Koiter-Based Solution for the
Initial Post-buckling Behavior of
Moderately Thick Orthotropic
and Shear Deformable
Cylindrical Shells Under
External Pressure

The initial post-buckling behavior of moderately thick orthotropic shear deformable

cylindrical shells under external pressure is studied by means of Koiter's general
post-buckling theory. To this extent, the objective is the calculation of imperfection

sensitivity by relating to the initial post-buckling behavior of the peifect structure,

since it is generally recognized that the presence of small geometrical imperfections

in some structures can lead to significant reductions in their buckling strengths. A

shear deformation theory, which accounts for transverse shear strains and rotations

about the normal to the shell midsurface, is employed to formulate the shell equations.

The initial post-buckling analysis indicates that for several combinations and geomet-

ric dimensions, the shell under external pressure will be sensitive to small geometrical \
imperfections and may buckle at loads well below the bifurcation predictions for the
perfect shell. On the other hand, there are extensive ranges of geometrical dimensions
for which the shell is insensitive to imperfections, and, therefore it would exhibit
stable post-critical behavior and have a load-carrying capacity beyond the bifurcation
point. The range of imperfection sensitivity depends strongly on the material anisot-
ropy, and also on the shell thickness and whether the end pressure loading is included
or not. For example, for the circumferentially reinforced graphite/epoxy example
case studied, it was found that the structure is not sensitive to imperfections for values
of the Batdorf length parameter 7 above =270, whereas for the axially reinforced case
the structure is imperfection-sensitive even at the high range of length values; for
the isotropic case, the structure is not sensitive to imperfections above Z ~ 1000.
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Koiter’s original work, several papers have produced variations
of the theory with a bias towards virtual work (Budiansky and
Hutchinson, 1964; Budiansky, 1974).

The other approach to calculating the imperfection sensitivity
is the formulation and solution of the full nonlinear imperfect
shell problem. A solution methodology for the analysis of an
isotropic, geometrically imperfect, thin, circular cylindrical
shell loaded by uniform axial compression, based on the Galer-
kin procedure, was described by Sheinman and Simitses
(1983).

Regarding applications of Koiter’s theory to shells, several
papers have been published, mostly based on isotropic classical
thin shell formulations (e.g., Hutchinson, 1968). Hutchinson
and Frauenthal (1969) studied the post-buckling and imperfec-
tion sensitivity of stringer reinforced cylindrical shells. Regard-
ing external pressure loading, Budiansky and Amazigo (1968)
studied an isotropic thin shell under hydrostatic pressure on the
basis of the nonlinear Karmén-Donnell theory and found that
these shells may be sensitive to imperfections in some instances
and insensitive in others. Also. a much earlier post-buckling

Introduction

Recent studies on the buckling of moderately thick ortho-
tropic shells under external pressure have pointed to the impor-
tance of the effccts of orthotropy and thickness in lowering the
critical load and rendering classical shell theory estimates, in
some cases quite non-conservative, in comparison (o isotropic
thin shell construction (e.g., Kardomateas, 1993; Kardomateas
and Chung, 1994; Simitses et al., 1993). It is natural to consider
next the extent to which these effects influence the imperfection
sensitivity of the shell.

This can be achieved in an efficient manner by applying
Koiter’s (1945, 1963) general post-buckling theory, according
to which, the slope of the secondary curve and the degradation
of the critical loads with imperfections are described by means
of the value and sign of the coefficient of the post-buckled state,
b. A comprehensive survey by Hutchinson and Koiter (1970)
provides a very useful bibliography, together with an overview
of the achievements and goals of this theory. In addition to
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shell analysis was made by Koiter (1956) on the basis of his
general formulation in terms of displacements.

The purpose of the present paper is to extend these earlier
studies on the initial post-buckling behavior by including mate-
rial orthotropy and basing the analysis on a shear deformation
shell theory rather than a classical Donnell-based formulation.
This is because the construction of the shell structure involves
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advanced composite materials and moderate shell wall thickness
where shear effects are more pronounced rendering classical
shell theories inadequate. Besides the anisotropy, composite
shells have most often one other important distinguishing fea-
ture, namely extensional-to-shear modulus ratio much larger
than that of their metal counterparts.

In this regard, several improved shell theories have been
formulated (e.g., Naghdi and Cooper, 1956; Mirsky and Herr-
mann, 1957; Dong and Tso, 1972; Whitney and Sun, 1974;
Reddy and Liu, 1985). Most of these refined theories focused
on their application to vibration problems and can be catego-
rized into two basic groups: one with in-plane displacements
approximated by linear variations in the thickness direction and
the other by cubic polynomials. The first group requires the so-
called shear correction factors as first suggested by Mindlin
(1951) for homogeneous isotropic plates to account for the
nonuniform distribution of transverse shear stresses and strains
across the thickness. The second group, also called higher-order
theories, uses higher-order approximations for shear stresses
and strains and does not use shear correction factors but calls
for a more involved analysis. The present paper is based on the
simpler Timoshenko-Mindlin kinematic hypothesis with shear
correction factors. Although the formulation reduces in general
to the numerical solution of a standard two-point boundary
value problem for ordinary differential equations, a simple
closed-form solution can be derived by considering the limit of
a very long cylindrical shell. It should also be mentioned that
an orthotropic ring under external pressure does not exhibit
imperfection sensitivity (Fu and Waas, 1995). It will be shown
in this paper that an orthotropic shell under external pressure
has wide ranges of length in which it is imperfection sensitive,
and these ranges depend on the anisotropy of the material.

Basic Equations

Consider an orthotropic circular cylindrical shell of thickness
k., mean radius R, and length /. The shell is referred to a coordi-
nate system x, 4, and z, in which x and @ are in the axial and
circumferential directions of the shell and z is in the direction
of the outward normal to the middle surface. The corresponding
displacements at the middle surface are designated by u, v, and
w and the rotations of a normal to the middle surface in the 6z
and xz-planes respectively are denoted by ¢ and . The nonlin-
ear strain-displacement relations are

€=U, + %w,“._ ¢ (la)

Vg + W |
€ = X +2R2 Wy (1b)

Uy 1
= Uy = — W Wy, lc
Y X R i 4 ( )

Wy
79’:¢+T; yx::l/’+"‘),v: (Id)
and the bending strains (or curvature) relationships are
10 .

=t =S ke= et B ()

Notice that based on the Timoshenko-Mindlin kinematic hy-
pothesis, the displacement field & ©; w at an arbitrary point, is
represented by

i(x. 0, 2) = u(x, 6) + zf(x, 9), 2a)
B(x, 6, 2) = vix, 0) + z¢(x, 8), (2b)
wix, 8, z) = w(x, 0). (2¢)
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In these equations, a comma denotes differentiation with respect
to the corresponding coordinate; ¢,, ¢,. and 7y, are the inplane
strains; vy, and 7y, are transverse shear strains. Notice that for
the classical shell theory, ¢ = —w, and ¢ = —w /R, therefore
Y= = Y&: = 0

One thing should be mentioned at this point. The shallow
classical shell theory equations were chosen because of their
simplicity and for the desire to stay with the simplest possible
shell formulation for purposes of clarity of the presentation of
the initial post-buckling behavior. Although the classical shal-
low shell theory has been shown to provide poor accuracy for
low n (e.g., Brush and Almroth, 1975), this paper employs a
shear deformable theory, and for this case it has been shown
with a few examples (Kardomateas and Philobos, 1995) that
the first-order shear deformation theory (n = 2) gives critical
loads very close to the three-dimensional elasticity solution,
although the classical shell theory would give, for these exam-
ples, critical loads noticably above the elasticity ones.

Asymptotic Expansions for the Post-buckling Behavior of
the Perfect Shell. In the post-critical regime, the structure
suffers deviations in the displacement profile from the buckling
mode V, = {u'",v'", w"}, and simultancously, p will deviate
from p., the critical pressure. Define 7 = p/p.. Then, the dis-
placements of the structure in the initial post-buckling phase
can be written as

V=nVo+ &V, + Vo + EVi+ 6V, + ... (3a)
where 1 depends on £. In this expansion Vj is associated with
the prebuckling state, V, describe a normalized buckling mode,
and the remaining terms are orthogonal to the buckling mode.
For example,

u=nuy+ Eu + EuP + a4+ U+ (3b)
Also, similar expansions are assumed for the resultant forces
and moments. For example,

Ny=nNy+ENY + END + END + N+ 0.0 (B¢)

Substituting into the nonlinear strain displacement Egs. (1)
give the strains in the form

2

= 0 (1 2.4(2) -3 () 4_(4)
€ = ney + ey + E€y? + e + £y + ..., (3d)

Second-Order Strains. In the following we shall use ¢; to
denote the linear strains, for example e, = u,,.

Using the asymptotic expansion (3) and the nonlinear strain-
displacement relations (1) gives the second-order strains in the
abbreviated form:

g =P+ E(V)). (4a)
Specifically, the second-order normal strains are
. ; '+ w®
P =uP + L(V); € =T 4 L(V), (4b)
wherc
L(V)) = 3 w2 L(Vy).= I wil’2. (4¢)
4 2 1 2 d ’ 2R2 o .
The second-order shear strains are
. a o WS
vy @ =v'P + ‘7 + La( V1), (5a)
5 WP 5 . 4
TR =@+ == v =g P+ el (5h)
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1
Ly(V,)) = % witwh L V) SRV = 0. (5¢)

The third or fourth-order strains can be found in a similar
fashion.

Stress Resultants. In the first-order shear deformation shell
theory considered, the generalized stress o consists of the five
force resultants N,, N,. N,s. Q.., and Qy. and the three moment
resultants M,, M,, and M. The generalized strain € represents
the five membrane strains ¢,, €, ¥4, Vx> Yo- and the three
bending strains «,, «,. and k.. The generalized displacement
consists of the five midpoint linear and angular displacements
u, v, w, ¢, and ¢.

For orthotropy, the stress resultants are related to the strain
components by

N, ]
Ny
Q.
0.
T | W
M,
M,
_M“,T
[y e O 0 0 0 0 0]
Ci2 Cn 0 0 0 0 0 0
0 0 kecu 0 0 0 0 0
_ 0 0 0 kicss. O 0 0 0
B 0 0 0 0 css O 0 0
0 0 0 0 0 Dy D 0
0 0 0 0 0 D, Dy O
LO 0 0 0 0 0 0 D,
e |
€g
Y-
X ;/“N = C., (6a)
KX
Kg
K

where c; are the stiffness constants (we have used the notation

= x(axial),2=60,3 =z (radial), 4 =0z,5=xzand 6 =
xA) and ki, k3 are the shear correction factors. These constants
are expressed in terms of the moduli and Poisson's ratios of the
material and the thickness 4 of the shell as follows:

hE, hv 4E hE,
(o T R e— C12=M; e 3 (6b)
I — v v, 1 — vy, 1 = vl
g
Ces = NGy Css = HGgy € = hGyy; Dy = D c;. (6¢)

As far as the shear correction factors, results will be presented
for the usual values of k} = k3 = ;. A discussion of various
methods for determining these factors can be found in Dong
and Nelson (1972) and Whitney (1973).

We shall use s; to denote the generalized stresses correspond-
ing to the generalized linear strains, i.e., s = C.e. Using the
asymptotic expansions for the strains gives the stresses as

gy =nso+ &P + 0P + E0P + ... (7a)
Notice that

0 0 |
oy =sh of) =siP. (7b)
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v + wt?

=
N = o u'? + ¢pp
R

+ e L (V) + cnldVy), (7c¢)
or, in abbreviated form,
0.«!) = S(l) 3. ('L(Vl) (7d)

The third-order generalized stresses can also be found in a
similar fashion.

The relationship n(£). In this subsection, we shall use the
abbreviation o€ to denote the strain energy of the shell, which
can be written in the form of an integral over the volume, V:

1 IJ" f-‘
—gc = — (Ne, + Nyey + Nog¥w + Q¥ + QoYe,
2 gdody =F ; & ke

+ Mk, + Mgky + Myk,g)RdBdx. (8a)

Also, we shall denote by €2 the work done by the uniform fluid
pressure (which remains always normal to the surface as the
shell deforms ); this is the product of the pressure and the change
in the volume enclosed by the shell. An expression in terms of
the displacements can be found in Brush and Almroth (1975):

o 2x B
O = [;J f I:W + L (v — v, + ugw + wz)JRdé’dx.
o Vo 2R

(8h)

A complete and extensive presentation of the n(&) relation-
ship is given in Budiansky (1974), in which use is made of
Frechet derivatives. The formal definition given for Frechet
derivatives of any order is entirely equivalent to the familiar
process of *‘taking variations’' in the calculus of variations. We
shall use prime to denote Frechet derivatives and the subscript
¢ means evaluation at the critical state.

If we set now

n=1+af + bt’, (9a)

we can find the coefficients a, b for the case of linear stress- .

strain relations, quadratic strain-displacement relations, and
quadratic shortening-displacement relations, as follows (Budi-
ansky, 1974):

(yy . myy2
gt eV (9b)

20%elVY — (VY

B 20.(1)(!:‘11‘/2) s frl_'l((\//v%)
e2(efVi) = (Q2VY)

(9e)

Notice that the second term in the denominator is due to the
hydrostatic loading and it would not exist in a dead-loading
situation. Also, the variable V is identified as the set of functions
u, v, w. The Frechet derivatives of the generalized strains are
found to be

ErVVa=ww®; eryi= iz (10a)
esViVa = wPw@IRY: €V = wQ?, (10h)

|
2 51 astitne
YuViVa = E (wPws + wh “‘{H))v

yaVE= 2wl wi/R. (10¢)

All the other components of the generalized strain result in zero
Frechet second derivatives.
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LV
= p(f (" — M)+ yDw ™+ w DN dldx.  (10d)

It is also to be noted that the derivation of the relationship
n(£) makes use of the orthogonality conditions

sPeM = sNg® = (VW)= 0. (10e)

The First-Order Displacement Field

The governing equations of equilibrium and boundary condi-
tions for the shear deformable orthotropic shell can be derived
from the principle of virtual work, namely 67 = 4(2, by integrat-
ing by parts and setting the coefficients of éu, év, éw, b¢, and
&ifr to zero separately. Thus, one obtains

RN, + Nyp = 0, (1la)

RNy, + Nyy — p(v — wy) =0, (11b)
RM, . + Myy — RQ.. = 0, (llc)
RMy, + Myy — RQ,. = 0, (11d)

RQur + Qus — No + R(Naws)» + }—‘2 (Nowa)eo

+ (Ngwg), + (Now.)e — p(vy + w) — pR = 0. (lle)

Denoting prescribed quantities by *, the boundary conditions
at x = 0, [ for the general case of a shell in which the end
loading N¥ or M ¥ may be nonzero, are

Either Or
u=u* N,=N?

v=v*¥ Ny=0

w
w=w* Nw,+ Ny —I?H +0.,=0

b=y¢y* M. =M}
¢ =¢* M, =0.

We shall consider in the present paper a shell loaded by
external pressure in a simply supported configuration and in
which there are no prescribed end forces or moments. The
boundary conditions in this case are simply

v=w=¢=0;, N =M=0; atx=0,1l (1lf)

In the prebuckling state, the axially symmetric distribution
of external forces produces stresses identical at all cross sec-
tions. For external pressure,

N = —pR; N, = —apR/2; N4 = 0. (12a)

The parameter « is used to conveniently allow for end pressure
loading: if the pressure contributes to axial stress through end
plates, @ = 1, whereas if the pressure only acts laterally, a =
0. We shall also use the superscript ¢ to refer to the critical
state, i.e., Njp = —p.R.

Substituting the asymptotic expansions (3) into the equilib-
rium Egs. (11), retaining the first-order terms and then using
the constitutive relations (6) to express the first-order resultant
forces and moments in terms of the first-order displacements
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&

> &
RC”M{JX" + f “f(:‘l' + (C’|3 + Cm)U‘JI«y) 4 CQW(_,” = 0, (13(1)

2
(2 + ces)ut'sd + Regv's) + 7 vy = P('U“)

5 (iR— + r")“".»" =0, (13b)

()]
RD\ ') + Do “”1;"

+ (D2 + D) 'Y

— Rkicss(p ™V + wil'y =0, (13¢)
RDyd')) + D “"Tfl' + (Dy + Des)y')
— kicu(Rep'V + w'y =0, (13d)

—cpu' — (% + pc)(vfﬁ" + w') + R(N5o + kiess)wll)

wiid

+ (N + kica) + Rkicsspl) + kicudly’ = 0, (13e)

and the first-order boundary conditions are

VW =y =gM =0 at x=0,1 (131)
el + % Y +w) =0
Dn'llf,"+% MN=0 at x=0,1 (13g)

The first-order displacement field is set in the form

u''"(x, 8) = U, sin nf cos Ax;

v'"'(x, 8) = V, cos nf sin Ax, (14a)
w'(x, #) = W, sin nf sin \x, (14b)
¢ (x, 8) = U, sin nb cos \x;
¢(x, 0) = ®, cos nf sin Ax. (14¢)
By setting
A= '—'1;: (14¢)

the boundary conditions (13 f,g) are satisfied. Then, substitut-
ing into the differential equations (13a—¢) gives a system of
five linear algebraic homogeneous equations as follows:

(Rc.,x2 + i;:—nz)U, + (Cra + Ceg)RAV, — cAW, =0, (15a)

(¢ + cou)nAU, + (Rcb,,)\z + %n: + pC>V.

- <5R- + pc>nwl =0, (15b)

Rkiess AW, + (RI).,A2 + % n* + kacﬁ)\I/,

+ (D» + Dgs)nA®,

0, (15¢)
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k%cunW, + (Dlz + Dw)ﬂk@]

2 D” 2 b
+ (RDN,N + ?3 n? + Rkic,u)(b. =0, (154d)

C2
c\NU, + (% + pc>nV,

- [“;1 + R(NS + K2ess)A2 + (NG + Kices)

n?
— + p. W
R P 1

— RkicssAU, — k3can®, = 0. (15¢)

Setting the five-by-five determinant to zero gives a quadratic
equation; the minimum positive root is the critical pressure, p,.
The buckling modes, i.e., the constants U,, V,, W,, ¥,, and
®,, are subsequently obtained by choosing the normalization
W, = h, where A is the shell thickness.

Second-Order Displacements

Substituting the asymptotic expansions (3) into the equilib-
rium Egs. (11), retaining the £? terms and using the anticipated
result that p = p, + O(£?), gives the second-order equilibrium
equations as follows:

RN&.?J + NG, =0, (16a)
RN + - p.(v? —w@) =0, (16b)
RM&i’ + M‘.Z’, - RQY =0, (16¢)
RMG + M3 — RO = 0, (16d)
Gx + Q6% — NP + R(NGw® + N wD),
o= (N‘ w@ + NEw),
+ (N wi?)e + (Ngwid)s = pe (v + w®) = 0. (16e)

Substituting the resultant force-displacement relations gives
the following differential equations for the second-order dis-
placement field:

Ces
2)
Reyul) + — R uG) + (c2 + cee)v'® + craw?

Cip + ¢
+RC” uw(l

Ce6
wPwl + =wwl) + ‘wly =0,
R
(17a)

(€12 + ces)tt'Y + Rego'd L2 - pov™®

s o0
+ | =+ p | WP + ceaw Wil

\ R
+ (C12 + cee)w P wil + =2 R2 2 yDwl =0, (17b)
RD + Dy, L2
— Rkicss(y @ + w'P) =0, (17¢)
RDud'% + Do R + (D2 + D)y
= kicu(Re™ + wi?) =0,

(17d)
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—RepuP — (e + pRY(WP + w?) + R*(Néo + kicss) w'2
+ (NI?O + k2C44)W(2) + Rzk C55¢/( )

Reyp 2 _
2 % 2R

C2 o
+ Rk3cudd — ——wh”

+ [Renu'? + cp(vly’ + w')IRw!)

+ [Reyu'y) + ca(v'y + wi?)IRw(

Cx
+ [c.zut,” = w“))}wtgu

C» )
+ [clzu&’s’ o (ved + WFJ’)JW‘”"

u'y’ 1)
+ cﬁﬁR[z(u&” + —[‘; ) wiy + ( W+ —1‘;’ wh
ul)
+ | vl + —R‘ wi | =0 (17e)

Furthermore, the second-order boundary conditions are

a71)

VP =P =¢p@ =0 at x=0,1.

wnz o G2 w2
,X ,)R

N? = ¢ u'® 42 S8 (v‘z’ + w?®) + 50

=0 (17g)

DlZ

M? =D ? + d@ = at x=0,1 (17h)

The quadratic terms involving the first-order displacements
on the right-hand sides of the equations give rise to nonhomoge-
neous terms which are either independent of the 8 coordinate
or vary as cos 2n6 or sin 2n6. Thus, the second-order displace-
ment is sought in the separated form:

u?(x, 8) = Uy(x) + Un(x) cos 2nb;

v (x, 8) = Vy(x) + Vap(x) sin 2n8, (18a)
w®(x, 8) = Wy(x) + Ws(x) cos 2n6;

WP (x, 8) = Uy(x) + Uy(x) cos 2nb, (18b)
D (x, 8) = Byy(x) + Pon(x) sin 2n0.  (18¢)

Notice that this second-order displacement field satisfies the
orthogonality requirements (15a,b), namely, s®e!” =

s%(elV,V,) = 0, since

2% 27 27
J. cos nfdé = J. sin nfdd = f cos né cos 2nBdo

0 0 0

- f sin n cos 2n8d6 = 0.
]

Substituting (18) into (17) gives in terms of

b, = Rz[c..U,x + % (Vin — w.)]w A2

+ [cnulx ¥ % (Vin — W,):IW,nz, (19a)
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N v )
b, = —RY cuUN + 22 (vin - AN
R 2

Jin

- C(mR(Vl)\ <+ T)‘Vl)\n, (Igb)

w
by = —( cpU\ + L Vin — —|> Win?
R 2

Un

= >Wl>\n, (19¢)

_ (',‘,nR(Vl)\ e 1e

Un

by = 2.."‘\(_.R<V1)\ + 7?_>W1M’ (194)

two sets of ordinary differential equations, one set for the func-
tions in the #-independent terms of (18) and another set for the
functions in the #-dependent terms.

The first set consists of the following five ordinary differential
equations for Usp(x), Va(x), Wa(x), Wy (x), and ®yp(x):

RepUlho(x) + cuW i(x) + [(c12 + cee)n®

) > 2 W 1 .
— R*ci N — cegn®] — N sin 2ax = 0, (20a)
4R

RegoV 50(x) — pVao(x) = 0, (20b)
D ¥i(x) — k%('ss['l’:o(x) + Wi(x)] =0, (20c¢)
Des® 4 (x) — k3cau®aro(x) = 0, (204)

R*(kicss + Nio)W 3(x) — (¢ + peR)Wao(x)
= RCQL’,”U(X) + R?k]l('is\ll ig(x)
+ 3{(by + bs) sin? Ax + (b, + by) cos® \x] = 0. (20e)

Also, the corresponding boundary conditions (17) give at the
ends of the shell:

Voo = Woo =Py =0; at x=0,1, (201)

and

Wi
=Nt ==y at

Wi, = 0; 3 x=0,1 (20g)

. 3.4
cnli

Likewise, the second set consists of the following five ordi-
nary differential equations for Uss(x), Vs (x), Wa(x), Wan(x),
and ®,,(x):

Ren Uy (x) — ‘; 4n*Un(x) + (cia + ces)2nV ha(x)
+ W h(x) + [(¢cn + Ces)n® + R%ci\?* + Corﬂ-z]

x Wi\ dnox=0, (2la)
4R

RegsV 52(x) — <([_, 4n* + Pc)vzz(x) = (ci2 + €)2nUpn(x)
\
- (LR_ + p,.)"ln Wia(x) + [(cn + Cceg) N2 cOS? Ax

o 2 . 5 Wi
— CeN | sinT Ax — % n? sin’ )\,\] 73 n=20, (21b)
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D,
RD, W1 (x) — (f 4n* + Rk%cﬁ)%(x)

4+ (D2 + Dgs)2n®h(x) — RkicssW ip(x) =0, (2l¢)
RDuD 5 (x) — (%ﬁ an® + Rk%c‘m>®22(x)
— (D2 + Dge)2nW5(x) + k3cy2nWy(x) =0, (21d)
R*(kicss + Ngg)W 5(x)
= [(k3cas + Ngo)4n® + ¢ + pcR1Wp(x)
— Rc U (x) — (¢on + pcR)2nVy(x)
+ R%32cssWhy(x) + Rk%c,2n®,(x)
+3[(by — b)) sin? Ax + (bs — by) cos*Ax] = 0. (2le)
Also, the conditions at the ends are
Vip= Wy =0, =0; at x=0,1, 21f)
and
T =0, c U = )\? !V4—I; at x=0,1. (2lg)

However, due to symmetry only half of the shell necd be
considered in the solution procedure. Indeed, the symmetry of
the shell deformation imposes for 0 = x = [/2:

U(l —x)=-U(x); VU-1x)=V(x);
Wl —x)=W(x), (22a)
Pl - x)=—-P(x); P —x)=P(x). (22b)

Therefore, at the midpoint of the shell, ie., at x = [/2, u = v’

=w' =y = ¢" = 0 allows solving for half the shell length

and replacing the conditions (20f,g) at x = [ with
Up=Vi=Wi =Ty =05=0 at

x=1/2 (22c¢)

and also allows replacing the conditions (21 f, g) at x = [, with

U22 = V;Z = Wéz = \Ifzz = @éz =0 at x=1/2 (22d)

Solution Details. The two-point boundary value problem
for half of the shell is solved separately for the #-independent
and the #-dependent functions by the relaxation method (Press
et al, 1989), in which the five coupled ordinary differential
equations are replaced by finite difference equations on a mesh
of points that spans half the length of the shell. The method
produces a matrix equation to be solved, but the matrix takes
a special, “‘block diagonal'” form, that allows it to be inverted
far more efficiently both in time and storage than would be
possible for a general matrix.

In the implementation of the method for the functions of the
#-independent term of (18), ten functions of x are defined as
follows: y; = Va0, yo = Wao, y3 = Wi, ya = U, ys = a0, Y6
= U, y7 = Vi, ys = Wig, yo = ¥s, and y;o = ®3. The ten
first-order coupled ordinary differential equations for the ten
y’s are y{ = y;, Eq. (20a), y; = ys, Eq. (20b), y5 = y3, Eq.
(20¢), y6 = ys. Eq. (20d), y5 = yio, and Eq. (20e). The
corresponding ten boundary conditions are Eqs. (20f,g) at x
= 0 and (22¢) at x = /2.

It should be noted that in order to exploit the reduced storage
allowed by operating on blocks, the functions should be defined
in such order so as pivot elements can be found among the first
five rows of the matrix. This means that the five boundary
conditions at the first point must contain some dependence on
the first five dependent variables y;, y,, yi, ys, and ys. An
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examination of the boundary conditions (20f,g¢) shows that
defining the y,’s as outlined would satisfy this requirement.
Regarding other details of the method, an equally spaced mesh
of 241 points was employed and the procedure turned out to
be highly efficient with rapid convergence. As an initial guess
for the iteration process, the closed-form solution for a very long
cylinder (as outlined below ) was used for the displacements. An
investigation of the convergence showed that essentially the
same results were produced with even three times as many mesh
points.

In a similar fashion, the procedure involves solving a separate
two-point boundary value problem for the U,,, V;,. etc,, ie.,
by defining y, = Vi, y2 = Wa, y3 = Ui, vy = Ud, ys = $ny,
Vo = U, y7=V5,ys = Wi, yo = ¥y, and y,o = @3, and
using the differential equations (2la—e) together with the
boundary conditions (21 f,g) and (22d).

Initial Post-buckling Variation of Pressure

Once the second-order displacement field is determined from
the solution of the foregoing two-point boundary value problem,
the post-buckling coefficient, b, can be determined from (9)
and (10).

Notice first that the coefficient a = 0, as expected, since

27 !
g PV :J. f (N_‘J’wf,“z
4] Q

(N2 1) (1)
Wy HVVJ Wy

+ N§D 3 + 2N )dxd&. (23a)

Substituting the first-order resultant forces and moments in
terms of the first-order displacement field by using (6a) and
integrating with respect to € involves the integrals

2 2%
f cos n# sin? nfdf = f cos® nfdf
0

0

= f sin 8 sin 2048 =0,

0

(23b)

Therefore,

c VeV = 0. (23¢)
This verifies that the initial variation of pressure after buckling
is

n=plp. =1+ b(6/h)?, (24)
where, since the buckling modes were normalized so that W,
is equal to the shell thickness, £, the general perturbation vari-
able £ has been replaced by 6/h, the maximum amplitude of
the buckling mode over the shell thickness.

Returning to the post-buckling coefficient, b, the denominator
term in (9¢) is

W(l)?.

2n !
. Wy
otevty == [ (waaw® + we 22
0o Jo R

W wip

+ 2N 5o )dxd@. (25a)

Substituting the first-order displacement field (14 ) and integrat-
ing with respect to 6 gives

2

2
. L
od(elV?) = —( N2 + N ;:—)W% % dx.
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The first term in the numerator in (9¢) bccomes

,
wid P

27 !
7 V(eV\Va) =f f [Ni”w&”w(?‘ N
0 0 -

N(J) ,
+ —[;} WP wP + wPw ]fkd@. (26a)

Substituting the first-order resultant forces in terms of the first-
order displacement fields by use of (6a) and (1) and integrating
with respect to ¢ gives

/ .
oM elViV) = f [fl(x) sm22>\x — Wi (x)n(byn sin® Ax
0

+ b3\ cos? )\X):|W|Tl'dx, (26b)

where

bn — b\

Hh(x) = W) (b + bsn) + W i(x) >

(26¢)

Finally, the second term in the numerator in (9¢) is
2= w2
o PV = f f (N‘;") wl? + NP l‘yz
o Jo R

(1) 4, (1)
Ve Wy

+oND )dxde. (27a)

Substituting the first and second-order resultant forces dnd mo-
ments in terms of the first and second-order displacement fields
by using (6a) and (4) and integrating with respect to 6 gives

!

oMev = |

2
[fz()c)x2 cos? Ax + f5(x) %5 sin? Ax
0

2
+ fa(x) % sin 2>\x]7r %—‘ dx, (27b)

where

f(x) = cul2U3(x) — Uzn(x)]

4 ERI’_2 [2Wy(x) — 2nVa(x) — Wa(x)]

n

+ S0 WaN2 cos? Ax + 4—% W2n?sin? \x, (27¢)

f3(x) = cp[2U5(x) — Upn(x)]

+ CR [2Wao(x) — 2nVaa(x) — Way(x)]
+ 82 N2 cos? hx + ~2 Wintsin? Ay, (27d)
4 4R

and

2
filx) = cés[v;2<.v) — Un(x) ?"}

+ 558 w2 sin 2. (27e)
4R
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Fig. 1 Post-buckling coefficient, b, calculated from the shear de-
formable theory, for the cases of circumferentially reinforced, axially
reinforced graphite/epoxy, and isotropic material, in a shell under lateral
external pressure only

One additional term is from the effect of the external pressure

QVi= pf J. ("% = 0Dl + W + w2 dhdx
0 Vo

(27e)

Substituting the first-order displacement field and integrating
gives
1y 2 2 2, L
QVl:p(Vl—ZV.Wln+W,)7. (27¢)
A standard method of numerical integration is used to calcu-
late the post-buckling coefficient b from these expressions. The
character of the post-buckling behavior in the initial stages after
buckling hinges on the sign and magnitude of b. If b is positive,
the applied load (external pressure) increases to values above
the critical load p. with increasing buckling deflection. How-
ever, if b turns out to be negative, then the equilibrium load
falls with increasing buckling deflection and the post-buckling
behavior is unstable.

Results and Discussion

Let us consider a shell being made of unidirectional graphite/
epoxy with the following typical properties for the material (

2
- Gr/Ep, Axial Reint
]
g2 14
3]
&
1)
o
O ;A
)
5
>
o
3 4
'E Isotropic
S
o Gr/Ep, Circumt Relint
-8 Ty — T —rr
1 10 100 1000

2 2 \1/2
{ (Cucu—cn)

RV12(cy1ca2 Dyy Dag) /4

z =

Fig. 2 Post-buckling ceoefficient, b, from the shear deformable shell
theory for the case of hydrostatic end loading
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Fig. 3 The effect of transverse shear on the postbuckling coefficient,
b, for lateral external pressure loading

is along the fibers, 2 is the in-plane transverse, and 3 is the out-
of-plane transverse direction): moduli in GN/m? E, = 140.0,
E, = 9.1, G;» = Gz = G;; = 4.3, and Poisson’s ratio v,, =
0.300. The shear correction factors are assumed to be k? = k3
= 2 The shell has a mean radius of R = 1 m. Two cases of
shell thickness are considered in the following, one correspond-
ing to radii ratio R,/R, = 1.05 and another thicker construction
with R,/R, = 1.10. Also, two cases of loading are considered:
lateral only external pressure loading, i.e., no axial load and «
= 0 in (12a), and external pressure with hydrostatic end load-
ing, i.e., with axial compressive loads determined from (12a)
with « = 1.

The Batdorf parameter has been used as a convenient nondi-
mensional parameter to present results for shell buckling and
post-buckling. For isotropic cylindrical shells, this is only a
function of the geometry and is defined as Z = [*/Rh where [
is the length, R is the mean radius, and 4 the thickness of the
shell. Analogues for anisotropy have been derived by Nemeth
(1994) by performing a nondimensionalization of the shell
buckling equations and it was shown that, for anisotropic shells,
the Batdorf parameter depends not only on the geometry but

Table 1 Effect of the anisotropy
Post-buckling coefficient, b

Lateral External Pressure Only, R = Im, R,/R, = 1.10,

kI = k%= 5/6
* b b b
Circumft Axiali
Reinf Reinf Isotropic**
2 0.0847 1.6421 0.3483
S -0.2170 0.9241 —0.0949
10 —0.2681 0.5118 —0.2075
23 —0.0839 0.0152 —0.2052
S3 —0.0934 —0.1460 —0.1940
120 —0.0232 -0.2119 —0.0474
271 0.0001 -0.0916 -0.0618
615 0.0064 -0.1102 —0.0101
1,395 0.0078 -0.0339 0.0043
3,162 0.0081 —0.0036 0.0075
* Batdorf Parameter for orthotropy, Z = [*(c; ¢ — cf»;)""/[R\/E

(€116 Dy D).

1 Gr/Ep, Circumferential Reinforcement, moduli in GN/m’: E, = 9.1,
Ey; = 140.0, G» = Gy = G,. = 4.3, and Poisson’s ratio v, = 0.020.
i Gr/Ep, Axial Reinforcement, moduli in GN/m* E, = 140.0, £, = 9.1,
G = Gy = G,. = 4.3, and Poisson’s ratio v, = 0.300.

#+ For Isotropic, E = 140.0 GN/m’, and v = 0.300.

Transactions of the ASME




Table 2 Effect of hydrostatic end loading
post-buckling coefficient, b

Table 4 Effect of thickness
post-buckling coefficient, b

R = Im, R/R, = 1.10, &} = k2 = 5/6
% b b b b

Circumf Reinft Axial reinfi

Lateral w/End Lateral w/End
only pressure only pressure

2 0.0847 —0.7760 1.6421 [.1391

5 0.2170 —0.6034 0.9241 0.5963

10 —0.2681 —0.3189 05118 0.1941

23 —0.0839 —0.1283 0.0152 —0.0664
53 -0.0934 —0.0975 —0.1460 —-0.1767
120 -0.0232 -0.0286 —-0.2119 —-0.2207
271 0.0001 —0.0035 -0.0916 —0.0968
615 0.0064 0.0039 —0.1102 -0.1111
1,395 0.0078 0.0059 —0.0339 —0.0353
3,162 0.0081 0.0006 —-0.0036 —0.0050
* Batdorf Parameter for orthotropy. 7 = [X(cpcn — ch) [RV12

(L"\('??.DHD::)ML

+ Gr/Ep. Circumferential Reinforcement, moduli in GN/m™ E, = 9.1,
E, = 1400, G, = Gy = G,. = 4.3, and Poisson’s ratio v,y = 0.020.
% Gr/Ep, Axial Reinforcement, moduli in GN/m’: E, = 140.0, £, = 9.1,
G, = G, = G, = 4.3, and Poisson’s ratio v = 0.300.

also on the stiffness constants. In particular, for an orthotropic
cylindrical shell, the Batdorf parameter becomes

= [2("411'21 Cf:)m

c R\“‘lz(CnC::DuD::)m '

(28)

where ¢, and D), are defined in (65, c).

The post-buckling coefficient b is calculated following the
solution of the two-point boundary value problem for the sec-
ond-order displacements, as has already been outlined. 1t b is
negative, the shell is imperfection-sensitive and the load car-
rying capacity diminishes following buckling. Also, the degree
of imperfection-sensitivity is governed by the magnitude of b.
If, on the other hand. b is positive, the structure retains some
ability to support increased loads once bifurcation has taken
place.

In ail cases considered the structure buckles at m = 1, whereas
n depends on the shelf length, [, becoming equal to 2 for very

Table 3 Effect of the transverse shear
post-buckling coefficient, b

Graphite/Epoxy, Circumferential Reinforcement, moduli GN/m?*:
E. =91, E = 1400, Gy = Gs. = G. = 4.3,
and Poisson's ratio v, = 0.020
Lateral External Pressure Only, R = Im,
R:/Ry = 110, 2 = k2 = 5/6

zZ* b b
Shear Classical
Def Shell Shell
8 0.874 —0.3852 —0.1918
10 0.977 —0.2681 —0.1598
16 1.236 —0.1418 —0.0990
23 1.482 —0.0839 —-0.0604
53 2.250 —0.0934 —0.0748
120 3.386 -0.0232 =0.0196
222 4.605 —0.0033 —0.0020
271 5.088 0.0001 0.0010
615 7.664 0.0064 0.0067
1,395 11.543 0.0078 0.0080
3,162 17.379 0.0081 0.0082
# Batdorf Parameter for orthotropy, # = [%(¢) ¢ — cf;)"z/[R\"E
(ci1eaDy D) i]-
Journal of Applied Mechanics s

Lateral External Pressure Only, R = Im, ki = ki = 5/6
R - b (n) b (n) b (n) b (n)

Circumf Reinft Axial Reinfi

R./R, = 1.05 R:/R, =1.10 Ry/R, =105 R.J/R, = 1.10

04 —0.1680 (6) 03775 (7)
0.5 —0.2319 (53%) —0.1457 (5%)

0.9958 (15%)
0.7619 (12*)

1.7581 (15%)
1.3482 (12%)

0.7 —0.2347 (4*) —0.2095 (4%*)  0.3978 (9%) 0.9284 (9%)
1.0 —0.1011 (4) —0.2511 (3) 0.0358 (7) 0.3097 (6)
20 -0.0328 3) —0.1373 (2) -0.1616 (5) —0.1627 (4)
40 -0.0133 (2%) -0.0102 (2*¥) —0.0833 (4) —~0.1570 (3)
5.0 -0.0054 (2¥) —0.0004 (2%) —0.1045 (3*) —0.0958 (3%)
6.0 —0.0019 (2*)  0.0037 (2*) —0.0662 (3*) —0.0566 (3*)
8.0  0.0007 (2*%)  0.0067 (2*) —0.0284 (3) —0.0985 (2)
10.0  0.0015 (2%)  0.0075 (2*%) —0.0121 (3) —0.0535 (2)

* Denotes buckling at the same same (n, m) for both R,/R, ratios of
1.05 and 1.10.

+ Gr/Ep, Circumferential Reinforcement, moduli in GN/m™ E, = 9.1,
E, = 140.0, G, = G, = G,. = 4.3, and Poisson's ratio v,, = 0.020.
i Gr/Ep, Axial Reinforcement, moduli in GN/m* E, = 140.0, E, = 9.1,
Gy = G, = G, = 4.3, and Poisson's ratio v, = 0.300.

long shells. The transition from one value of n to the next
lower causes an abrupt change in b which explains the lack of
smoothness of the b versus [ curves in Figs. 1, 2, and 3. Budian-
sky and Amazigo (1968), in their isotropic classical shell solu-
tion, defined { = n’*/7*R* and found the critical load by
making the simplifying assumption that { may vary continu-
ously and exccuting a formal minimization of the pressure func-
tion of {; this led to smooth b versus [ curves.

Table 1 and Fig. | give b, calculated from the shear deformable
theory, for the cases of circumferentially reinforced, axially rein-
forced graphite/epoxy. and isotropic material in a shell under lateral
external pressure only, and for radii ratio, R,/R, = 1.10. The main
conclusion is that the regions of imperfection sensitivity are strongly
dependent on the anisotropy of the material. For the circumferen-
tially reinforced case, it can be concluded that the critical pressure
(at the bifurcation point) ought to be reliable above 7 = 270,
whereas for the axially reinforced case the structure is imperfection-

Table 5 Range of imperfection sensitivity (negative b)*
R=Im,ki=4ki=5/6

Lateral External Pressure Only

R,/R, = L.1D RT,/R, = 1.05
z (IIR) Z (I/R)
Circumf
Reinff 2.3-269.6 (047-5.07) 1.7-1,045 (0.29-7.15)
Axial Reinfs =>27.0 (=>1.6) =>25.0 (=1.1)
[sotropic®* 34-952.3 (0.58-9.75) =338 (=>0.44)
w/Hydrostatic End Loading
R;/R, = 1.10 R;/R; = 1.051
Z (U/R) Z (UR)
Circumf
Reinft <3535 (<5.81) < 1,866 (<9.55)
Axial Reinfi >13:1 (=1.12) >14.1 (>=0.83)
Isotropic** <1,081 (-<10.39) All values  (All values)
* For values of 7 = 1*(¢y, ¢ — ('fz)'”/[R\'E(r,,czzD“Du)'“], examined

from 1.0 to 3000.

+ Gr/Ep, Circumferential Reinforcement, moduli in GN/m* E, = 9.1,
E; = 140.0, G,y = G.. = .. = 4.3, and Poisson’s ratio v, = 0.020.
+ Gr/Ep, Axial Reinforcement, moduli in GN/m* E, = 140.0, E, = 9.1,
G = Gy = G, = 4.3, and Poisson’s ratio v, = 0.300.

## For Isotropic, modulus £ = 140.0 (iN/m*. and Poisson’s ratio v =
0.300.
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Fig. 4(a) U,(x) for both the shear deformable and the classical shell
theory (lateral only external pressure)
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Fig. 4(b) V.(x) for both the shear deformable and the classical shell
theory
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Fig. 4(c) W x(x) for both the shear deformable and the classical shell
theory

sensitive even at the high range of length values, and therefore
reduction in the buckling pressure from the bifurcation values
should be anticipated; for the isotropic case, the bifurcation pressure
ought to be reliable above 7 = 1,000. For the rather short shells,
i.e., small values of Z. the cirtcumferentally reinforced case shows
a large amount of imperfection-sensitivity above Z =~ 2.3 (and up
to =270), whereas the axially reinforced case exhibits no imperfec-
tion-sensitivity below 7 =~ 27. One interesting observation from
Fig. 1 is that the absolute maximum of the negative range of the
postbuckling coefficient, b, is reached in the isotropic case.
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Fig. 4(d) ¥ (x) for both the shear deformable and the classical shell
theory
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Fig. 4(e) ®,(x) for both the shear deformable and the classical shell
theory .

Figure 2 and Table 2 give the results for the postbuckling coeffi-
cient b from the shear deformable shell theory for the case of
hydrostatic end loading. The major changes occur for the rather
short shells, i.e., for Zless than =25, for which the pressure loading
of the ends causes an increase of the imperfection sensitivity
(smaller values of b) in comparison with the lateral-only external
pressure loading.

The results in Table 3 and in Fig. 3 illustrate the effect of
transverse shear on the post-buckling coefficient for lateral ex-
ternal pressure loading. Compared to the results from the classi-
cal shell theory, i.e., neglecting the transverse shear effects, it
can be concluded that this effect leads to a decrease in the value
of b and hence increases the imperfection sensitivity of the
shell; however, this effect is negligible for longer shells, spe-
cifically for 7 above =100.

The effect of thickness is illustrated in Table 4, in which two
cases of thickness are considered, a relatively thinner shell with
R,/R, = 1.05, and a relatively thicker shell with R,/R, = 1.10.
The shells have the same mean radius R = 1 m. Since the
Batdorf number 7 depends on the shell thickness, it secems advis-
able to use the length ratio [/R for comparison purposes in this
table. One main point is that for the same length, the thinner
and thicker shells may buckle at different values of n. If the
shells buckle at the same n (these cases are denoted by an
asterisk in the data in Table 4), then it can be concluded that
the values of the post-buckling coefficient are larger for the
thicker shell and therefore, the thicker shell is less sensitive to
imperfections. However, if at the same length, the thicker shell
buckles at a smaller », then b can be smaller and the thicker
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shell can be more imperfection-sensitive. Therefore, the thicker
shells are less sensitive to imperfections only if they buckle at
the same value of n as the thinner shells (of the same length,
[, and mean radius, R) with which they are eompared.

One of the most useful data in this problem of a shell under
external pressure, is the range of imperfection sensitivity, ex-
pressed in terms of the range of values of Z, or equivalently, the
range of values of I/ R, for which the post-buckling coefficient b
is negative, and these data are given in Table 5. A range of
from 1 to 3,000 was examined. As can be seen, the range of
imperfection sensitivity depends on the material anisotropy, the
thickness and whether the end pressure loading is included or
not. For example, the isotropic case with hydrostatic end loading
is always imperfection-sensitive for R,/R, = 1.05, but not for
the thicker R./R, = 1.10, in which case it shows a positive &
and hence lack of imperfection-sensitivity for Z above = 1,100.

Finally, in order to illustrate the effect of transverse shear
on the second-order displacement field, Figs. 4a—e show the
functions U (x), Vay(x), Wan(x), s (x), and $4,(x) for both
the shear deformable and the classical shell theory. The case
selected was lateral only external pressure, graphite/epoxy with
circumnferential reinforcement, radii ratio R,/R, = 1.10, and
length parameter £ = 10. For this case the structure is imperfec-
tion-sensitive with calculated b = —0.2681 from the shear de-
formable shell, and b = —0.1598 from the classical shell theory.

Long Cylindrical Shell Limit
If we make the assumption of an infinitely long cylinder, we
may ignore boundary conditions at the ends of the shell and the

solutions to the differential Eqs. (20) may then be sought in the
form of periodic functions of the axial coordinate. Specifically,

Uy = Uy sin 2xx; Vi = Vg cos 2)\x;
Wy = W3 + Wy cos 2\, (29a)
Uyo = Wog sin 20x; By = Py cOs 2Ax. (29b)
_ Then, substituting into the differential Eqs. (20), gives
W3, from
(cn + pRYWi = (by + by + by + by)/4,  (30a)

where the b;’s are given in Eqgs. (19) and A is_the buckling
mode from (l4c¢). Also, Vi = ®5 = 0, and Uy, Wy, and
\Ur,, are found from the linear equations:

5 " e o W
4A?RC“L‘(7” A 2)\C|2W2o == (% nT - RC”)\2> i_ 5 (30b)
23 cssAWag — (4D N* + kicss) Wy = 0, (30¢)

2NeRU + [c2: + PR + (Kicss + Nig)ANR2IW 5
— INCkicss Ry = (by + by — by — by)/4. (30d)

In a similar fashion, solutions to the differential Eqs. (21)
are set in the form

Uy = Uwsin 2 x; Vi = Vi + Vap cos 2\x;
Wy = Wi + W cos 2Ax, (3la)
Uy, = U,y sin 2Ax; @0 = &5 + By cos 2hx. (315)
Then, substituting into (21), gives Vi, W, and &% from

(&3 v % Cr P
—4n® 4+ p )V + = + p. 12n W3,
( R # > g ( P > :

n L\ W2
:(c,z)\z j\—n2> 2 (39
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. D, Vs
2nkicuWh —~ <—R’— 4n? + Rkicu>(b'§5 =0, (32b)

(e + PR)2nVE + [(K3cas + Nig)dn® + coy + p.RIW S,
— 2nRK3cu®E, = (by + by — b, — by)/4. (32¢)

Also, Uy, Vo, Was, Uyy, and @, are found from the linear
equations:

4(1«”)\2 + i}f n2>0n + d(cn + Cog)Var + 2AW 2

W in
n2+Rc“)\2) 41 . (33a)

_ <C|2 + 20(,,,

(e + ce)Un + (% 4n® + 4\ Regs + pc>1722

C -
+ 211<? + pc)sz

N W2
= [(clz + 2¢e)N? + ‘R—‘;nz} 1 (33b)

INk2ess RW,y, — (’7 4n® + Rkicy
+ 4xfm)“>@22 — A\n(Dys + Deg)Pss = 0, (33¢)

2nk3cuW s — 4\a(Dysy + Des) ¥ss

- <4>\2RDN, + %’34n1 + Rk%cM>¢’;: =0, (33d)

M1, RUx + 2n(cy + peR)Va + [(kicas + Nig)4n® + ¢y
+ PR + (k¥css + NS)ANPR?IW o,
— 23 essR™Wy, — 2nRE3 ¢43$n
= (bs + by — by, — by)/4. (33e)

The post-buckling coefficient b can now be calculated by substi-
tuting into the full expressions for the displacement field, Eqgs.
(18), and then into the formulas (9) and (10). This ciosed-
form solution for the second-order displacement field for a very
long cylindrical shell, besides being a useful quickly obtainable
solution, can be used as the initial guess for the relaxation
method which is employed to solve the differential equations
for the second-order displacements for a cylindrical shell of
finite length.

A comparison of this long shell limit solution for the post-
buckling coefficient, b, is given in Fig. 5(a) for the graphite/
epoxy shell with circumferential reinforcement and in Fig. 5()
for the the graphite/epoxy shell with axial reinforcement (lat-
eral external pressure only and R,/R, = 1.10). In both cases,
the long shell limit essentially converges to the solution outlined
in the previous sections for a shell of finite length. when the
length values become large, i.c., in the first case for Z beyond
about 100 and the second case for Z beyond about 400.

Conclusions

I Koiter’s general post-buckling theory is used to study the
initial post-buckling behavior of moderately thick, orthotropic,
shear deformable cylindrical shells under external pressure. A
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Fig.5(b) The long cylinder limit closed-form solution for the initial post-
buckling coefficient, b, in comparison to the finite length solution for a
graphite/epoxy with axial reinforcement

shear deformation theory, which accounts for transverse shear
strains and rotations about the normal to the shell midsurface,
is employed to formulate the shell equations.

2 The range of imperfection sensitivity depends strongly
on the material anisotropy, on the wall thickness, and on
whether the end pressure loading is included or not.

3 For the circumferentially reinforced graphite/epoxy ex-
ample case studied, it was found that the structure is not sensi-
tive to imperfections for values of the Batdorf length parameter
7 above ~270, whereas for the axially reinforced case the struc-
ture is imperfection-sensitive even at the high range of length
values; for the isotropic case, the structure is not sensitive to
impertections above 7 =~ 1000.

4 For the same length, a thicker shell 1s less sensitive to
impertfections if it buckles at the same number of wave numbers
(n, m) as the thinner construction.

5 Transverse shear effects lead to an increase in the imper-
fection sensitivity of the shell; however, this effect is significant
only for relatively short shells.

6 If the hydrostatic pressure loading of the ends is included,
major changes would occur for rather short shells, for which
an increase of the imperfection sensitivity is observed in com-
parison to the lateral only external pressure loading.

7 A closed-form long-shell limit solution for the initial post-
buckling coefficient, b, is derived and shown to properly con-
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verge to the solution for a shell of finite length, when the values
of 7 become large.
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