3a) and the third eqn in (3b), 

we have: 

(9a) 

(9b) 

Introducing eqn (2) into eqns (3), (X). (9) and eliminating the force terms P~, PL P~, 

P~, and B3 , we get five linear homogeneous algebraic c4uations. Express them in matrix 
form: 

[F] {A} = 0, (10) 

where (A} = [AI, A 1 , A 3 , A., A 5V The characteristic equation is: 

det {F(?)} = 0. (11 ) 

The lowest external load P satisfying eqn (11) is the critica11oad. 
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Table I Cntleal luau, j'i.~ I"or a single udamlllation of varying 
Icngth and locclti(ln 

i"l 
{j a 10 0.20 0.30 040 O.SO 

0.1 0.9799 0.9997 0999S 0.9999 0.9999 
0.2 0.2495 0.9264 09924 0')950 099511 
0.3 a 1103 04371 08582 0.9543 0.9638 
0.4 00624 0.2470 0.53 [4 0.7883 08561 
0.5 0.0400 O. [SS5 0.3469 05675 0.6RYC, 
0.6 0.0278 o J 103 02435 04124 0.541 J 

0.7 0.0204 00812 0.1804 03111 04310 
0.8 0.0156 0.062\ 0.13'J0 0.2428 0.3514 
O'J 0.0123 0.0493 0.1105 0.1949 0.2933 

DISCUSSIO . OF RESULTS 

The roots of the five by five determinant as a function of the external load j5 .vere 
found by a numerical solution. Delaminations of different. izes ::Ind locations were inves­
tigated. The calculation results are presented both in tables and graphs. The parameters 
are nondimensionalized as: !~ = hilT; ti, = a,lL; P,r = PI.rl P:!" where p:l, is the critical load 
of th plate without dcI<.llnination. 

Single delamination 
To verify the accuracy of the method ernpl yed in this tudy, Ih critical loads of a 

plate with a single delamination weI' computed first. The results for a plate ith a 'ymmetric 
d lamination of differ nt lengths and locations are shown in able I, which are in good 
,lgreem 'Ill \ ith the data pI' sen ted by Sil11it~es et af. (I nS). 

7'11'0 dc!a!1linations 
he advantage of this method i_~ its simpJicit_ in the calculation of critical loads for 

composite plates with multiple delaminatiolls. Because of the complexit, of the problem, 
most of the methods published had to turn lo numerical techniqu .s, mainly finite element 
models. As mentioned befon~. the number of linear homogeneous equations in the study is 
re:uuced to five, which makes the calculation of the crilicalload simple and fast. 

To further verify the proposed method, an example by Lim and Parons (1993) is 
reconsidered here. This exan1ple considers a plate with two delaminations symmetrically 
located about the midplane and with the same length a. Ignoring the buckling pattern 
involving contact between the Laminae, the results obwined by the present method are listed 
in Table 2, as well as those pub Ii 'hed b Lim and Parsons (1993). Again there is an excellent 
agreement between these two methods. 

II is rather dilTicult to consider all the possible combination' of lengths and depths of 
the two dclaminations. Attention here is concentrated on the effect of d-Iamination II on 
the critical load of the plate with delamination I only. It was found that the effect of 
delamination II depends llot only on the length and location of delamination 11 itself, but 
it also depends on the size of delamination 1. Fir t we investigated the critical load of a 

Table 2. Comparison of results (critica[ load. P,,) from the prcscnt approach with the data ill Lim and Par:,ons 
(1993) for two delaminations 

a J() 040 0.50 060 0.70 08U 0.90 

Present 099')6 0.5057 03350 02374 a 1771 01374 0.1099 
Lim and Parsons (1993) lOOO 0.505 0.335 0237 0.177 o 137 0.110 
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Table 3. Critical load, j5<n of two delaminations with fixed location 111 = 0.125, II, = 0.25. and varying length
 

ii, ii, 
ti:z 0.05 0.10 0.15 0.20 030 OAO 0.50 0.60 0.70 0.80 0.90 

0.10 0.9998 0.9982 0.6903 03890 0.1731 0.0974 0.0624 0.0433 0.0318 0.0244 0.0193 
0.20 0.986, 0.9628 0.6002 0.3791 0.17 I 0.0974 0.0624 0.0433 0.0 18 00244 0.0193 
030 0.6616 0.6279 OA723 0.3197 0.1726 0.0974 0.0624 0.0433 0.0318 0.0244 00193 
OAO 0.3802 0.3754 0.3418 0.2668 0.15D8 0.0972 0.0624 0.0433 0.0318 0.0244 0.0193 
0.50 0.2452 0.2442 0.2368 0.2114 0.1 46 00875 0.0623 0.0433 0.0318 0.0244 0.0193 
0.60 0.1711 0.1709 0.1688 o1610 o1191 0.0802 0.0571 0.0433 0.0318 00244 0.D193 
0.70 0.1263 0.1262 D,I255 o1228 0.1028 0.0737 0.05 2 00402 00318 00244 0.0193 
0.80 0.0970 0.0970 0.096 0.0957 0.0867 006 2 0.0497 00378 0.0299 0.0244 0.0193 
0.90 00769 0.0769 0.0768 0.0763 0.0722 0.0604 0.0464 0.0358 0.0283 0.0230 0.0193 
1.00 0.0625 0.0625 t1.0624 0.0622 0.0602 0.0535 0.0431 0.0338 00269 0.0221 0.0188 

plate by fixing the depths of the delaminations and changing their length '. The results are 
shown in Table 3. 

Figure 2 shows the change of ratio betwcen critical load Per and Pn." which is the 
critical load of the plate with delamination J only. It is clear that the critical tOL d i· the 
ame as that of the platt: with delamination 1 only when the delamination n is very short. 

How ver, the critical load will d crease as (12 increa es. Th . effect of delamination JI on 
critical load d pends on thv length of delamination l. too. if d lamination I is sh )rt, the 
critical load drop' drastically a' {/2 increa es. If delamination I is long. th e ect of delami­
nation 11 is not significant until delamination II is longer than delamination 1. 

The critical loads with arying h-2, liz and fixed 111, ((I were also calculated. Figure 3 i' 
the plot of P"rIP,... , vs ell with 112 as a parameter. rom the result:;. we 'an conclude that: 
delamination n has a significant effect on the crilicalload when it is close to delamination 
r. The elT>ct can be ignored when it is far away and sh rter than delamin tion 1. 

S condJ , consider the situation where the lengths of the delaminations are Jixed and 
the locations of the delaminations are arying. Th leul ted critical loads are shown in 
Table 4. It can been that the presence of delamination rr doe not affect the critical load 
when delamination I is ver 'hallow, even hough the two delaminations are very close 
to e<Lch other. As h-j increases, the effect becomes mor :;ignificant. There are three ways 
that the presence of delamination LJ may make the criti 'al load decrea e: (I) Subplate 2 
still buckles 1rst, but the presence of delamination Tf relaxes the constraints at the en s of 
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Fig. 2. The fIi ct of delamination Il on Lhe criLicalload, P"" for a plate with h, = 0.125 and /12 = 0.25.
 

Pen is the critical load for a plate with delamination I only.
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a
Table 4. Critical load. P,~ of a plate with 0, = 0.5. 

l = OJ and varying II, and II, 

II, 
0.10 0.20 0.30 040 0.50 

0.20 004 
0.30 0.04 0.II0lJ 
0.40 0.04 01585 o 1108 
045 0.04 0 1585 02442 02455 
0.50 0.04 0.1585 0.2452 0.1106 
0,55 0.04 0,1585 02452 0245 0.0278 
O.IiO 0.04 0.1585 02452 04209 o1102 
o 5 0.04 0.1585 0.2452 0.5501 02425 
0.70 0.04 0.1585 024'2 05588 04042 
0.75 0.04 0.1585 0.2452 05501 0.5060 
U80 0.04 0 1585 0.2452 04209 04042 
0.90 0.04 0.1109 0.2442 o 1106 0.1102 

subplate 2, thus making the critical load decrease. (2) Subplatc 4 will buckle first because 
the tw dclaminati ns arc too clo e to each other. In this case, the buckling of subplate 4 
will be constrained by subplute 2 or ubpJate 5, ontact analy"is is called for to predict the 
critical load more preci 'ely. (3) SubpIate 5 buc les first because delamination 11 is too close 
to the bOlludary. Thi situation is the samea situation (1) if the subplates and delaminations 
are re-numb .r d. 

ON LUSION 

An analytical method is developed ror predicting the critical loads of composite plates 
with multiple delaminati ns. Linearized beam theory, end fixity conditions. kinematic 
continuity conditions and equilibrium equations at the delamination tip sections are u 'ed 
to obtain the closed form characteristic equation. This method allows determiuing the 
critical load and buckling mode for an arbitrary plate with delaminations of different 
magnitudes and location. 

Special att nlion is paid to the interactive effect of the two delamination on the critical 
load. It was found that the deeply located delamination affects the critical load sionificantly 
when it is close to the nearest-to-the-surface delamination or when it is longer. When the 
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two rlcluminations are loa close to each other, the middle subplate will buckle first, thus a 
contact analysis i. called for. The proposed method is th jir~l step for a nonlinear post­
bucklmg analysis. which would be more complicated but necessary for studying the growth 
characteristics. 
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