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This paper presents an elastic post-buckling analysis of an axially loaded beam-plate 
with two central across-the-width delaminations located at arbitral)1 depths. The

G. A. Kardomateas analysis is based on the nonlinear beam equations, combined with the appropriate 
Professor, kinematic continuity and equilibrium conditions. A perturbation technique is em­

Mem. ASME. ployed, which trafJ5fonns the nonlinear equations into a sequence of linear equations. 
An asymptotic solution of the post-buckling behavior (~l the plate is thus obtained. It 

School of Aerospace Engineering, is hown that "\lith two delaminations, both the maximum deflection and the internal 
Georgia Institute of Technology, load of the first buckled (top) subplat£' increase as the external load increases. Of 

Attanta, GA 30332-0150 particular iflterest is the redistribucion of load among subplates, which keeps the 
increase rate of internal load of the top buckLed subplate much less than that of the 
extemalload. In other words, the load of the buckled subplate is close to the critical 
value even though the externally applied load is much larger than the critical load. 
In addition to the two-delamination configuration, a single delamination case is 
studied based on the present approach in order 10 verify the accuracy of the method. 
Also, a comparison with available finite element results is pe/formed. 

Introduction 
Due to the weak interlaminar toughness of composite materi­

als. delaminations can be easily introduced into the interface 
region by impact loading, fatigue, or p or manufacture. In this 
event, the critical load of a delaminated composite plate will 
be less than the corresponding pure plate without delaminations; 
however, buckling of the plate does not necessarily indicate; its 
failure. In order to det rmine the ultimate load capacity of a 
delaminated composite material, the elastic post-buckling analy­
si of the delaminated plate is called for. 

Numerous papers have been published on the prediction of 
the critical load of composite plates with one or multiple delam­
inations. However, becau e the nonlinearity introduced by large 
defonnation makes the description of the post-buckling behav­
ior extremely complex, the post-buckling behavior that ulti­
mately governs the perfonnance characteristics of the composite 
slructure is not yet as well studied and understood. Kardomateas 
(1989, 1993) analyzed the post-buckling of composite plates 
with one delaminali n as well as the possible delamination 
growth behavior. An elastic buckling and post-buckling analysis 
of an axially loaded column with an across-the-width delamina­
tion ymmetrically located at an arbitrary depth was presented 
by Roorda and Sakthykanapathy ( 1989). Also, Yin et al. ( 1986) 
investigated the ultimate axial load capacity of a plate with 
a single delamination. The shear buckling and post-buckling 
behavior of delaminated composite plates were also analyzed 
and the ffects of delamination on shear properties were studied 
by Suemasu (1991). For the more complex configuration of 
mulliple delaminations. Kutlu and Chang (1992) did some ex­
tensive investi 'ations on the compression responSe's of laminate 
composites containing multiple delaminations, both analytically 
and experimentally. The compression behavior of composite 
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panels with through-width, equal size, equalIy spaced multiple 
delaminations were also investigated analytically by Suemasu 
( 1993) by applying the Rayleigh-Ritz approximation method. 
Sheinman and S ffer ( 1991 ) and Sheinman et al. (1993) devel­
oped a system omposed of partial nonlinear differential equa­
tions in terms of the transverse and axial displacements to ana­
lyze the post-buckling behavior of multiply delaminated beams 
or long plates under cylindrical bending. A finite element 
method ba ed on layerwise laminated composite plate theory 
was presented by Lee et al. ( 1995) to formulate and solve the 
post-buckling problem of laminated composites with delamin­
ations. 

Unlike the previously published pap rs, which were mostly 
based on finite element analysis, this paper presents an asymp­
totic solution for the post-buckling analysis of composite plates 
containing two central d laminations. It should be noted that the 
approach is also applicable to the case of a single delamination. 
Because of the nonlinearit of the post-buckling behavior, the 
perturbation method is introduced to transform the nonlinear 
problem into a linear probl m. It should also be noted that good 
agreements were obtained between the calculation results from 
the present method and previously published data, both for two­
delamination problems and one-delamination problems. Some 
interesting conclusion are drawn. The interaction among sub­
plates is also studied and it is found that the redistribution of 
load among the subplates keep' the buckled subplate close to 
the critical load. 

Formulation 
The model of a delaminated plate employed in the analysis 

is shown in Fig. I. A plate of balf-Iength L, thickn s T, and 
width W has two pre-existing central d I minations. It is as­
sumed that the delaminations will not propagate under axial 
compressive load. Both ends of the plate are clamped and the 
extemalload is symmetrically applied. Because of the symmetry 
of the structure, only the left half can be considered. The half­
plate is divided into five sUbplate ,each having a size parameter 
pair (Li , ti ), L, and t l bing the length and thickne S of the ith 
plat. respectively. The coordinate systems for each subplate 
are also, hown in Fig. I. Points A and B are the crack tips. The 
first, lIow (top) d lamination wilI be denoted as delamina-
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Fig. 1 Definition of the geometry for the multiple delamination problem 

tion I and the second deep one as delamination II. The sizes the shortening of the midplane under compression and bending,
 
and locations of these two delaminations are defined by their so we can write
 
lengths (Ii and depths hi. Notice that t, = T, t2 = h" t] = T ­

h" I. = h2 - h" Ij = T - Ih, and L, = L - a" L2 = a" L3 =
 
a, - a2 ane: I.. = Ls = a2.
 

According to the nonlinear beam theory, the differential equa­ A 1[2 1 Jt.,tions for subplates J -5 are (e.g., Dym, 1974): ,u = - f)5dxs + - Bjdx, 
2 -L, 2 0 

d1(J.
 
Di --; + Pi sin Bi = 0, (la)
 

dx i + p]~ + P~L~ _ f) ~ _ B 0. (3 j)
WEt] WEI5 0 2 A 2 ' 

with boundary conditions 
olIO 2 P~L 4

B, (0) = 0, i = 1,2,4,5. (2) [./. = - B4 dx. + -- + Bo - • (3k)
2 ('4 WEI4 2 

( 3i) 

(31) 

( Ib) 

(4) 

(5) 
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B(3) 

d2() ( (}3)
Di --; + Pi B, - --'­ = 0. 

dx 6 

~) 
~~ 

r,.J
'--------' 

and substituting into ( la) gives differential equations for each 
subplate 1-5 in the form 

i.e., 

. () () (J' 0 (J'Sin = - - + ('),
6 

o _ J fO B2dx P5Ls B I,
Us - - 5 5 + -­ + 0 - ,

2 _I-, WEls 2 

where Withe width of the plate. 
Equation (1 a) looks very simple; however, it is actllally very 

difficult to solve because of the nonlinearity of the sine function. 
The pertuTbation method is a very powerful technique for solv­
ing nonlinear differential equations. In order to take advantage 
of [he perturbation method it is neccessary to modify Eq. (Ia) 
into a form such that the perturbation expansion of its solution 
will result in a series of linear equations that can be solved 
iteratively. sing Taylor's formula to expand the sine function, 

To implement the perturbation technique, a straightforward 
expansions of the solutions Bj and Pi are constructed first (e.g., 
Bush, 1990): 

Oi = O~O) + EOSO;') + EI.5B;2) + 0(E2_~). (4a) 

P, = p;CII + E05 P;" + E'~pF) + 0«('2..5), (4h) 

where E i' a small perturbation parameter. The, ymptotic se­
quence {E 005 , E I <. E 2.5, ... } was chosen as opposed to the more 

Ml) 
P, 

( 3c) 

(3d) 

(3g) 

(3ft) 

(3e) 

(3f) 

(3) 

(2) 

A 
(1) 

Fig. 2 Internal load conditions at the sections of points A and B 

At point B, 

BJ(L,) = B.( -L4 ) = Bs ( -Ls) = Bo, 

u~ = u~. 

The kinematic continuity conditions are as follows: 
At point A, 

At the section of point B, 

Notice that for i = 2, 4, 5, this is due to symmetry, whereas 
B,(O) = °is due to the clamped end where D, is the bending 
stiffness of the plate, D, = ~1Il/(l - 1I121121) for orthotropic 
materials. 

Referring to Fig. 2, the equilibrium conditions are as follows: 
At the section of point A, 

In these relations M i = D i dB, / dXi , and u is the displacement 
along the x direction. The displacements at points A and Bare 
due to the rotation of the cross section about the midplane and 
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usually used {EO c l ,c 2 
, ... } because it will generate the linear 

differential equations such that the second-order equation would 
include the first-order term and thus can be solved iteratively. 

Now the initial p<0sition is the webuckling state of uniform 
compression, so () i OJ = 0 and Pi") = Pt, / T, where P is the 
applied external load. 

Substituting (4) into (Ib) and dividing by 1'0.5, yields 

(1)2 

+ (p(O) + E0.5 p(I»)(}(2) _ (p lO ) + ca" p(I») ~ 
I I I I I 6 

The boundary conditions and compatibility conditions' are 
also processed in a similar fashion. Next, two groups of linear 
equations are obtained by a proper grouping of the terms of 
powers of 1', based on the following. 

Since I' is a very small number, {I, EO'} are very large 
compared to {1', 1'1.5 } . In tum. {E, E 1.5 } are very large compared 
to (c 2 

, 25), etc. Therefore, starting from Eq. (5), the first­
order terms are selected to be both {O ( I) and 0 ( EO') }, and 
the second-order terms are both (O(E) and O(E u )}, i.e., unlike 
the conventional asymptotic expansions, the term "first-order 
term" means to indud terms up to EO.5 [which, again, means 
both O(Eo) and 0(1'°.5)1 and the term "second order terms" 
means to include terms up to E 1.5 (which, again, means both 
o(E) and D( EL')). This methodology for constructing the as­
ymptotic solution i essentially a matter of proper grouping of 
the terms, or, in other words, proper selection of what is re­
tained, and it is neces ary to achieve the solution since the 
traditional approach would not be successful. 

Thus, the following two groups of linear equations are ob­
tained: 

First-Order, i.e•• up to O(E°.5). 

(6a) 

(}~I\O) = 0 for i = 1,2,4,5. (6b) 

At the section of point A, by using (3e), 

(6c) 

and by applying (3f) and (3i,)), 

and by applying (3a, b), 

p~l) + p~l) = 0, 

d(}ll) d(}(') d(}l') 
- D, _1- + D2 _2_ + 0:, _.'_ = P~I) E2 -

aX I dX2 drJ 2 
Pi') 0.. 

2 

(6e) 

(6f) 
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At the section of point B, by applying (3 g), 

(}~')(L,) = (}~I)( -L4 ) = (}~I)( -L,). (6g) 

and now by applying (3h) and using (3k, l), 

~ fa (}~1)2dx, + E-O., P~')L5 = ~ fa (}~Ll2dx4 
2 -1., WEI, 2 -L. 

p('lL+ 1'-0.5 _4_4 + E-0.5(}(I)(-L ) 14 + t5 (6h)
WEt

4 
5 5 2 ' 

and by applying (3 c, d), 

r~" + P~') = p~' >, (6i) 

d(} ll) dell) dell) 
3 D 4 D 5 Pll)t4 (1)1,

- D3 -- + 4 -- + , -- = 5 - - P4 -. (6)) 
dX3 dX4 aX5 2 2 

Second order, i.e. up to O(E1.S). Substituting (4) into (Ib) 
gives 

(}~2)(0) = 0 for i = 2,4, 5. (7b) 

At the section of point A, by applying (3e), 

(}\2)(L,) = (}~2l( -Lz) = (}\2 l (0), (7c) 

0.8 -r--------------------....., 

0.6 

0.4 

0.2 

data from Lee el al.
 

present
 

o 

0.0 +-~--r-.---,.-~r_...-"T'" ...~-i........_+-...,._.,-~_r_..,-
·0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 

Fig.3 Deflection-load curve of a plate with a single delamination: fi = 
0.2 and a = 0.3. Horizontal axis is W, and vertical axis is P. 
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Table 1 Post-buckJjog behavior of a plate with two equal-length d laminations 

p 02 0.3 0.4 0.5 0.6 0.7 

Lee et al- (J995) 
Lee et al. (1995) 
Present 
Present 
Present 

1¥2 
ilij 
IV1 

W, 

0.06 
0.0 
0.0635 

-00025 
1.0088 

0.13 
-0.01 

0.1399 
-0.0125 

1.0218 

0.\ ' 
-0.02 

0.1838 
-0.0293 

10334 

0.20 
-0.05 

0.2138 
-0.0561 

1.0474 

0.22 
-0.Q95 

0.2298 
-0.1046 

1.0679 

0.21 
-0.2 

0.2187 
-0.2095 

1.l 028 

and by applying ()a, b), 

p~2) 

de (2 ) dfJ'21 
-D _1_ + D, ---.2..- + D 

I dx, - dX2 

+ p~2 = 0, (7e) 

deCl 
_3_- = Pl'!3. - pV) ~. (7f)

.\ d.xJ 2 - 2 

At the section of point B, by appl ing (3 g), 

(7 g) 

[. + [5) (7h)
2 ' 

and, finally, by applying (3 c, d), 

(7i) 

dfJ (2) dfJI2 de (2 )
-D _3_ + D. _4_ + D _5_ = P~2) ~ - p('-) 0.. (7 j)3 5

dX3 d.x4 dx" 2 2 

The general solution for the first-order differential Eq. (6a) 
IS 

fJ~') = A~') sin i\iX, + B;') cos i\iX" 

with 

(8a) 

(8b) 

where A~'). B;ll, i = 1,2,3,4,5 and p~'l, i = 2,3,4,5 are 
unkno ns' i.e., 14 unknowns. PI'l = 0 because PI = J5 i a 
constant. Substituting (8) into boundaJy condition (6b). the 
number of unkno ns reduc s to ten. S Iving the t n compatibil­
ity condition equations (6c - j( by the Newton's continuation 
method. allo s determining ii~ ). 

To solve the second-order y tern of equations, sub ·titute 
fJ~l) from (8a) into Eq. (7a), then the general solutions for Eq. 
(7a) are 

C~2) 

+ -:v::; X, 
_. 

SIll i\i X, 
C~3) 

- 8i\f in 311.; x, -
C(4) 

8~r co. 311., Xi (9a) 

where 

(9b) 

e(2) 
, 

= 
'B(I) 

~ (A('l~ + Bll )2) 

R " 
-

p(2) 

(O;B(I) -1­
I D,' 

(9c) 
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and 

(9d) 

(ge) 

So again we have 14 unknowns. Introducing E . (9a) into 
(7b) and (7c- j), the 14 unknowns are easy to calculate be­
cause all the equ tions are linear. Then the asymptotic solutions 
for the post-buckling deformation quantities are expressed as 

ii, = fUSe;') + fl5e~2) + O( 25). (10) 

Although fJ: ll and H~2) are functions of I: as E 
dj appears in both 

the fir t and s cond-order equations. Hi is n t a function of L as 
long as E is chosen to be a small value. 

inaIly, the deflection W(x) can he obtajned by int rrating 
Eq. ( 10) and using boundary conditions and compatibility con­
ditions, i.e., 

( lib) 

Results 
A simple computer code was written according to the preced­

ing theory. Delaminations of different sizes and locations were 
investigated. The calculation results are presented both in tables 
and graphs. The parameters are nondimensionaIizcd as 

hi = h,/T; Gi = a;lL; P = PIP~,; W = W;lT.j 

0.5.,.----------------------. 

0.4 

0.3 

0.2 

0.1 

0.0 +-.,-....~_,_-.._._---._!f_...-.,._~ ....~_r-,..___r---.~r_..-j 

·0.4 ·0.3 ·0.2 ·0.' 0.0 0.1 0.2 0.3 0.4 0.5 0.6 

Fig.4 Load-deflection curve for a two-delamination configuration, In 
which delamination I is long 
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Notice that p~, is the critical load of the plate withollt delamina­
tion and W, represents Ihe maximum deflection of the ith sub­
plate with the upward direction as its positive direction. In Figs. 
3, 4, and 5, the horizontal axis iI, and the v rtical axis i 15. 

Single Delamination. To verify the accuracy of the present 
method, all exumple employed by ee et al. ( 1995) i re isited. 

he material being u ed i' TIOO/520g oraphite/ep ,y with 
typical material param tel's E'I = lSI Gpa, En = 10.3 pa, 
GI2 = G" = 7.17 Gpa. and V'2 = 1/'3 = 0.28. A plate containing 
a 'ingle through-the-width d lamination at its enter with 7 = 
0.2 and a = 0.3 i. considered. The thickness-to-span ratio i' 
assumed to be T/ L = 11400. Figure 3 presents the calcul tion 
r 'ults as well as the ploLLed data from finite element study in 
Fig. 3 (Lee et al., 1995), which shows Lhat they are in good 
agre ment. 

Two Delaminations. To further verify this method, a two­
delamination example by Lee Cl al. ( Ie 95 ) i.s reconsidered. The 
e ample considers two delaminations symmetrically located 
with respect to midplane and both delaminations are assumed to 
have tbe same Length. The material properties of tbe compo ite 
material in the study are m, film: s: Ell = 10.9 Gpa, En = 7.58 
Opa, G I2 = Gil = 2.4 Gpa, l..'n = 0.31, l..'1J = 0.22. The post­
buckling analysis results for 171 = 0.125. 7il = 0.75 and lij = [[2 

= 0.3 are Ii,ted in Table I, a.~ well as data xtracted from a 
flgure presented by Lee et al. (1995). In this example, the 
·cc nd delaminati n r mains closed. The composite plate be­
lla es as if it contains the upper delamination only. Another 
interesting observaLion i the load redistribution among sub­
plat . P in Table I is the ratio b tw n the curr nt axi.al load 
in subplate 2 and its critical I ad. It is dearly shown in Table 
I th Lthe incr ase of 152 is not proportional to that of Ii This 
is h . us the stiffness f ~ubplate 2 will decrease when it 
buckle and the load is di tri uted through the thickness of the 
plate in relation to the thickn' , ,nd stiffne.. s propertie' of each 
·ubplate. As a resull, the load redistribution keeps the load of 
th buckled subplate at a level close to d1e critical load, 

A delaminated plate has a variely of buckling mode" includ­
ing the global mode, wbich does not involve lamina separation, 
th local mode, which involves buckling of the surface subplate 
anI (thin film mode), and the general mode, whieh is the 
coupled mode the global mode and the local mode. It has 
b 'en mcnti ned by other researchers that a plate with long 
delaminalions behaves differently from thaI with short delmnin­
alions. To investigate the ffect of delamination size on the 
post-buckling b 'havior of plates, two configurations i.nvolving 
LWO delaminations ar' considered: (1) loou delamination: hi = 
0.2, h1 = 0.5, UI = 0.6 and lf2 = 0.3; (2) short delamination: 
hi = 0.2, liz = 0.5, [[I = 0.3. and lh. = 0.3. Figures 4 and 5 are 
the Load- eRection curves of these two configurations, respec­
tively. For the long delamination case, subplate 2 buckles first 
when the e t mal load P is larger than th critical load 15,.• = 
0.1103. As the external load fJ increase. , the maximum deflec­
tion of subplate 2 increases, too. However, the maximum de­
flections f subplate 4 and 5 are k pt at a small level. In fact, 
the whole structure stay' in local buckling mode even when the 
external load reach s the second eigenvalu . Lo contrast, the 
plat ith short delamination behaves differenUy. At the initial 
post-buckling tate, the plate behaves in a local bucklin u mode. 
Howev r, the maximum deflections of subplates (4) and (5) 
becom large as Ii increast:s further, which indicate a switch 
to a global buckling mode. When f5 reaches 0.71, the global 

0.8..,....------------------------, 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0.0 -t-..-,.---,.-~-r_--_.--..--+_~-_r--..--._-..----1 

-0.4 -0.3 -0.2 -0.1 -0.0 0.1 0,2 0.3 

Fig, 5 Load-deflection curve for a two-delamination configuration, in 
which delamination I is short 

buckling mode becomes dominant. For a small increment of 
eternal load, that i!> P going from 0.71 to 0.72, the deflection 
increases abruptly and the whole. structure collap'e . 
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