
Koi er-Ba e Sol tio for he 
I itial P st-buckli 9 Behavior of 
Moderately Thick hotropic 
and Shear De ormable 
Cylindrical Shells U der 
External ressure 
The initial post-buckling behavior of moderately thick orthotropic shear deformable 
cylindrical shells under external pressure is studied by means of Koiter's general 
post-buckling theory. To this extent, the objective is the calcularion of imperfeerion 
sensitivity by relating to the initial post-buckling behavior of the perfect strucfllre, 
since it is generally recognized that the presence of small eometrical imperfections 
in some structures can lead to significant reductions in their buckling strengths, A 
shear deformation theory, which accounts for transverse shear strains and rotation.\' 
about the normal to the shell midsurface, is employed to formulate the shell equations. 
The initial post-buckling analysis indicates that for several combinations and geomet­
ric dimensions, the shell under external pressure will be sensitive to smull eometrical 
imperfections and may buckle at lauds well below the hiji/rcation pI' dictions for the 
perfect shell. On the other hand, there are extensive ranges ofgeometrical dimensions 
for which the shell is insensitive to imperfections, alld, th refare if would exhihil 
.vtahle post-critical behavior and have a load-carrying capacity beyond the bifurcation 
point. The range of imperfection sensitivity depends strongly on lhe material anisot­
ropy, and also on the shell thickness and whether the end pressur loading is included 
or not. For example, for the circumferentially reinforced graphite/epoxy e.wmple 
case slUdied, it wasfound thal tlte structure is not semitive to imperfectionsjor values 
of th.e Batdorflength parameter i. above ~270, whereas for the axially reinforced case 
th.e structure is imperfection- ensitive even al the high range of length values; for 
the isotropic case, the structure is not sensitive to imperfections above i. = 1000. 

Koiter's original work, several papers have produced variation 
of the theory with a bias towards virtual work (Budian ky and 
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Introduction 
Recent studies on the bucklin r of moderately thick ortho­

Hutchinson, 1964; Budiansky, 1974).
tropic shclls under external pressure have pointed to the impor­

The other approach to calculating the imperfection sensitivity tance of the effects of orthotropy and thickness in :owering the 
is the formulation and solution of the full nonlinear imperfect critical load and rendering classical shell theory estimates, in 
shell problem. A solution methodology for the analysi of ansome cases quite non-conservative, in comparison to isotropic 
isotropic, geometrically imperfect, thin, circular cylindricalthin shell construction (e.g.. Kardomateas, 1993; Kardomateas 
shell loaded by uniform axial compre. ion, based on the Galer­and Chung, 1994; Simitses et aI., 1993). It is natural to consider 
kin procedure, was described by Sheinman and imit esnext the extent to which these effects influence the imperfection 
(1983) .sensitivity of the shell. 

Regarding applications of Koiter's theory to shell everaJThis can be achieved in an efficient manner by applying 
papers have been published, mostly based on isotropi classicalKoiter's (1945, 1963) general post-buckling theory, according 

to which, the slope of the secondary curve and the degradation thin shell formulations (e.g., Hutchinson. 1968). Hutchinson 

of the critical loads with imperfections are described by means and Frauenthal (1969) studied the post-buckling and imperfec­

of the value and sign of the coefficient of the post-buckled state, tion sensitivity of stringer I' in forced cylindric, I, bell. . Regard­
b. A compreh nsive survey by Hutchinson and Koiter (1970) ing external pressure loading, Budiansky and Amazigo ( 1968) 
provides a very useful bibliography, together with an overview studied an isotropic thin shell under hydro tatie pressure on the 
of the achievements and goals of this theory. In addition to ba is of the nonlinear Karman-Donnell the r and found that 

the e shells may be sensitive to imperfections in some instance: 
and insensitive in others. Also, a much earlier post-buckling 

Contributed by the Applied te~hani~s Division 0 THE AMERtC.·\N ocu;rv shell analysis was made Koiter (1956) on the basis of his 
OF MECHANICAL 'OL'lEERS for publicalion in the ASME JOUR. AL 0" ApPLIED 

general formulation in terms of displacements.
MECHANICS. 

Discussiun On Ihe paper should be addrt:':sed to the Te~hniaJ Editor, Professor The purpose of the present paper is to ext nd these earlier 
Lewi 'I. Wheeler, Department of MechaniCal En inccring, University of Houston, studies on the initial post-buckling behavior by including mate­
Houston, TX 77204-4792. and will be at cpted until four months after final rial orthotropy and basing the analysis on a shear defonnali n 
publication of the paper itself in the ASME JOUR AL or ApPUED It,r-HANIU. 

Manuscript recei,'ed by the ASME Applied Mech nic: Division. Aug. 21, t996; shell theory rather than a classical Donnell-based formulation. 
final revision. Mar. 22, 1997. Associate echnical Editor: S. Kryiakides. This is because the construction of the shell structur involves 
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advanced composite materials and moderate shell wall thickncss 
where shear effect: are more pronounced r ndering classical 
sh II theories inadequate. Besides the anisotr lpy, composite 
shells have most often one other important distinguishing fea­
ture, namely extensional-to-shear modulus ratio much larger 
than that of their meta! counterparts. 

In this regard. several improved hell theories have been 
formulated (e.g., Naghdi and Cooper, 1956; Mirsky and Herr­
mann, 1957; Dong and Tso, 1972; Whitney and Sun, 1974; 
Reddy and Liu, 1985). Most of these refined theories focused 
on their application to vibration problems and can be catego­
rized into two basic rrroups: one with in-plane displacements 
approximated by linear variations ;n the thicknes: direction and 
the other by cubic polynomials. The first group requires the $0­

called sh ar correction factors as first sugg sted by Mindlin 
( 195 I) for homogeneou. isotropic plates to account for the 
nonuniform distribution of transverse shear stres es and strains 
acros~ the thickn s . The second group, also called higher-order 
theories, uses higher-order approximations for shear stresses 
and strains and dOt' not use shear correction factor. but calls 
for a more involved analysis. The present paper is based on the 
simpler imo. henko-Mindlin kinematic hypoth sis with shear 
corT tion factors. Although the formulation reduces in general 
to the numerical solution of a standard two-point boundary 
value problem for ordinary differential equations, a imple 
clo~ed-fonTI solution can be derived b considering the limit of 
a very long cylinJrical helL It should also be mentioned that 
an ortholropic ring under , ternal pr ssure does not exhibit 
imperfection sensiti ity (Fu and Waas. 1995). [t will be shown 
in thi paper that an orthotropic shell under ext mal pressure 
has wide ranges of length in which it is imp rfection sensitive, 
and these rang d pend on the anisotropy of the materiaL 

Basic Equations 
Consider an orthotr pic circular cylindrical shell of thickness 

h. mean radius R. and length t. The shell is referred to a coordi­
nate syst m x, e, and ~, in which x and e are in the axial and 
circumferential dire tions of the shell and z is in the direction 
of the outward normal to the middle surface. The corresponding 
displacement. at the middle surface are designated by U, 11, and 
\V and the rotations of a normal to the middle surface in the ez 
and x~-plan's respectively ar denoted by ¢ and t/J. The nonlin­
ear strain-displacemelll relations are 

( Ia) 

Vo + wi, 
Eo = k- + 2R 2 w]>. ( I b) 

UI! I 
"I. ... = v~. + R+ RW •.,W.o, ( Ie) 

(I d) 

and the bending strains (or curvature) relationships are 

W.& ,k t/J.e
Ke = Ii; K.e = '+'., + Ii' ( Ie) 

Notice that based on the Timoshenko-Mindlin kinematic hy­
pothesb, th displacement ficld U, v: tV at an arbitrary point, is 
represented by 

il(x, 11. z) = u(x, 11) + zt/J(x, e), (2a) 

vex, e, z) = vex, e) + z¢(x, e), (2b) 

tV(x, e. z) = w(x, e). (2c) 
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In these equations, a comma denotes differentiation with respect 
to the corresponding coordinate; E~, I!u, and "I~a re the inplane 
strains; "I/!: and "I". are transverse shear strains. otice that for 
the classical shell theory, t/J = -W.' and ¢ = -w.JR, therefore 
"Ir. = "Iu, = D. 

One thing should be mentioned at this point. The shallow 
elas ical sh II theory equations were chosen becau:e of their 
simplicity and for the desire to stay with the simple:>t possible 
hell formulation for purposes of clarity of the presentation of 

the initial post-buckling behavior. Although the classical shal­
low shell theory has been shown to provide poor accuracy for 
low n (e.g., Brush and Almroth, 1975), thi paper employs a 
shear deformable theory, and for this case it has been shown 
with a few e ample (Kardomateas and Philobos, 1995) that 
the first-order shear deformation theory (n = 2) gives critical 
loads ver lose to the three-dimensional elasticity solution, 
although the classical shell theory would give, for these xam­
pIes, critical loads noticably above the elasticity ones. 

Asymptotic Expansions for the Post-buckling Behavior of 
the Perfect SheU. In the post-critical regime, the structure 
suffers deviations in the displacement profile from Lhe buckling 
mode VI = {U,IJ,UIII • Will}, and simultaneously,p will deviate 
from Pro the critical pressure. Define T) = pip,. Then. the dis­
placement. of the structure in the initial post-buckling phase 
can be written as 

where .,., depends on ~. In this expansion Vo is associatcd with 
the prebuckJing state, V I describe a normalized buckling mode, 
and the remaining terms are orthogonal to the buckling mode. 
For example, 

1'0, imilar expansions are assumed for the resultant fores 
and moments. For example, 

Substituting into the nonlinear strain displacement Eqs. ( I) 
give the strains in the {: mTI 

Second-Order Strains. In the following we shall use eu to 
denote the linear strains, for example ex = L/••• 

U .. ing the asymptotic expansion (3) and the nonlinear strain-
displacement relations (J) gi ves the 'econd-order strains in the 
abbreviated form: 

(4a) 

Specifically, the second-order normal strains are 

(4b) 

wherc 

L (V ) = .!.. w' 112. L (V ) = _1_ 11'(1)2. ( 4c)x I 2 .,J ) e I 2R 2 '" 

The second-order shear strains are 

(Sa) 

(5b) 
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The third or fourth-order strains can be found in a similar 
fashion. 

Stress Resultants. In the first-order shear deformation shell 
theory considered, the generalized ·tress 0' consi rs of the five 
force resultant N" Nil. N, • Q"" and Qn~ and the three moment 
resultant M" Mo. and Mz8. The generalized strain E repre ents 
the five membrane strains E" 0, 1'.0, 'Y"" 'Yo, and the three 
bending strains K , KO, and K,II. The g neralized displacem nt 
consists of the five midpoint linear and angular displacements 
/I. v, IV, cf>, and 1jJ. 

For orthotropy, the stress resultants are related to the strain 
components by 

N, 
No 
Qu: 
Q,.0'= 
N,.o 
Mx 

Mo 
M"o 

C ('12 0 0 0 0 0 0 
" 

C,2 C22 0 0 0 0 0 0 
0 0 kiC44 0 0 0 0 0 
0 0 0 kT c55 0 0 0 0 
0 0 0 0 C66 0 0 0 
0 0 0 0 0 00" 0 '2 
0 0 0 0 0 00 '2 0 22 

0 0 0 0 0 0 0 0"" 

E, 
Eo 

'YII,
 
'Yr.
X = C.E, (6a)
'Y.•o 
Kx
 

KO
 

K.u 

where cij are the stiffness constants (we have used the notation 
1 "" x (axi 1),2"" e, 3"" z (radial), 4 = ez, 5 -= Xl and 6 ... 
xe) and q, ki are the shear correction factors. These constants 
are expressed in terms of the moduli and Poisson's ratios of the 
material and the thickness h of the shell as follows: 

he,
e" =---=-­ (6b)

I - lI.,OllO•• 

( 6e) 

As far as the shear correction factors. results will be presented 
for the usual values of kT = k~ = ~. A discus ion of various 
methods for determining these factors can be found in D ng 
and elson (1972) and Whitney (1973). 

We shall use sij to denote the generalized stre ses correspond­
ing to the generalized linear strains, i.e., S = C.e. Using the 
asymptotic expansions for the strains gives the stresses as 

(7a) 

Notice that 

(7b) 
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or, in abbreviated foml, 

(7 d) 

Th third-order generalized tres -e can also be found in a 
similar fashion. 

The relation hip fl(~). In this subsection, we shall use the 
abbreviation ~f to denote the strain energy of th hell, which 
can be wriuen in the form of an integral over the volume, V: 

I I f' f2.2O'C = 2 0 0 (N,E, + NIJEn + Nn/'Y"" + Q",'Y-" + Q*1'llr 

+ M.,K.• + MOKo + Mn/K,o)Rdedx. (8a) 

Also, we hall denote by n the work done by the uniform fluid 
pressure (which remain. always normal to the surface as the 
'shell dd rms); thi is the product of the pressure and the change 
in the volum enclosed by the shell. An xpr .-ion in terms of 
the displacem nts can be found in Brush and Almrolh (1975): 

2 2n = W + 2~ (v - 1I1V.~ + V,I/W + w ) ] Rdedx.p f: fT [
(8b) 

A complete and ext n. i e presentation of the 7)(0 relation­
hip is gi n in Budian ky (1974). in which usc is mad of 
reehet derivatives. Th formal definition given for Frechet 

derivatives of any order is entirely equivalent to the familiar 
proc of "taking variations" in the calculu of variatio . We 
shall u e prime to d n te Fr chet d rivatives and the subscript 
e means evaluation t the critical state. 

If we set now 

(9a) 

we can find the oefticien (J. b for the case of linear stre"­
strain relations, quadratic strain-displacement rebtion . and 
quadratic shortening-displacement relations, as follows ( udi­
ansky, 1974): 

3 O'(I)(t:;:V7) 
a=-- (9b) 

2 O'?(t::V T) - (o,:'\!~) 

b = _ 20' (1)(f;'V,V2 ) + O'(2)(E"V7). 
(9 .) 

O'?( ';'V T) - (0;'11 T) 

otice that the ccond term in the den minator is due to th 
hydrostati loading and it ould not exist in a dead-loading 
situation. Also. the variable V is identifi d a the set of function 
u, v, IV. The Frechet derivatives 0 the generali7ed strains are 
found to be 

(lOa) 

( lOb) 

( lOc) 

All the other components of the gen ,Iizcd . train result in z r 
Frechet 'econd deri atives. 
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( 13a J 

It is also to be noteJ that the derivation of III relationship 
TJ( ~) mak s use of the orthogonal ity conditions 

( We) 

The First-Order Displacement Field 
The governing equations of equilibrium and boundary condi­

tions f r the shear deformable orthotropic hell can be derived 
from th principle of virtual work. namely 61 = IJ ,by integrat­
ing by parts and setting the co ffici nt of fJII, ou, Ow, 04>, and 
Dip to L ro separately. Thus. one obtains 

RN,.,. + N'9,o = 0, ( Ila) 

RN:d1,A + No.9 - p(v - li',O) = 0, (lib) 

RM e•e + M tiI•9 - Ro.r. = 0, (lie) 

( II d) 

I
 
RQ,tc:... + Q/f:.O - N" + R(New... )... + R(N"wpJ.9
 

+ (N,I/w.o),. + (NJfI IV,,),9 - p( .y + 11') - pR = 0. (lIe) 

D<.:noting presClibed quantiti , by *, the boundary conditions 
at x = 0, l for the general case f a shell in which the end 
loading N? or M~ may be non ero. are 

ither Or 

11 = u* N, = N~' 

v = v* 

II' = IV* 

l/J = l/J* 

4> = 4>* M = 0. 

We 'hall consider in the present paper a shell loaded by 
external pres,;urc in a simpl, supported configuration and in 
w,hich there are no prescribed end forces or moments. The 
boundary conditions in this case arc simply 

u=w=<p=o; N,=Me=O; atx=O,l. (II/) 

In the prebuckling • tate. the axially symmetric distribution 
of external forces 'produce streSses identical at all cross sec­
tions. For ex.ternal pressure, 

( . + . ) (IJ + R' I I) + ('12 .( I)II
(.12 <'(>(> 11 ..-0 (.6/>V.... R V... - p,.t. 

+ ( c; + p.}V~JI = 0, (13h) 

RD ,I,ll) + D l/J~J + (D 0 + D )-1. 111 
11'1'... 66 R 1- bt, '1". 

- Rkk~s(l/JII) + lV~l) = 0, (13e) 

<pI I 
RD et>11, + Do _._8 + (D + D )",1 1 

6f>.cr II R 12 66 '1'. 

-ellu~.1) - (~2 + Pe)(U~JI + 11'(1) + R(N~o + k~CS5)W~1 

and the first-order boundary conditions are 

llV(II = W ) = 4>( 1) = ° at x = 0, i. (l3/) 

C u(l) + .:E (V(ll + 11'1 1') = 0'
II.r R .9 , 

D ,I,ll) + D I2 
.k"! = ° at x = 0, l ( 13g) 11'1'.. R '1".9 

The fir. t-order displacement field is set in the form 

lI'I)(X, 0) = V, sin nO cos Ax; 

V(I,(X, 0) = VI cos nO sin AX, ( 14a) 

w(l)(x. 0) = W, sin nO sin AX, ( 14b) 

l/J (11(X, 0) = WI sin nO cos AX; 

4>1"(X, 0) = <PI cos nO sin AX. ( l4e) 

By setting 

1117r 
A=- ( l4e)

l ' 

the boundary conditions ( 13 j,g) are satisfied. Then. substitut­
ing into the differential equations (13a-e) gives a "ystem of 
five linear algebraic homogeneous equations as follows: 

( 15a) 

Neo = -pR; N,o = - CipR/2; N,flO = 0. 

The parameter Ci is used to conveniently allow for end pre sure 
loading; if the pre sure contribute to axial Ire s through end 
plates. ex = 1, whereas if the pre sure only acts laterally, Ci = 
0. We shall aLso use the superscript c to refer to the critical 
state, i.e., Nix) = -PeR. 

Substituting th asymptotic expansions (3) into the equilib­
rium Eqs. ( II), retaining the fi t-order t rrns and then using 
the constitutive relati ns (6) to express the fir ·t·order resultant 
forces and moments in terms of the first-order displacements 
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ell )- ( R + Pc n WI = 0, (ISb) 

(IS e) 
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k~c44n WI + (D 12 + D(6)n~WI 

+ ( RD66~ 2 + D~2 n2 + RQC44) <PI = O. (15d) 

Selling the five-by-five detenninant to zero gives a quadratic 
equation; the minimum positive root is the critical pressure, Pc. 
The buckling modes, i.e., the constants UI , VI, WI, WI. and 
<PI, are subsequently obtained by choosing the normalization 
WI = h, where h is the shell thickness. 

Second-Order Displacements 
Substituting the asymptotic expansions (3) into the equilib­

rium Eqs. ( II). retaining the e terms and using the anticipated 
result that P = Pc + O(e), gives the second-order equilibrium 
equations as follows: 

( 16a) 

RN<J~ + N~~J - Pc(V(2) - wei»~ = 0, (16b) 

RM~2j + M<J,.). - RQ~;) = 0, ( 16c) 

( 16d) 

+ (M~)w~;) ).9 + (M~)W~d»..r - Pc(v(J) + W(2» = O. (I6e) 

Substituting the resultant force-displacement relations gives 
the following differential equations for the second-order dis­
placement field: 

(21 C66 (2) ( ) (2) (2)RCIIU." + R 11 .•0 + CI2 + CM v.,o + CI2W., 

( 17a) 

( c? + C )U(2) + Rc V(2) + Cn V(2) _ P V(2)
I. 66 .,0 66, R .06 c 

+ (c + C )W(I) W(I) + Cn W(I)W(I) = O. (17b)
12 66 .' .ff R 2 .9 .90 

(2) (2)l/J (,7,]
RD1Il/J.xx + D66 R + (D 12 + D66 ) C/>.'" 

_ Rk~C55(l/J(2) + W~2» = 0, (17c) 

. (2) ¢~Q~; (2)
RDfJ6 c/>.u + Dn R + (D12 + D66 )l/J.,1I 

+ Rk2c -/.(2) _ RCJ2 W(I)2 _ C22 W(ll2 
2 44'1'.9 2 ..r 2 R /1 

+ [RcIIII~/ + CI2(V~,IJ + w~»]Rw~;) 

+ [c U(I) + Cn (v O ) + W(I»]W(lJ
J2..r R'O .9 

+ [c U(I) + Cn (V(I) + w(l)]w(l)
12 .,6 R .90 .9 /i 

+ (v~ + U~,J)W(d)] = o. (17e) 

Furthermore, the second-order boundary conditions are 

V(2) = W(2) = c/> (2) = 0 at x = 0, l. (17f) 

=0 (17 g) 

M(2) = D ,1,(2) + DI2 
-/.(2) = 0 at x = 0, l (17h)

x 11'I'.r R '1'.0 

The quadratic terms involving the first-order displacements 
on the right-hand sides of the equations give rise to nonhomoge­
neous tenns which are either independent of the B coordinate 
or vary as cos 2nB or sin 2nB. Thus, the second-order displace­
ment is sought in the separated form: 

U(2)(X, B) = U20 (x) + U22 (X) cos 2nB; 

V(2)(X, B) = V20 (x) + V22 (X) sin 2nB, ( 18a) 

W(2)(X, B) = W20 (x) + W12 (x) cos 2nB; 

l/J (Z)(x, B) = 'lizo(x) + WZ2 (x) cos 2nB, ( 18b) 

<P (2)(X, B) = <P 20 (x) + <Pn(x) sin 2nB. (18 c) 

Notice that this second-order displacement field satisfies the 
orthogonality requirements (1511,b), namely, s(2)e(l) = 

SO(E:V I V2 ) = 0, since 

h 2 hL L Lcos nBdB = T< sin nBdB = cos nB cos 2nBdB 

h 

= fo sin nB cos 2nBdB = O. 

Substituting ( 18) into (17) gives in terms of 

b l = R2
[ CIIUI~ + C~2 (Vln - WI) ]WI~2 
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+ (D 12 + D66)21!<P~2(X) - Rk~C55W ~2(X) = 0, (21 c)(19b) 

RD",,<P 22 (X) - ( ;2 4n2 + Rk~C44 )<P22 (X) 

(J 9c) 

(l9d) 

two ets of ordinary differential equations, one ,et for the func­
tion in the {;i-independent tenns of (18) and another set for the 
functions in the B-d pendent tenTIs. 

The first set consists of the following five ordinary differential 
equations for V 20 (x), V20 (x), W20 (x), W20 (x), and <P20 (x): 

RC6,,v20(X) - PY20(X) = 0, (20b) 

D II W20 (X) - kTc55[W 20 (X) + W ~o(x)] = 0, (20c) 

D66(T>~O(X) - kk44<PZO (X) = 0, (20d) 

R2(k~c~~ + N~O)W20(X) - (C22 + PcR)W20(x) 

- Rc,zV;,}(x) + R"l.k~c 5\[;~O(X) 

+ ~[(b, + b3) sin 2 AX + (b2 + b4) cos 2 AX] = O. (20e) 

Also, the c rresponding boundary conditions ( 17) give at the 
ends of the shell: 

V20 = W20 = <P20 = 0; at X = 0, i, (20f) 

and 

W 2 

W20 = 0; " \,;11 V':!o-- - C II A
2 4'I. at X = 0, i, (20g) 

Likewise, the second set consists of the following five onJi­
nary differential equations for V22 (X), Vn(x), W22 (X), Wn(x), 
and <p22 (x): 

+ Cl2W 22(X) + [(CLl + c66)n 2 + R2c11 A2 + C()(,n2] 

X Wr A sin 2AX = 0, (2Ia) 
4R 

(21b) 
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R 2 (kkss + N~o)W 22(X) 

- [(kk44 + N eo )4n2 + C22 + PcR]Wd x ) 

+ R2kTCssW~2(X) + Rk~C442n<P22(x) 

+~[(b3-bl)sin2Ax+(b4-b2)cOS2AX]=0. (21e) 

Also, the conditions at the ends are 

V22 = Wn = <1>22 = 0; at x = 0, i, (21f) 

and 

at x = 0, I, (2Ig) 

However, due to symmetry only half of the shell need be 
considered in the solution procedure. Indeed, the symmetry of 
the shell deformation imposes for 0 :5 X :5 l/2: 

V(I - x) = -Vex); V(I - x) = Vex); 

W(l - x) = W(x), (22a) 

W(I - x) = -W(x); <P(l - x) = <P(x) , (22b) 

Therefore, at the midpoint of the shell, i.e., at x = i/2, U = v' 
= w' = 1/1 = <P' = 0 allows solving for half the shell length 
and replacing the conditions (20f,g) at x = i with 

V 20 = V~o = W~o = w20 = <P~o = 0 at x = l/2 (22c) 

and also allows replacing the conditions (21 f, g) at x = I, with 

Vn = V 22 = W 22 = 'lin = <P~2 = 0 at x = //2. (22d) 

Solution Details. The two-point boundary value problem 
for half of the shell is solved separately for the B-independent 
and the B-dependent functions by the relaxation method (Press 
et ai, 1989), in which the five coupled ordinary differential 
equations are replaced by finite difference equations on a mesh 
of points that spans half the length of the shell. The method 
produces a matlix equation to be solved, but the matrix takes 
a special, "block diagonal" fonn, that allows it to be inverted 
far more efficiently both in time and storage than would be 
possible for a general matrix, 

In the implementation of the method for the functions of the 
B-independent tenn of ( 18 ), ten functions of x are defined as 
follows: YI = V20 , Y2 = W20 , Y3 = w20 , Y4 = V 20 , Y.\ = <P20 , Y6 
= U20 , Y7 = V 20, Ys = W ~o, Y9 = w20 , and YiO = cI>20' The ten 
first-order coupled ordinary differential equations for the ten 
y's are Y; = Y7, Eg (20a), Y2 = Ya, Eg. (20b), yi, = Y3, Eg. 
(20c), Y;; = Y4, Eq. (20d), Ys = YIO, and Eq. (20e). The 
corresponding ten boundary conditions are Egs, (20 f, g) at x 
= 0 and (22c) at x = //2, 

It should be noted that in order to exploit the reduced storage 
allowed by operating on blocks, the functions should be defined 
in such order so as pivot elements can be found among the tlrst 
fiv rows of the matrix. This means that the fi,ve boundary 
conditions at the first point must contain some dependence on 
the first five dependent variables Yl, Y2, Y3, Y4, and Ys. An 
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examination of the boundary conditions (20 f, g) shows that 
defining the y,'s as outlinell woulll satisfy this requirement. 
Regarding other details of the method, an equally spaced mesh 
of 241 points was employed and the procedure turned out to 
be highly efficient with rapid convergence. As an initial guess 
for the iteration process, the elosed-fcnm solution for a very long 
cylinder (as outlined below) was used for the displacements. An 
investigation of the convergence showed that essentially the 
same results were produced with even three times as many mesh 
points. 

In a similar fashion, the procellure involves solving a separate 
two-point boundary value problem for the Un, Vn . etc., i.e., 
by defining y( = Vn , Y2 = Wn , Y3 = W~1'.\'4 = U~2'.\'5 = iJ?22' 
Y6 = Un, Y7 = V ~2, Y8 = W~1, y" = W1", and YIO = iJ?22 and 
using the differential equations (2Ia-e) together with the 
boundary conditions (2If,g) and (22d). 

Initial Post-buckling Variation of Pressure 
Once the second-order displacement field is determined from 

the solution of the foregoing two-point boundary value problem, 
the post-buckling coefficient, b, can be determined from (9) 
and (10). 

Notice first that the coefficient a = 0, as expected, since 

fOr. fl ((J'1()(t"V 2 ) = NI(IW IIJ2 
I I x ~ 

o 0 

W(I)2 VII) III)+ NIII _.9_ + 2NII) ~ .r W.o dxde. (23a)e R2 xO R 

Substituting the first-order resultant forces and moments in 
terms of the first-order displacement field by using (6a) and 
integrating with respect to e involves the integrals 

2 

fo" cos ne sin 2 nede = f r. cos 3 nede 
o 
h 

= fo sin ne sin 2nede = O. (23b) 

Therefore, 

(23c) 

This verifies that the initial variation of pressure after buckling 
IS 

(24) 

where, since the buckling modes were normalized so that W( 
is equal 10 the shell thickness, h, the general perturbation vari­
able ~ has been replaced by 81 h, the maximum amplitude of 
the buckling mode over the shell thickness. 

Returning to the post-buckling coefficient, b, the denominator 
term in (9c) is 

II) 1)1)o+ 2N~oo W.r R 
W 

' dxde. (25a) 

Substituting the first-order displacement field (14) and integrat­
ing with respect to f) gives 

2)W 27fL
o( "V2) (N0 ,2 No' n dx (25b)(J'c Cc I = - ,0/\ + "0 R2 .1 2 
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The first term in the numerator in (9 c) bccomes 

(26a) 

Substituting the first-order resultant forces in terms of the first­
order displacement fields by use of (6a) and ( J ) and integrating 
with respect to f) gives 

III "V ) fl [f sin 2h h' 2(J' (cc )V2 = 0 ((x) --2- - W22 (x)n( 2n SIn '>"X 

+ b3,>,. cos 2 '>"x) ]WI'lfdx. (26b) 

where 

(26c) 

Finally, the second term in the numerator in (9c) is 

WI11W I ())
+ 2N (1 ) .' .0 dxde. (27a).,8 R 

Substituting the first and second-order resultant forces and mo­
ments in terms of the first and second-order displacement fields 
by using (6a) and (4) and integrating with respect to e gives 

2 
n'>" ] W+ F4(X) - sin 2'>"x 'If _I

2'
dx, (27b)

J' R 

where 

+ -C l2 
[2W20 (x) - 2n Vn(x) - Wn(x)] 

R 

(27 d) 

and 

f4(X) = C
66 

[ V 22(X) - U
22 

(X) 2 
R 
n] 

C66 w? .+ ­ in'>" SIn 
4R 

2'>"x. (27e) 
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Fig. 1 Post-buckling coeffiolent, b, calculated from the shear de­
formable theory, for the cases of circumferentially reinforced, axially 
reinforced graphite!epoxy, and isotropic material, in a shell under lateral 
extemal pressure only 

One additional term is from the effect of the external pressure 

r f'[2"Vf = P Jo-" J (U(112 - UlJ1WlP + l:(,)lW(ll + w(l)2)d(jdx. 
o 

(27e) 

Substituting the first-order displacement field and integrating 
gives 

nn,/2 _ (,/2 2 W 2 'ffL
H , J - P , I - VI In + WI) - . (27e)

2 

A standard method of numerical integration is used to calcu­
lat~ the post-buckling coefficient b from these expressions. The 
character of the post-buckling behavior in the initial stages after 
buckling hinges on the sign and magnitude of b. If b is positive, 
the applied load (external pressure) increases to values above 
the critical load Pc with increasing buckling deflection. How­
ever, if b turns out to be negative, then the equilibrium load 
falls with increasing buckling deflection and the post-buckling 
behavior is unstable. 

Results and Discussion 
Let us con ider a shell being made of unidirectional graphitel 

epoxy with the following typical properties for the material ( I 

2.,..------------------, 

o 

·1 

GriEp, Circum! Relnl 

·2 +--.--~~........-~~ .........~__rTT- ..............................,.......,~
 
10 100 10001 

Fig. 2 Post-buckling coefficient, b, from the shear deformable shell 
theory for the case of hydrostatic end loading 
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Fig. 3 The effect of transverse shear on the poslbuckllng coefficient, 
b, for lateral external pressure loading 

is along the fibers. 2 is the in-plane transverse, and 3 is the out­
of-plane transverse direction): moduli in GN 1m 2 £1 = 140.0, 
£2 = 9.1, Gil = G21 = G3 ! = 4.3, and Poisson's ratio VI2 = 
0.300. The shear correction factors are assumed to be kf = k~ 
= t,. The shell has a mean radius of R = I m. Two cases of 
shell thickness are considered in the following, one correspond­
ing to radii ratio R2 1R J = 1.05 and another thicker construction 
with R2 1R J = 1.10. Also, two cases of loading are considered: 
lateral only external pressure loading, i.e., no axial load and a 
= 0 in (12a), and external pressure with hydrostatic end load­
ing, i.e., with axial compressive loads determined from ( 12a) 
with a = I. 

The Batdorf parameter has been used as a convenient nondi­
mensional parameter to present results for shell buckling and 
post-buckling. For isotropic cylindrical shells, this is only a 
function of the geometry and is defined as i = IIIRh where I 
i the length, R is the mean radius, and h the thickness of the 
shell. Analogues for anisotropy have been derived by emeth 
( 1994) by performing a nondimensionalization of the shell 
buckling equations and it was shown that, for anisotropic shells, 
the Batd rf parameter depends not only on the geometry but 

Table 1 Effect of the anisotropy
 
Po t-buckling coefficient, b
 

Lateral External Pressure Only, R = tm, R21R1 = I 10, 
k; = k~ = 5/6 

t* b b b 

Circumft xlaJ:j: 
Reinf Reint Isotropic"'" 

2 0.0847 1.6421 0.3483 
5 -0.2170 0.9241 -0.0949 

10 -0.2681 0.5118 -0.2075 
23 -0.0839 0.0152 -0.2052 
53 -0.0934 -0.1460 -0.1940 

120 -00232 -0.2119 -0.0474 
27l O.OOOl -0.0916 -0.0618 
615 0.0064 -0.ll02 -00101 

1,395 0.0078 -0.0339 0.0043 
3.l62 0.0081 -0.0036 0.0075 

'" Batdorf Par~~eter for orthotropy, t = ['(c" en 
(c" enD" D12) ]. 

t GrIEp, Circumferential Reinforcement, moduli in GN/m 2
: Ex = 9.1, 

E. = 140.0, G.o = Gil., = G,: = 4.3, and Poisson's ratio U,I! = 0.020. 
~ GrIEp. Axial Reinforcement, moduli in G 1m 2

: E, = 1400, E. = 9.l, 
G"" = GOt = G,t = 4.3. and Poisson's ratio v,s = 0.300. 
** For Isotropic, E = t40.0 GN/m2

• and v '= 0.300. 
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Table 2 •ffect of hydrostatic end loading 
po t-buckJing coefficient, b 

h h h h 

ircumr Reinft Axial reinft 

Table 4 Effect of thickness 
post-buckling coefficient b 

Lateral External Pressure Only, R = 1m, q = k~ = 5/6 
l/R h (n) b (n) b (n) b (n) 

Circum!" Reinft Axial Reinf~ 

R21R, = 1.05 R,IR, = 1.I0 R21R, = l.05 R,I/?, = l.10 

0.4 -0.1680 (6) 03775 (7) 0.9958 (l5') 1.7581 (15*) 
0.5 -0.2319 (5*) -0.1457 (5*) 0.7619 (12*) 1.3482 (12*) 
0.7 -02347 (4*) -0.2095 (4') 0.3978 (9*) 09284 (9*) 
l.0 -0.1011 (4) -0.2511 (3) 0.0358 (7) 0.3097 (6)
 
20 -0,0328 (3) -01373 (2) -01616 (5) -Oln27 (4)
 
4.0 -0.0133 (2") -0.0102 (2*) -00833 (4) -0.1570 (3) 
5.0 -0.0054 (2') -0.0004 (2") -0.1045 (3*) -0.0958 (3*) 
6.0 -0.00 [9 (2*) 0.0037 (2*) -0.0662 (3*) -00566 (3') 
8.0 00007 (2") 0.0067 (2*) -0.0284 (3) -0.0985 (2) 

10.0 0.0015 (2*) 0.0075 (2*) -0.0121 (3) -0.0535 (2) 

* Denotes buckling at the same same (n. m) for both R,IR, ratios of 
l.05 and l.lO. 
t GrIEp, CircumJeremial Reinforcement. moduli in 1m': E. = 9.1, 

" = 140.0, Cal = CIk = = 4.3. and Poisson's ratio 1/,8 = 0.020.IT 

t GrIEp, Axial Reinforcement, moduli in G '1m': E, = 140.0, E. = 9.1, 
C.>tI = G8~ = C = 4.3, and Poisson's ratio I/'il = 0.300. 

long shells. The lransition from one value of n to the next 
lower causes an abrupt change in b whicb explains the lack of 
smoothness of the b versus t curve in Figs. 1.2, and 3. Budian­
sky and mazigo ( 1968), in their isotropic classical shell solu­
tion, defined S = n2t21rr-R 2 and found the critical load by 
making the simplifying assumption that S may vary continu­
ously and executing a formal minimization of the pressure func­
tion of s; this led to smooth b versus l curv~.. 

Table I and Fig. 1 give b, calculated from the shear defom1able 
theory, for the C,l<;e of circumferentially reinforced, axially rein­
forced graphite/epoxy, and isotropic material in a shell under lateral 
eXlemal p ssure only, and for mdu ratio, R2/ R, = 1.10. The main 
conclusion is lhat the regions of imperfection sensitivity are strongly 
d pendent on the anisotropy of th malerial. For the circumf ren­
tjall reinforced c it can be concluded that the critical pressure 
(at the bifurcation point) ought to be reliable above z "" 270, 
whereas for Lh axially reinforced case the structure is impelfection-

Table 5 Range of imperfection ensitivity (negative b)* 

R = 1m, k; = ki = 5/6 

Lateral External Pressure Only 
~ffl,=LW R~ffl,=L~ 

(l/R) (lIR) 

Circumf 
Reinft 2.3-269.6 (0.47 -5.07) I.7 -1.045 (0.29- 7.1 5) 

Axial Reinft >27.0 (>1.6) >25.0 (> l. [) 
lsotropic** 3.4-952.3 (0.58-975) >3.8 (>0.44) 

wlHydrost.atic End Loading 
R2IR , = 1.10 R,/R, = 1.051 

(IIR) (IIR) 
Circumf 

Reinft <3535 «5.81) <1,866 «9.55) 
Axial Reinf:j: >13.1 (>1.12) >14.1 (>0.83) 
Isotropic** < I ,081 « I0.39) All values (All values) 

"For values of f: = f(clIcu - 'r,)'12/[RIl2«'IIC22DlID22)"4J, examined
 
from 1.0 to 3000.
 
-r GrfEp, Circumferential Reinforcemcnt, moduli in G 1m': ,= 9.1,
 
Eo = 140.0. C.,IJ = Gp= = Cx:: = 4.3, and Poisson's ratio //<1> = 0,020.
 
t GrIEp, Axial Reinforcement, moduli in GN/m': E, = 140.0, E" = 9.1,
 
C", = G~, = G.." = 4.3, and Poi,son's ratio ).I,'/} = 0.300,
 
,", For I.otropic, modulus E = 140.0 GN/m\ and Poisson's ratio 1/ =
 
0300
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Lateral 
onJy 

2 
5 

10 
23 
53 

120 
271 
nl5 

1,395 
3,162 

0.0847 
0.2170 

-0.2681 
-0.0839 
-0.0934 
-0.0232 

0.0001 
000()4 
0.0078 
0,0081 

w/End 
pressure 

-07760 
-0.G034 
-0.3189 
-0.1283 
-0.0975 
-00286 
-0.0035 

0.0039 
0.0059 
00006 

Lateral 
only 

I.M21 
0.9241 
0.5118 
00152 

-0.1460 
-0.2119 
-0.0916 
-0.1102 
-0.0339 
-0.0036 

w/End 
pressure 

11391 
0.5963 
0.1941 

-00664 
-0.1767 
-0.2207 
-0.0968 
-0.1 III 
-00353 
-0.0050 

.. Butdorf Parameter for orthotropy. ;; = [2(C" C22 - cil)' -/fRIl2
 
(e" Cr;D '1 Du )

114 1.

'r GrIEp. ircumferential Reinforcement, moduli in GN/m': E, = 9.1,
 
E. = 140.0, Col! = G~, = G, = 4,3, and Poisson's ratio 1/", = 0.020. 
:;: GrIEp, xial Reinforcemcnt, moduli in G 1m 2: E, = 140.0, '11 = 9.1, 
C,,, = Gil, = C, = 4.3, and Poisson's ratio 1/,0 = 0.300, 

al '0 on the stiffness constants. In particular, for an ortholropic 
cylindrical shell, the Batdorf parameler becomes 

_ l2(Cllcn - ch) '/~ 
7 = --,~~"":"::"'_-'-="--- (28) 
~ Rl'12(C"C22 D ll D22) 114 ' 

where c~ and D~ are defined in (6b, c). 
The post-buckling coefficient b is calculated following the 

solution of the two-point boundary value problem for the sec­
ond-ord I' displacements, as has already been outlined. 1f b is 
negative, th shell is imperfeclion-sensitive and the load car­
rying capa ity diminishes following buckling. Also, the degre 
of imperfection-sen itivity is go emed by the magnitude of b. 
If, on the other hand, b is positive, the slructure retains some 
ability to support increased loads once bifurcation has taken 
place. 

In all case considered the 'lructure buckle' at m = I, whereas 
n depends on the shell lenglh, l, becoming equal to 2 for very 

Table 3 Effect of the transverse shear 
po t-buckling coefficient, b 

Graphite/Epoxy, Circumferential Reinforcemellt, moduli N/m': 
E, = 9.1, Eo = 140.0, C,u = C8, = C. = 4.3, 

and Poisson's ratio 1/.,. = 0.020 
Lateral External Pressure Only, R = 1m, 

R,IR, = 1.10. kf = k~ = 5/6 

h h 

Shear Clas iclll 
Der hell Shell 

8 0.874 -0.3852 -0,1918 
10 0977 -0.26 I -0.1598 
16 1,2:16 -01418 -0,0990 
23 1482 -0.0839 -0.0604 
53 2,250 -0.0934 -0.0748 

120 3.386 -0.0232 -0.0196 
222 4.605 -0.00 3 -0.0020 
27[ 5.088 0.0001 0.0010 
615 7.664 0.0064 00067 

[,:'95 11.543 0,0078 0,0080 
3,162 17.379 O.OOSI 0.0082 

* Batdorf Parameter for orthutropy. f: = /\CIlCll - d2),n/lRm 
(Ci,CnD11Dd1"1. 
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Fig.4(a) U,.(x) for both the shear deformable and the classical shell 
theory (lateral only external pressure) 
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Fig.4(b) V...(x) for both the shear deformable and the classical shell 
theory 
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Fig.4(c) W 22(X) for both the shear deformable and the classical shell 
theory 

ensitive even at the high range of length values, and therefore 
reduction in the buckling p sure from the bifurcation valucs 
should be anticipated; for the isotropic case, the bifurcation pressure 
ought Lo be reliable above i = J.000. For the rather short shells, 
i.e., mall valu~ of i. the Cil umferentially reinforced case shows 
a large amount of imperfection-.ensitivity above Z = 2.3 (,md up 
to =270), where:\!> the axially reinforced case exhibits no imperfec­
tion-sensitivity below i = 27. One interesting observation from 
Fig. I is that the absolute maximum of the negativ range of the 
postbuckJing coefficient. b, is reached in the isotropic case. 

x/f. 
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Fig.4(d) W22(X) for both the shear deformable and the classical shell 
theory 
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Fig. 4(&) i»22(X) for both the shear deformable and the classical shell 
theory 

Figure 2 and Table 2 give the results ~ r the postbuckling coeffi­
cient b from the shear deformable shell theory for the case of 
hydn static end loading. The major changes occur for the rather 
short shells, i.e., for Zless than =25, for which the pressure loading 
of the end. causes an increase of the imperfection sensitivity 
(smaller values of b) in comparison with the lateral-only external 
pressure loading. 

The results in Table 3 and in Fig. 3 illustrate the effect of 
transverse shear on the post-buckling coefficient for lateral ex­
ternal pre$sure loading. Compared to the results from the classi­
cal shell theory, i.e., neglecting the transverse shear effects, it 
can be concluded that this effect leads to a decr ase in the value 
of b and hence increase the imperl'ection senSitivity of the 
shell; however, this effect is negligible for longer shells, spe­
cifically for i above =100. 

The effect of thicknes: is illustrated in Table 4, in which two 
cases of thickness are considered, a relatively thinner shell wilh 
R2 / R] = 1.05, and a relatively thicker shell with R2 / R] = 1.10. 
The shells have the same mean radius R = I m. Since the 
Batdorf number zdepends on the shell thickness, it ems advis­
able to u, e the length ralio l/ R for comparison purposes in this 
table. One main point is that for the same length, the thinner 
and thicker shell. may buckle at different values of II. U the 
:;hells buckle at the same n (these cases are denoled by an 
asteri. k in the data in Table 4), then it can he concluded thaL 
the values of the post-buckling coefficient are larger for the 
thicker shell and therefore. the thicker :hell is Ie. sensitive to 
imperfecti n.. However, if at the same length, the thicker shell 
buckle at, smaller n, then h can be smaller and the thicker 

0.6 0.8 1.0 
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shell can be more imperfection-sensitive. Therefore, the thicker 
sh 'II' < re less 'nsitive to impetfections only jf they buc Ie at 
the same value of 11 as the thinner shell (of the same length, 
t, and me.Jn radiu., R) with which th yare compared. 

One of llle most u 'eful data in this problem of a shell under 
xternal pressure, i' the range of imperfection sen itivity, x·· 

p essed in t rms of the range of values of Z, or equivalently, the 
range of values of l/ R, for which the post-buckling coefficient b 
is negative. and these data are given in Table 5. A range of Z 
from I to 3,000 was examined. As can be een, th range of 
imperfection sensiti ity dep nds on the material anisotropy, the 
thickn s and whether the end pres ure loading is included or 
not. For example, the isotropic case with hydrostatic end loading 
is alway imperfection-sensitive f r R2/ R, = 1.05, but not for 
the thi ker R2 /R, = 1.10, in which ca e it hows a positive b 
and hence lack of imperfection-sensitivity for z bove "'" I, I00. 

Finally, in order to illustrate the effect of transver e hear 
on the second-order displacement field, -Igs. 4a-e . how the 
functi ns Ull(x) V22 (X), Wn(x), \]inCx), and <Pn(x) for both 
the shear deformabk and the classical shell theory. The case 
s Ie ted was lateral only external pressure. graphite/epoxy with 
circurnferenti~d reinforcement, radii ratio R2 / R, = 1.10, and 
length parameter i = 10. For this case the structure is imperfcc­
tion-sensitive with calculated b = -0.2681 from the shear de­
formabl shell, and b = -0.1598 from the classical shell theory. 

Long Cylindrical SheD Limit 
If we makc the as 'urnption of an infinitely long cylinder, we 

may ignore boun ary conditions at the ends of the shell and the 
s lutions to the differential Eqs. (20) may then be sought in the 
fonn of p riodic fun tions of the axial coordinate. 'pecifically, 

U,o = U20 sin 2AX; Vw = 1120 cos lA.x; 

W20 = W~~ + ~V 20 cos 2AX, (29a) 

W20 = 1120 sin 2AX; <1>20 = 4>20 cos 2AX. (29b) 

Then, substituting into the differential Eqs. (20), gives 
wio from 

(30a) 

where the bi'S are given in Eqs. (19) and A is the buckling 
mode from (14c). Also. 1120 = <1>20 = 0, and 020 , W20 , and 
~20 are found from the linear quations: 

2 rJ - (C12 2 2) W fA4A RCll '0 + 2AC,2W 20 = -n -RCIIA --, (30b) 
. - R 4 

2kfcssAw20 - (4D J1 A
2 + k~C55)if!20 = 0, (30c) 

2AC\2RU20 + [en + PeR + (kTc,s + N~0)4A2R2]W20 

- lAC12k;c5.'lR2{iw = (b2 + b4 - hi - b))/4. (30d) 

In a imilar fashion, solutions to the differential Eqs. (21) 
are set in the form 

Uu = Un sin 2AX: V22 = V~~ + 1122 cos lAx; 

(31a) 

\[112 = if!22 sin 2A-x; <Pn = <f>~ + cj)n cos lAx. (3Ib) 

Then, substituting into (21), gives V;;, W~, and 4>;2 from 

Coo 2 )', •.
 
(
 R4n + Pc v 21 + 

(32a) 

Journal of Applied Mechanics 

(32b) 

(C21 + pcR)2n Vii + [(k3c44 + N~0)4n2 + r,., + PcR]\¥i2 

- 2nRkk44<l>~ = (b) + b4 - b, - b2)/4. (32r) 

Also, 022 , 1122 , Wll , {i22, and <1>22 are found from the linear 
equati n : 

C'2 + 2C66 2 R \ 2) W ~A---'-''---'-:'';; n + C,,/\ , (33a)( R 4 

c" ) ­+ 2n R+ pc W 22( 

(33b) 

? - ( D6!.' 2'
2Aklc,~RW22 - R 4n + RkiC;, 

+ 4A 2 RDll ){i22 - 4An(D'2 + D6/;)4>n = 0, (33c) 

2nkk44WU - 4)1.n(D J2 + D!>6)\lJ22 

2 D22 , 2):Ie.- 4A RDw, + R 4n- + Rk 2C44 '!'22 = 0, (33d)
( 

2AC,2RU'2'2 + 2n(C22 + PcR)Vu. + I (kk44 + Nfio)4n 2 + Cll 

+ PeR + (kfCj5 + N~o)4A2R2]W22 

The post-buckling coefficient b can now be calculated by substi­
tuting into the full expressions for the displacement field, Eqs. 
(I8), and then into the formulas (9) and (10). This c1osed­
form solution for the second-order displacement field for a very 
long cylindrical shell, besides being a useful quickly obtainable 
solution, can be used as the initial guess for the relaxation 
method which is employed to solve the diUerential equations 
for the second-order displacements for a cylindrical shell of 
finite length. 

A comparison of this long shell limit solution for the post­
buckling coefficient, b, is given in Fig. 5 (a) for the graphite/ 
epoxy shell with circumferential reinforcement and in Fig. 5 (b) 
for the the graphite/epoxy shell with axial reinforcement (lat ­
eral external pressure only and R2 /R , = 1.10). In both cases, 
the long shell limit essentially converges to the solution outlined 
in the previous sections for a shell of finite length, when u1e 
length values become large, i.e., in the first case for f beyond 
about 100 and the second case for Z beyond about 400. 

Conclusions 
I Koiter's general post-buckling theory is used to study the 

initial post-buckling behavior of moderately thick, orthotropic, 
shear deformable cylindrical shells under external pressure. A 
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Fig. 5(a) The long cylinder limit closed-form solution for the Initial post­
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Fig. S(b) The long cylinder limit closed·fonn solution 'or the initial post­
buckling coefficient, b, in comparison to the finite length solution for e 
graphite/epoxy with axial reinforcement 

shear deformation theory, which accounts for tran verse shear 
strains and rotations about the normal to the shell midsurface, 
is employed to formulate the shell equations. 

2 The range of imperfection senSitivity depends strongly 
on the material anisotropy. on the wall tbickn 5S, and on 
whether the end pressure loading is included or not. 

3 For the circumferentially I' inforceu gral hite/epoxy ex­
ample case studied, it was found that the structure is not sensi­
tive to imperfection, for v lues of the Batd rf length parameter 
i above ""'270, whereas for the axially reinforc d case th truc­
ture is imperfection-scnsitive even at the high range of length 
values; for the isotropic case, the structure is not ~nsitive to 
imperf ctions above i'=" 1000. 

4 For the same length, a thicker shell is les s nsitive to 
imperfections if it buckles at the same number of wave numbers 
(n, m) as the thinner construction. 

S Transverse shear effects lead to an increase in the imper­
fection sensitivity of the shell; however, this effect is significant 
only for relatively short shell . 

6 If the hydrostatic pressure loading of the ends is included, 
major changes would occur for rather short shell, for which 
an increase of the imperfection sensitivit is observed in com­
parison to the lateral only external pressure Joadi 

7 A closed-form long-shell limit solution for th initial post­
buckling coefficient, b, is derived and shown to properly coo­

896 / Vol, 64, DECEMBER 1997 

verge to the solution for a shell of finjte length. when the values 
of l become large. 
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