Post-buckling Analysis
of Multiply Delaminated
Composite Plates

This paper presents an elastic post-buckling analysis of an axially loaded beam-plate
with two central across-the-width delaminations located at arbitrary depths. The
analysis is based on the nonlinear beam equations, combined with the appropriate
kinematic continuity and equilibrium conditions. A perturbation technique is em-
ployed, which transforms the nonlinear equations into a sequence of linear equations.
An asymptotic solution of the post-buckling behavior of the plate is thus obtained. It
is shown that with two delaminations, both the maximum deflection and the internal
load of the first buckled (top) subplate increase as the external load increases. Of
particular interest is the redistribution of load among subplates, which keeps the
increase rate of internal load of the top buckled subplate much less than that of the
external load. In other words, the load of the buckled subplate is close to the critical
value even though the externally applied load is much larger than the critical load.
In addition to the two-delamination configuration, a single delamination case is
studied based on the present approach in order to verify the accuracy of the method.
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Also, a comparison with available finite element results is performed.

Introduction

Due to the weak interlaminar toughness of composite materi-
als, delaminations can be easily introduced into the interface
region by impact loading, fatigue, or poor manufacture. In this
event, the critical load of a delaminated composite plate will
be less than the corresponding pure plate without delaminations;
however, buckling of the plate does not necessarily indicate its
failure. In order to determine the ultimate load capacity of a
delaminated composite material, the elastic post-buckling analy-
sis of the delaminated plate is called for.

Numerous papers have been published on the prediction of
the critical load of composite plates with one or multiple delam-
inations. However, because the nonlinearity introduced by large
deformation makes the description of the post-buckling behav-
ior extremely complex, the post-buckling behavior that ulti-
mately governs the performance characteristics of the composite
structure is not yet as well studied and understood. Kardomateas
(1989, 1993) analyzed the post-buckling of composite plates
with one delamination as well as the possible delamination
growth behavior. An elastic buckling and post-buckling analysis
of an axially loaded column with an across-the-width delamina-
tion symmetrically located at an arbitrary depth was presented
by Roorda and Sakthykanapathy (1989). Also, Yin etal. (1986)
investigated the ultimate axial load capacity of a plate with
a single delamination. The shear buckling and post-buckling
behavior of delaminated composite plates were also analyzed
and the effects of delamination on shear properties were studied
by Suemasu (1991). For the more complex configuration of
multiple delaminations, Kutlu and Chang (1992) did some ex-
tensive investigations on the compression responses of laminate
composiles containing multiple delaminations, both analytically
and experimentally. The compression behavior of composite
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panels with through-width, equal size, equally spaced multiple
delaminations were also investigated analytically by Suemasu
(1993) by applying the Rayleigh-Ritz approximation method.
Sheinman and Soffer (1991) and Sheinman et al. (1993) devel-
oped a system composed of partial nonlinear differential equa-
tions in terms of the transverse and axial displacements to ana-
lyze the post-buckling behavior of multiply delaminated beams
or long plates under cylindrical bending. A finite element
method based on layerwise laminated composite plate theory
was presented by Lee et al. (1995) to formulate and solve the
post-buckling problem of laminated composites with delamin-
ations.

Unlike the previously published papers, which were mostly
based on finite element analysis, this paper presents an asymp-
totic solution for the post-buckling analysis of composite plates
containing two central delaminations. It should be noted that the
approach is also applicable to the case of a single delamination.
Because of the nonlinearity of the post-buckling behavior, the
perturbation method is introduced to transform the nonlinear
problem into a linear problem. It should also be noted that good
agreements were obtained between the calculation results from
the present method and previously published data, both for two-
delamination problems and one-delamination problems. Some
interesting conclusions are drawn. The interaction among sub-
plates is also studied and it is found that the redistribution of
load among the subplates keeps the buckled subplate close to
the critical load.

Formulation

The model of a delaminated plate employed in the analysis
is shown in Fig. 1. A plate of half-length L, thickness 7', and
width W has two pre-existing central delaminations. It is as-
sumed that the delaminations will not propagate under axial
compressive load. Both ends of the plate are clamped and the
external load is symmetrically applied. Because of the symmetry
of the structure, only the left half can be considered. The half-
plate is divided into five subplates, each having a size parameter
pair (L;, t;), L, and ¢, being the length and thickness of the ith
plate, respectively. The coordinate systems for each subplate
are also shown in Fig. 1. Points A and B are the crack tips. The
first, shallow (top) delamination will be denoted as delamina-
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Fig. 1 Definition of the geometry for the multiple delamination problem

tion I and the sccond deep one as delamination II. The sizes
and locations of these two delaminations are defined by their
lengths «; and depths A4;. Notice thatt, = T, 6, = hy, t = T —
h,], s = /Zz - hl~ l; = L /13, and Ll = [ — aj. Ll = Qj, Lq =
a, —ayanc Iy, = Ls = a,.

According to the nonlinear beam theory, the differential equa-
tions for subplates 1-5 are (c.g., Dym, 1974):

a0,
D; 2' + P;sin 6; =0, (la)

with boundary conditions
8,(0)=0, i=1,2,475. (2)

Notice that for i = 2, 4, 5, this is due to symmetry, whereas
8,(0) = 0 is due to the clamped end where D; is the bending
stiffness of the plate, D, = E, | I/(1 — v,,v,,) for orthotropic
materials.
Referring to Fig. 2, the equilibrium conditions are as follows:
At the section of point A,

My —M,— My~ P24+ P2 =0, (3a)
2 2
P, + Py=P,. (3b)
At the section of point B,
My— M, - Ms— P2+ P %=, (3¢)
2 2
P, + Ps = Ps. (3d)
The kinematic continuity conditions are as follows:
At point A,
61(L1) = 62(—Ly) = 65(0) = b, (3e)
us = uj. (3f)
At point B,
03(Ly) = 04,(—Ly) = 05(—Ls) = b5, (3g)
uf = uf. (3h)

In these relations M; = D, df, /dx;, and u 1s the displacement
along the x direction. The displacements at points A and B are
due to the rotation of the cross section about the midplane and

M,
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T
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the shortening of the midplane under compression and bending,

SO we can write

1(° P ;
=1 o, + Pl2 g (3t
%dig WEL 2
]. L
1y = —f 02dxs + — 03dx;
2J 0
PiLy  Psls 14 I3 .
IS g ==, (3
WE, T WE, "y Pape GO
IJ“' PiL, L
B — _ 8dx, + 4 P> 3k
Ol T T wm, T 22 e
lf" Pale Is
8= Podi, + 23 L g 2 30)
s 2J . 5aXs WEL. 25 (30)

where W is the width of the plate.

Equation (1a) looks very simple; however, it is actually very
difficult to solve because of the nonlinearity of the sine function.
The perturbation method is a very powerful technique for solv-
ing nonlinear differential equations. In order to take advantage
of the perturbation method, it is neccessary to modify Eq. (la)
into a form such that the perturbation expansion of its solution
will result in a series of linear equations that can be solved
iteratively. Using Taylor’s formula to expand the sine function,
Le.,

q

. - :
sinf =6 - —+ 0(8),
6
and substituting into (la) gives diffcrential equations for each
subplate 1-5 in the form '
a,

3
5 +P,-(8, —i> =0
d 6

Ix°

D, (1)

To implement the perturbation technique, a straightforward
expansions of the solutions #; and P; are constructed first (e.g.,

Bush, 1990):
6= 60 + 500 + 0 £ 0(F),  (4a)
B = B+ P +€BPP 4 00e®), - (4b)

where ¢ is a small perturbation parameter. The asymptotic se-

quence {€°", €', €%, ..} was chosen as opposed to the more
1M
4 =)
B B

3
(3) (5)

)

Fig. 2 Internal load conditions at the sections of points A and B
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usually used {€°, €', €2, ...} because it will generate the linear
differential equations such that the second-order equation would
include the first-order term and thus can be solved iteratively.
Now the initial Posmon is the Prebuu\hn" state of uniform
compression, so 8, = 0 and P,"” = Pt,/T, where P is the
applied external load.
Substituting (4) into (1b) and dividing by €°°, yields

29“) 29(2)
D + (P + 2P0 + E[D[ ‘
X7 dx;
2
+ (P + P9 — (PO + €93pP") 6"
i i ‘ i ! 6

e°'5Piz’0§”] +0(e?) = 0. (5)

The boundary conditions and compatibility conditions are
also processed in a similar fashion. Next, two groups of linear
equations are obtained by a proper grouping of the terms of
powers of €, based on the following.

Since ¢ is a very small number, {1, ¢*°} are very large
compared to {¢€, €' }. Intum, {¢, ¢"*} are very large compared
to {€, ¢}, etc. Therefore, starting from Eq. (5), the first-
order terms are selected to be both {O(1) and O(€**)}, and
the second-order terms are both { O(€)and O(¢')}, i.e.. unlike
the conventional asymptotic expansions, the term ‘‘first-order
terms’’ means to include terms up to €™ [which, again, means
both O(e®) and O(€"¥)] and the term ‘‘second order terms”’
means to include terms up to €' (which, again, means both
O(e) and O(€'?)). This methodology for constructing the as-
ymptotic solution is essentially a matter of proper grouping of
the terms, or, in other words, proper selection of what is re-
tained, and it is necessary to achieve the solution since the
traditional approach would not be successful.

Thus, the following two groups of linear equations are ob-
tained:

First-Order, i.e., up to O(€"°).

20(1)

.l,‘

D; + (P + ¥ Py 6" =0, (6a)

6°(0) =0 for i=1,24,5. (6b)
At the section of point A, by using (3e),
0\ (L) = 05" (~Ly) = 65°(0), (6¢)

and by applying (3f) and (3, /),

0 L
lJ. Hgl'zd«l’s*'lf ‘ggl)de‘.,_E-OSi“L_S_,_C*OS%
24d 2 Jo WEt; WEt,

0
= lf 04"%dx, + €03 PYL,
2 —lLy WE!Z

+ i -0.50?)(_[‘5)’_25 + €%90(0) g’ (6d)

and by applying (3a, b),

P + PV =0, (6e)
B, de\ + B, des" + D, dgi" _ po Lo pLn & . (6F)
dx, Cdx du; 2 -2 .
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At the section of point B, by applying (3g),
95V (L:) = 04" (— L) = 65" (- Ls), (6g8)
and now by applying (3k) and using (3k, [),

| o . pw 0 .
—f 6y dx + 03 P2 Ls _ lf 612 dx,
2 Ly WEls 2 —t4

P +
STt (L) BB (6h)
4
and by applying (3¢, d),
“Nll P(l) — Pg”, (6[)
des" des” dos" ta s
-D + D + Ds—— =P = - P2 (6]
ey g T ar  F gt e

Second order, i.e. up to O(e"*). Substituting (4 ) into (15)
gives

D: d- 9(2) + (P(O) 05P$1))9f2)
dx?
9(1)7 R
= (PEOJ OiP(l)) _ EO.SPf.i)g‘(.l)’ (7[1)
6P0)=0 for i=24,5. (7b)
At the section of point A, by applying (3e),
817 (L)) = 05 (- L) = 657(0), (7¢)
and now by applying (3 f) and using (3, j),
f 6596 dxs +f 050 dey + ¢ 05 L OLi | 05 BV
WEts WEt,

E;

+ e 09D (—L,) %4 + e7"%9(0) g, (7d)

0.8

bottom subplate
0.6 -

top subplate
0.4 4
0.2 4
) data from Lee et al.
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0.0 —————t————1—
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Fig. 3 Deflection-load curve of a plate with a single delamination: i —
0.2 and 3@ = 0.3. Horizontal axis is w, and vertical axis is P.
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Post-buckling behavior of a plate with two equal-length delaminations

P 0.2 0.3 0.4 0.5 0.6 0.7
Lee et al. (1995) W, 0.06 0.13 0.18 0.20 0.22 0.21
Lee et al. (1995) W 0.0 -0.01 —-0.02 —0.05 —0.095 -0.2
Present W, 0.0635 0.1399 0.1838 0.2138 0.2298 0.2187
Present W, —-0.0025 —-0.0125 -0.0293 —0.0561 —0.1046 —0.2095
Present Y 1.0088 1.0218 1.0334 1.0474 1.0679 1.1028
and by applying (3a, b), and
@ ) _ 3 : )\2A“’
Py’ + Py 0, (7¢) C‘3)= (38”' A,(-m)v (9d)
dof . 4o . 4o .. :
DS+ D, S D, S = PP 2 P2 (1) \BO
dx, dx, dxy 2 2 Cih . 24 (Bmz = 3Af”2). (9¢)

At the section of point B, by applying (3¢).

07(Ls) = 0 (— L) = 65”(— Ls), (78)
and now by applying (3k) and using (3k, [),
0 2 0
5 T e 2 2
0§8Pdxs + ¢ —— =f 0570 d;
f-L, s'Us 5 TG WE, e ¢ Uatdxy
peos B4 cosgen L)““‘, (7h)
WEz‘,
and, finally, by applying (3¢, d),
PP + PP = PP, (70)
dg® dey’ a6 i B PRy
~Dy =+ D, + D =pPP2—pP2. (7
S T gy, TRy SR UD
~ The general solution for the first-order differential Eq. (6a)
is
g = A" sin hx, + BV cos Nix,,s (8a)
with
N = WP + SPUYD, (8h)
where A}, B{",i=1,2,3,4,5and P}". i =2,3,4,5 are

1

unknowns: i.c.. 14 unknowns P{"V = 0 because P, = P is a
constant. Substituting (8) into boundary condition (6b), the
number of unknowns reduces to ten. Solving the ten compatibil-
ity condition equations (6¢— ? by the Newton's continuation
method, allows determining 8

To solve the second-order system of equations, substitute
6" from (8a) into Eq. (7a), then the general solutions for Eq.
(7a) are

W
2 % o 2] :
8" = A% sin x, + B\ cos Nx; — =L cos \x;

it

(2) «(3) (4)

+ —/— x, sin \;x, — = sin 3\;x;, — ——cos 3\, x; (9a)
2N i 8N,
where
A2 4B) R . »(2)
Cf” - ::1 (Ar'l)- % Bf"“) _ EOSA:” Ib , (9b)
(23 A?B‘IU ()2 (12 0.5 pit) P::)
C“:T(A’_ +Bi )—C’B‘ F, (96)
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So again we have 14 unknowns. Introducing Eq. (9a) into
(7b) and (7c—j), the 14 unknowns are easy to calculate be-
cause all the equations are linear. Then the asymptotic solutions
for the post-buckling deformation quantities are expressed as

6, = €0V + 9P + 0(%). (10)
Although #‘"" and #!*’ are functions of € as ¢ appears in both
the first and second-order equations, ¢; is not a function of ¢ as
long as € is chosen to be a small value.

Finally, the deflection W ( x) can be obtained by integrating
Eq. (10) and using boundary conditions and compatibility con-
ditions, i.e.,

Wi(0) = 0; Wia(-Ly) = Wi(0) = Wi(Ly), (lla)

Wi(=Ly) = Ws(—Ls) = W3(Ly). (11b)

Results

A simple computer code was written according to the preced- .
ing theory. Delaminations of different sizes and locations were
investigated. The calculation results are presented both in tables
and graphs. The parameters are nondimensionalized as

h, = hIT;

& =waily P=>PIP% Wi=W.IT.

0.5
0.4
Subplate 4
0.3 4
SubeatcS
0.24
Subplate 2

0.1

0.0 T T | S T T SR ]  —
-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 03 0.4 0.5 0.6

Fig. 4 Load-deflection curve for a two-delamination configuration, in
which delamination | is long
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Notice that P}, is the critical load of the plate without delamina-
tion and W, represents the maximum deflection of the ith sub-
plate with the upward direction as its positive direction. In Figs.
3, 4, and 5, the horizontal axis is #; and the vertical axis is P.

Single Delamination. To verify the accuracy of the present
method, an example employed by Lee et al. (1995) is revisited.
The material being used is T300/5208 graphite/epoxy with
typical material parameters E;; = 181 Gpa, E» = 10.3 Gpa,
G = Gy = 7.17 Gpa. and v)» = v;; = 0.28. A plate containing
a single through-the-width delamination at its center with 7 =
0.2 and @ = 0.3 is considered. The thickness-to-span ratio is
assumed to be 7/ = 1/400. Figure 3 presents the calculation
results as well as the plotted data from finite element study in
Fig. 3 (Lee et al., 1995), which shows that they are in good
agreement.

Two Delaminations, To further verify this method, a two-
delamination example by Lee et al. (1995) is reconsidered. The
example considers two delaminations symmetrically located
with respect to midplane and both delaminations are assumed to
have the same length. The material properties of the composite
material in the study are as follows: £y, = 10.9 Gpa, E» = 7.58
Gpa, G» = G; = 248 Gpa, vy = 0.31, v); = 0.22. The post-
buckling analysis results for i, = 0.125, h, = 0.75 and @, = @
= 0.3 are listed in Table 1, as well as data extracted from a
figure presented by Lee et al. (1995). In this example, the
second delamination remains closed. The composite plate be-
haves as if it contains the upper delamination only. Another
interesting observation is the load redistribution among sub-
plates. P, in Table 1 is the ratio between the current axial load
in subplate 2 and its critical load. It is clearly shown in Table
| that the increase of P, is not proportional to that of 7. This
is because the stiffness of subplate 2 will decrease when it
buckles and the load is distributed through the thickness of the
plate in relation to the thickness and stiffness properties of each
subplate. As a result, the load redistribution keeps the load of
the buckled subplate at a level close to the critical load.

A delaminated plate has a variety of buckling modes, includ-
ing the global mode, which does not involve lamina separation,
the local mode, which involves buckling of the surface subplate
only (thin film mode), and the general mode, which is the
coupled mode of the global mode and the local mode. It has
been mentioned by other researchers that a plate with long
delaminations behaves differently from that with short delamin-
ations. To investigate the effect of delamination size on the
post-buckling behavior of plates, two configurations involving
two delaminations are considered: (1) long delamination: &, =
0.2, h, = 05, a, = 0.6 and @ = 0.3; (2) short delamination:
hy = 0.2, h, = 0.5, & = 0.3. and @, = 0.3. Figures 4 and 5 are
the load-deflection curves of these two configurations, respec-
tively. For the long delamination case, subplate 2 buckles first
when the external load P is larger than the critical load P, =
0.1103. As the external load P increases, the maximum deflec-
tion of subplate 2 increases. t00. However, the maximum de-
flections of subplate 4 and 5 are kept at a small level. In fact,
the whole structure stays in local buckling mode even when the
external load reaches the second eigenvalue. In contrast, the
plate with short delamination behaves differently. At the initial
post-buckling state, the plate behaves in a local buckling mode.
However, the maximum deflections of subplates (4) and (5)
become large as P increases further, which indicates a switch
o a global buckling mode. When P reaches 0.71, the global
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Fig. 5 Load-deflection curve for a two-delamination configuration, in
which delamination ! is short

buckling mode becomes dominant. For a small increment of
external load, that is P going from 0.71 to 0.72, the deflection
increases abruptly and the whole structure collapses.
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