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An elastodynamic solution for the thermal shock stresses in an orthotropic thick
eylindrical shell is presented. The solution is achieved by the proper usage of integral

transforms such as the finite Hankel transform and the Laplace transform. No restric-
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tive assumptions on the shell thickness are placed. Results are presented for the well-
Sformed wave propagation phenomenon of elastic stresses through the thickness of
an orthotropic thick cylindrical shell. Thermal shock stresses become of significant

magnitude due to stress wave propagation which is initiated at the boundaries by
sudden thermal loading.

Introduction

In recent years, attention to thick composite shells has been
continuously increased in several industrial areas. Thick com-
posite cylindrical shells can be used in applications involving
aerospace, offshore and submarine structures, pressure vessels,
civil engineering structures, chemical pipes, and even automo-
tive suspension components. These structures can be easily ex-
posed to a variety of iemperature ficlds in different environ-
ments. In high-temperature applications, thermal stresses, which
are induced from the heat build up and cooling processes, may
rise above the ultimate strength and lead to unexpected failures.
Thus, the importance of thermal stresses in causing structural
damage and changes in the functionality of the structure is
well recognized whenever thermal environments are involved.
Therefore, the capability to predict elastodynamic stresses in-
duced by sudden thermal loading in composite structures is
essential for the proper and safe design and the knowledge of
its response during service in these severe thermal applications.

In the case of suddenly applied thermal loading, thermal de-
formation and the role of inertia become larger. Since the ther-
mal stress changes very rapidly, the static analysis cannot cap-
ture its behavior. This dynamic thermoelastic stress response is
significant and leads to the propagation of elastic stress waves
in the solid.

Regarding related work, Sneddon (1951) introduced the finite
Hankel transform to solve the heat conduction problems. The
finite Hankel! transform was successtully applied to the bound-
ary value problem of heat conduction by Cinelli (1965) and
later the usefulness of applications to dynamic problems for
cylindrical and spherical shells was also studied (Cinelli, 1966).

The three-dimensional elasticity approach is the most power-
ful way to analyze the elastodynamic behavior when thick con-
struction is involved. Elasticity approaches for orthotropic cy-
lindrical shells have been used for static and dynamic stress
analysis in several instances. Hyer and Cooper (1986) studied
the static stresses and deformations induced by a circumferential
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temperature gradient in a composite tube. Kardomateas (1989,
1990) also used the elasticity approach to obtain the transient
(but without the inertia term) thermal stresses in an orthotropic
composite thick tube.

The thermal shock problem, which is a dynamic thermoelastic
problem, was studied by Birman (1990) for a composite hollow
cylinder based on the Donnell type of thin shell theory. Several
other contributions using the elasticity approach to the thermal
shock problem have been made, which are mostly related to
an infinite elastic body with a spherical cavity (Sternberg and
Chakravorty, 1959) and hollow spherical shells (Tsui and
Kraus, 1965; Zaker, 1969). Another considerable work for the
thermal shock stresses in a hollow sphere due to rapid uniform
heating was performed by Hata (1991). The Ray theory was
employed by taking the thermoelastic displacement potential
for the thermoelastic equation and the displacement potential
for the dynamic elasticity equation. The dynamic, thermoelastic
response of thin cylindrical shells to suddenly applied and rotat-
ing thermal loadings was studied by McQuillen and Brull
(1970). Sciuva and Carrera (1992) numerically investigated
the elastodynamic behavior of relatively thick symmetrically
laminated anisotropic circular shells as a plane-strain problem
by the first-order shear deformation theory. Wang and Gong
(1992) obtained the analytic solution using the finite Hankel
transform and the Laplace transform for elastodynamic prob-
lems and presented the elastodynamic solution for a multilay-
ered isotropic hollow cylinder. Wang (1993, 1995) dealt with
the stress wave propagation problem in a two layered cylinder
with initial interface pressure and investigated the thermal shock
stresses caused by rapidly increasing uniform heating to an
isotropic hollow cylinder as a plane-strain problem. But their
studies were confined only to isotropic shell problems.

Even though several papers have been written in this area, the
elastodynamic solution for a generally orthotropic cylindrical shell
has not yet been reported. Thus, in this study, the finite Hankel
transform and the Laplace transform are nsed to solve the uncou-
pled linear dynamic thermoelasticity problem for an orthotropic
cylindrical shell. The advantage of this method is the ability to
provide a closed-form solution which is applicable to a generally
orthotropic cylinder of arbitrary thickness. This requires the use
of the Bessel functions of the first and/or the second kind of
arbitrary order due to the orthotropy of material constants.

Formulation
Consider a hollow cylinder subjected to a specific tempera-
ture environment with or without external pressure. The inner
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and outer radii are denoted by r; and r,. respectively. We denote
by r the radial, @ the circumferential, and z the axial coordinate.
The hollow cylinder is assumed to have zero initial temperature,
butatt > 0", the shell is kept at a constant temperature through
the thickness. Since there is only radial dependence of the tem-
perature field, the hoop displacements are zero and the stresses
and strains are independent of é. Thus the thermoelastic stress-
strain relations for the orthotropic body are

O cn €2 ¢ 0 0 O €, — a,AT
Tpg Cip. € Cn 0 0 0 €gg — (Y,I)AT
o.| _|ecs €3 ¢ 0 0 O €z — @ AT
Teo = 0 0 0 ¢ O O Yo- ’
T 0 0 0 0 ¢ 0 Yre
Tro 0 0 0 0 0 e« Yro
()

where ¢, are the elastic constants and «, are the thermal expan-
sion coefficients (1, 2, and 3 represent r, 6, and z directions,
respectively). The geometry of shell is assumed to be axisym-
metric. Since the temperature doesn’t depend on the axial coor-
dinate, it is assumed that the stresses are independent of z. In
addition to the constitutive Eq. (1), the elastic response of the
cylinder must satisfy the dynamic equilibrium equations. Only

one equilibrium equation remains, since 7y, = T, = T, =
do O, — Oop 0%u
_—r oy r "= P = 1r , (2)
or r or*

where p denotes the density of material.
For the problem without the thermal effects, the expressions
for the displacement field were derived by Lehknitskii (1963).

u, = U(r,t) + z(w, cos 8 — w, sin 6)
+ ugcos B + vy sin b, (3)
ug = —z(wy sin § + w, cos §) + w.r
—ugsin @ + vy cos f, (4)
u. = zf(1) — r(w, cos 8 — w, sin ) + wy, (5)

where the function U(r, t) represents the radial displacement
accompanied by deformation. The constants ug, Vo, Wo, Wy, Wy,
and w. denote the rigid-body translation and rotation along the
x, vy, and z directions in the Cartesian coordinate system, respec-
tively. The time-dependent parameter f(7) is determined from
the boundary conditions.

The strains are expressed in terms of the displacements as
follows:

= BUA U

_ U,
or .

, €z = f(1),

€

Yo = Ve = Vo = 0. (6)

Substituting (1) and (6) into the equilibrium Eq. (2) gives
the following equation of dynamic thermoelasticity for the ra-
dial displacement U(r, t):

'ﬁ/ = g 22
m[u Uer. 0 18U¢r, 1)] 2y
ar- r ar r

dT(r, T(r,
=4 o(r, o) | i (r.n | ) F@)
or r
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where, the ¢; constants are given by
q = €&, + Cl2llp + €30z, (8)
G2 = (cu — c)a, + (2 — en)ag + (cia — cn)az, (9)

and the initial conditions, as well as the boundary conditions
due to the absence of extemnal tractions, o,.(r,, 1) =0, = |,
2, are

U(r,0) =0, M:O, (10)
ot
Cn DL 1) + Cn Ll + cuf(t) — qT(ri,t) =0,
or r;
i=1,2. (11)
The axial force P.(¢) is given by
P.(1) = f oo (r, O2mrdr = fz [c._; gl g
’ " or

U(r, t)

+ Cp3 + cnf(t) — ¢;T(r, t)}27rra.’r. (12)

where g- = cj3a, + Cnap + ;.

Consider now the thermoelastic equation of the pres=nt prob-
lem without the inertia term, which is described by the following
inhomogeneous ordinary differential equation of second order
in terms of the radial displacement U,(r, ¢):

Cn|: a.Ul(:y B + l aU,.(rY [)} - 6_272 Udr, 1)
or? r or re
oT(r, Tlr,t t :
=q Fr l)+¢h (r )+(C23“C13) A )‘ (13)
or r r

Notice the absence of the dynamic term (last term in (7)). The
associated initial conditions and boundary conditions are given
as in (10) and (11) with U, substituted in place of U. The axial
force, P.(t), is also given by the same relation as in (12) with
U, substituted in place of U.

It is assumed that the general solution of the governing equa-
tion of linear dynamic thermoelasticity (7) can he scparated
into two parts, by the principle of superposition, namely,

U(r,t)y = U(r, t) + Uy(r, t), (14)

where U,(r, t) represents the thermoelastic radial displacement
without the inertia term and Uy(r, t) denotes the dynamic radial
displacement.

As a particular case for the presented formulation, the temper-
ature distribution which can be arbitrarily selected can be as-
sumed as

0, <0
T(r,t) =TH(t) = { . (15)

Ty, t=0

The function f(¢) is set in the same form, as

0, t<0

£(0) = pH () ={ | . (16)
f(}, t=0
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where H(¢) is defined as the Heaviside step function. The gen-
eral solution U,(r, ¢) of the inhomogeneous differential Eq.
(13) is given by

Ulr,t) = Guor™ + Gar™ + 258 £ 4 Ux(r, 1)

i — Cn
for ¢ % ¢, (17)
or
U(r,t) = Gr + Gzol + _Cza——C.str Inr+ U¥(r, t)
r 2¢y,
for ¢ = cn, (18)

where A\, = \/sz/C“ and Uj¥(r, t) is a particular solution,
obtained as

Tqur/(Cll - C22) fOr Cl * C22, L= O+
Uk(r, 1) =

Togor In r/(2¢yy) for ¢y = cp,t = 0+

(19)

Using (7) with the associated initial and boundary conditions
and the above definition, the following equation for the dynamic
elasticity part in terms of displacement is obtained:

= Uar, 1)

O*Uy(r, 1)
(&S] 2
or r or

L 1oUr, z)] o

(O, 1) | BU(r, 1)
=\t o ) (20)

with the initial conditions

aUd(r. 0) _

U,(r,0) =0, o

0. (21)

The boundary conditions for the traction-free surfaces of the
cylinder and the axial force at the ends are given from (11) as
follows:

=0, i=12 (22)

Chn

OU,(r;, t) Ug(ri, )
+Cn
Or ri

Moreover, the axial force condition is given from (12):

f ' [c.z OUa(r: ) , . Ualrs ’)]2mdr =0, (23)
P r

or

1

where r; = r,, or r,. The dynamic elasticity Eq. (20) is given
in the form

A*Uy(r, t) N laUd(r, H v?

or? r or r Ut )
L (8*U.(r,t)  O*U(r,1)
=— 24
c? ( ar | o > » (34

where the parameter v = Venley. Therefore v = and the
wave speed in the radial direction is denoted by ¢ = \/c,./p.
At this stage, in order to develop the procedure for solving
the dynamic elasticity Eq. (24), let the solution be U, (r, t) =
g(rye ™, where w is the natural frequency. Substituting
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Uy, (r, t) into (24), after assuming U,(r, t) = O and setting £
= w/c, gives a standard Bessel equation as follows:

d’ ld 2
;r(zr) + ;i—(rr) + (62 - %)g(r) =0, (25)

with the Cauchy boundary conditions

do(r:
BUD | per)=0, i=1,2, (26)
dr
where the constants are defined by
L 27
ricn raCy

The general solution of the Bessel equation of arbitrary order
v is obtained by

g(r) = AJ,(&r) + BY,(¢r),

where J,(x) is the Bessel function of the first kind of order v
and Y, (x) is the Bessel function of the second kind of order v
defined as

(28)

J,(&r) cos v — J_,(&r)

sin v

Y,(&r) = (29)

But when the order v is an integer, the function Y,(z) should
be taken by the limit definition

Y,(z) = lim Y, (2).
The definitions of J,(&r) and J_,(&r) are described in Appen-
dix A. By using the boundary conditions, the general solution
g(r) of the Bessel equation can be written as the eigenfunction
series

g(r)=2AD,(&r), i=1,2,..., 00, (30)
where A; are constants, the eigenfunction
Du(&") = Ju(é-[r)ya - Yu(&lr)‘]uv
and &, is a positive root of the transcendental equation:
JYy — Y, =0, (31)

where the parameters are defined as
Jo=&J(&in) + RiJL(&r),

Yo =&Y L(&ir) + RY(&n),

Jy, = & (&in) + hd,(&ir2),

Yy = &Y L(&ir2) + hY (§r2). (32)

After multiplying (30) by D, (§,;r) and r, and integrating in
the finite range, we can find the constants A; by using the
orthogonality condition

A = f rg(r)Du(fir)dr/J‘rz’[Du(éir)]zdf- (33)

In order to get the general solution of the Bessel equation, we
use the finite Hankel transform of g(r), denoted by g(&; ), de-
fined by

§(€) = f rg(r)D,(E:r)dr. (34)

1
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Then the inverse of the finite Hankel transformation is given in
the form

§(&)D,(&ir) .
glry=ZEeaitr, (35)
) ; N(&)
where the normalizing factor N(§,) = J r[D,(&r)]*dr which
is always positive. Therefore. setting U,(r, t) in place of g(r),
the radial displacement due to the dynamic elasticity contribu-
tion can be expressed as

< (&, DODAED)

Ud(r,l):,;_, N(é.)

: (36)

where the summation is taken over all the positive roots of the
transcendental equation (31). The finite Hankel transform for
the dynamic displacement is now written by

(& 1) = f rUy(r, 1)D,(&r)dr. (37)

1

Taking the finite Hankel transform of the inhomogeneous Eq.
(24) over r, and r, and using (31), the transformed equation
results in

2J, [ 8Uu(r 1)
iwdp

or + hUy(rs, f)}

_ % aU{I(rlr t)
m

+ mUq(ry, l):| - érza\d(éx) t)
ar

I

270 e a2
L (a uda(;,,t) L9 “Ia(ﬁ“[)> o8

Since Uy(r, t) satisfies the homogeneous boundary conditions
(22) at each surface, the first two terms of the left-hand side
of (38) should vanish. Thus the transformed equation becomes

ik, 1 [ %i(&, 0  0°u (&, 1)
_g,—u,,(g,..[):j<{ ”af $ af; > (39)

&2

Using the Laplace transtorm, denoted by uyt, with the zero
initial conditions, the above equation can be transformed as

m

8 (& 5) = S (G, s) + BIE, ], (40)

('5

For convenience, the above equation can be written in the form

252
c&i

~¢ _ _TLge + L .
ug (&, 8) = —ur(&,s) 51§?+s2“'(£"5) (41)

By using the inverse Laplace transform, the following Hankel
transformed dynamic displacement as a function of time is ob-
tained from the previous equation

(& t) = = (&, 1) + & sin Tlirx (&, 1), (42)
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Since U,(r, t) is already known, the finite Hankel transform of
U/(r, t), denoted by ﬁ,({,, t), can be defined as follows:

(&, 1) = f rU(r, )D,(&r)dr. (43)

1

Then, by using (17), the finite Hankel transform of the ther-
mally induced displacement is described, for ¢, # ¢a, by

l/l\:(ff, 1) = Gl (&) + Guh (&)

+ DR + WH(E D), (44)

Cn Cx

and, by using (18), for ¢;; = ¢a,

H:(xu 1) = Gl (&) + Gph(&)

+CZZ_ 87 Lre) + WE(EL D). (45)
lI

Notice that the /;'s are the finite Hankel transforms, defined as

(&) = f rD,(&,r)dr,

L(€) :f:r

These transforms can be analytically calculated from the recur-
rence formulas,

1D, (&r)dr. (46)

d. . .
d_z{' J ()} = 2"0-1(2),

di- {z7°0.(2)}) = =27 o (2), (47)

regardless of the range of arguments. Thus the finite Hankel

transforms /,(&;) and [,(&;) can be easily carried out analyti-
cally as given in Appendix B. Here the finite Hankel transform
for U (r, t) is given as

W&, =H{UF(r, 0} = f rUF(r, )D,(§r)dr. (48)

The finite Hankel transform of the above expression, using the
earlier definition, becomes, for ¢y, + ¢,

UG = —— & 13(5) (49)

i

and, for ¢); = ¢q,

Toq )

Nf(f)— 13(5) (50)

where g, becomes zero for the isotropic case, for which «, =
ay and ¢); = . In the previous expression, I; and /3 are the
finite Hankel transforms of the functions r and r In r, described
by

13<£,~>:f’r?nu<f,~r)dr for ¢y #cm,  (S1)

IE) = J“rz In rD,(Er)dr for cn=cn. (52)

The integration given by Eqs. (52) and (51) can be performed

in closed form with the recurrence formulas available, only if

the argument is in the small arguments domain and the definition
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of series expansions for Bessel functions is used. The closed-
form integration cannot be obtained in the large argument region
for Egs. (51) and (52). In this case, numerical integration
should be used. Therefore, the Bessel functions for integration
need to be computed in the two regions. One is for small argu-
ments, the other is for large arguments. For the large arguments
of the Bessel functions, the Hankel asymptotic expansions are
always numerically integrated regardless of the order of Bessel
functions because the closed form of integration cannot be ob-
tained due to the complexity of the asymptotic definition of
Bessel functions in this range. It can be noted that the numerical
Hankel transform is always possible for any arbitrary analytical
functions if the appropriate scheme of numerical integration is
used. The Bessel functions of the first kind of order v for small
and large arguments used in this work are defined in Appendix
A. Further details on the numerical finite Hankel transform will
be mentioned in the next section.

Combining all these expressions, the finite Hankel transform
of the dynamic displacement part is obtained by

wg(&, 1) = (&, 1) + ¢ sin cErx i (&, 1), (53)

Thus, the convolution integral I,(¢) = fé z?,(g,-, T) sin ¢&;(t —
T)dT is used and gives

wa(&iy 1) = —(€,) cos cEit. (54)

Substituting &\d(@, t) into the inverse formula (36), the general

solution of the dynamic part of the equation of motion is ob-
tained by

DL‘( ir
g 2kar)
. N
Therefore, the general solution for the elastodynamic radial dis-

placements due to thermal shock in an orthotropic thick cylindri-
cal shell is found to be

Uy(r, 1) = —i,(&:) cos TEit]. (55)

s = T
Ulr, ) = G + Gor™ + (C” B3 4 02 >;~

Cyy — Cit — Cn

+ Z%&?;) [—5.(&) cos &,

After obtaining the displacement (19) and its finite Hankel
transform (49)— (50), the total displacement field (56) can be
obtained. Therefore the elastodynamic thermal shock stresses

in each direction can be determined from the relations (1) and
(6) when ¢, # c,. The radial stress is

(56)

oU(r, t U(r, t
onr, 1) = 0y LDy YD L f) - 0T 1)
or r
= Gulcnh + c)r™ + Galenhy + ci)r !
Coy = :C,
+f0[C13 B (cn + Cl2):|
Ciy — Cn
+
_ To[ql _ q@_c_q
Cyyp — Cx

[—,(&) cos Tt
D )

x [c,, % + %Du(@r)} . (57
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the hoop stress is given by

oU(r,t) .
or

= Gio(cihi + c)r ™" + Gag(cohs + c)rie!

- U(:’ D 4 enf(t) - qul(r, D)

ogo(r,t) =cp2

Cxyz — (3
+f0|:C23 +——(cn t+ sz)}

Cii — Cx

(cn + 022)]

- T0|:qa2 — 42
Ci — €

[~ (&) cos ctit]
+§;: N(&)

x [cnw + %Dx@r)] . (58)
or r )

and the axial stress is given by

oU(r,t U(r, t)
0,(r,t) =ci3 (;r L + : + ¢ f(t) — g T(r, t)
= Gio(cuh + c)rh™ + Ga(cishy + cp3)r
2 o
+f0(c33 4 (¢ CI.;))
(cit — ¢2)
_ Tu[fh - (e + Cza)}
(cn — ¢22)

5 [=&(&) cos i)
o N(E)
oD,

x [cm % + %Dxéin} . (59)

where go, = cppe, + cpag + cna..

At this stage the unknown coefficients are found from the
boundary conditions available. We have assumed that no exter-
nal tractions exist. Then the conditions in the contour bounding
the cross section (at r, and r,) can be written in the following
form:

Urr(r1'7 t) = Trg(riy t) = Tn(riv t) = O, i = 17 2; (60)

Only a condition for the stress o, is not satisfied identically
and this is written as Eq. (57). By (60), the following linear
equations in unknown constants Gy, G, and f; are obtained:

Gio(cin + c)r 1™ + Gyo(cuhs + cip)re!

+ foB1 = ToBy, =12, (61)
where
i3+ (€3 — cu)(en + ci2)l(cy — ¢n) for ¢y # cn
By = §cis+ (cas —¢i3)/2 + (co3 — ciz)(cn + c2) In r/(2¢yy)
‘ for ¢ = €.
(62)
5 = {q. — gqalcn + cpp)/ (e — ) for ¢, # cn'
gy — g2/2 — gy(cyy + ¢12) In r/(2¢y) for ¢y = cn
(63)
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The end boundary condition of zero resultant axial force, P,(¢)

= [ o,(r, t)2mrdr = 0, gives the last set of equations that
n

are needed to determine the unknown constants:

cahi + Cp N+ X+
G rytlo—
10( N+ 1 )( 2 )

+ GzoEQ +f0E1 = ToEo, (64)

where the parameters used are described, for ¢, # ¢, by

E - Ci3ha t+ Ca3 (ria*t = Pty
% + I

S 2 _ 2
El:(sz 013_*_(,”) (r3 "1)’ (65)
Ciy — € 2
o 2 ko2
E, = (qa'B-L]ZC] 023) (r3 "1)’ (66)
Cu — Cn 2
and, for ¢, = ¢4,
E; = (c3h\z + c23) In (ra/ ), (67)
o r 2 5 B
E = (C33+C31 "3 Gi3 O CU) (r3 ry)
2¢p 4c), 2
2 _ 9
+EBTB G2, — 2 i), (68)
4C11
and
Ci3 ("% - "T) 92
E = @ - — i T C + C =
0 (q 3 42 20“) 5 (cn 32) dc,,

2 _ .2
N [(rgln r, — 2 In r1>—(’2—2"—)]. (69)

The boundary conditions for the time dependent terms in the
sets of algebraic Egs. (61) and (64) have already been satisfied
by (22) and (23). Therefore there is no need for additional
equations to determine the unknown constants.

Results and Discussion

In order to examine the present solution’s validity, a numeri-
cal example was employed to analyze the elastodynamic ther-
mal shock stresses propagating through the wall in the form of
a stress wave, Before presenting results, it should be mentioned
that the definition in the form of a series expansion for the
Bessel functions cannot be used for large arguments. For large

Table 1 The first ten roots of the transcendental Eq. (31)
and the values of the arguments* at the boundaries
[ ft 8] X 4:: 5] X 5:
1 25.30 1.265 2.530
2 68.56 3.428 6.856
3 128.4 6.422 12.84
4 190.3 9.517 19.03
5 252.7 12.64 25.27
6 3153 15.76 31.53
7 3779 18.90 37.79
8 440.6 22.03 44.06
9 503.3 25.17 50.33
10 566.1 28.30 56.61

* In computing the Bessel functions, the Hankel asymptotic expansions
are used above the value of 8.0 (large arguments region).
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Fig. 1 The distribution of radial stress, ¢, from the elastodynamic solu-

tion at different times versus the nondimensional radial distance, 7 = (r
— n}/{r. — ry). Also the elastostatic solution is shown.

arguments, the Hankel asymptotic expansions of the Bessel
functions should be used for the eigenvalues, eigenfunctions,
and the evaluation of Hankel transforms as described in the
Appendix A.

As an illustrative example, the distributions and histories of
thermal shock stresses in the wall are determined for a glass/
epoxy circular cylinder of inner radius r; = 50 mm and outer
radius r, = 100 mm. It is supposed to be made, by filament
winding, with the fibers oriented around the circumference of
cylinder. The moduli in GN/m? and Poisson’s ratios for the
material are listed in the following, where 1 denotes the radial
(r), 2 the circumferential (#), and 3 the axial (z) direction:

El = 137, E2 = 559, E3 = 137, G|2 = 56, Gz] = 56
Gy =49, v, =0068, vy =0277, vy =04

The thermal expansion coefficients are , = 40 X 107%/°C,
ap = 10 X 107%/°C, and a, = 40 x 107%/°C. The loading
temperature of 7'(r, t), causing thermal shock at the surface, is
applied at # = 0™ over the entire thickness of the hollow cylin-
der, and it is assumed that the applied temperature is kept con-
stant thereafter. This type of thermal loading, causing the re-
sponse of strong dynamic thermal stresses on the cylinder, can
be developed by a strong chemical reaction, an absorption of
infrared radiation, or an electromagnetic radiant energy from
pulses.

For the eigenfunction series sum of the elastodynamic solu-
tion, roots of the transcendental Eq. (31) are needed. The first
ten roots are shown in the Table 1 with the values of the argu-
ments at both boundaries. Numerical finite Hankel transforma-
tions for arbitrary functions were carried out by using the Rom-
berg’s integration algorithm.

In order to show the results, the following nondimensional
quantities are used: for radial distance (through the thickness),
7= (r—r)/(r, — r), and for time, 7 = ¢t/(r, — r,), where
T would physically represent the number of trips required by
the stress wave in going through the thickness. The distribution
of radial dynamic thermal stress is presented at each nondimen-
sional time 7 = 1, 2, and 5 in Fig. 1. Since the speed of wave
¢ is calculated as 3,169 m/sec, the nondimensional time 7 = 1
indicates 1.577 X 10 sec. The radial stress wave is initiated
at the inside and outside boundaries simultaneously, propagates
outward from the inside boundary and inward from the external
boundary through the wall and reflects in the opposite direction
towards the boundaries. Subsequently, this reflected wave is
also reversed again at the boundaries. The tension in the first
phase of travel is reversed into compression by the reflection
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Fig. 2 The distribution of hoop stress, o, at different times versus the
nondimensional radial distance, 7 = (r — )/ {r; — ry)

of waves, as shown in Figs. 4(a, b), and a dramatic change of
radial stress through the thickness is observed. This effect is
reduced with time. The first maximum peak radial stress is
obtained at 7 = 0.5 when7 = 5.5. As expected, the magnitude
of dynamic radial stress is much higher than that in the static
case.

The largest change of stresses through the shell thickness is
observed in the circumferential direction during the first travel
of the wave, as shown in Fig. 2. The magnitude of the hoop
stresses near the boundaries increases with continuing wave
propagation. The hoop stress near the midpoint in the wall is
lower than that near the boundaries. The maximum dynamic
thermal stress on a circumferentally wound orthotropic cylindri-
cal shell occurs in the first travel in the circumferential direction
at the inner boundary. This observation for an orthotropic cylin-
drical shell is still true as in the isotropic case which was ob-
served in Wang (1995). It should be noted that the cylinder is
most resistant in this direction, since it 1s circumferentially fil-
ament wound and the material strength in the fiber direction is
usually the largest. Therefore, this dominant material character-
istic affects to a large extent the elastodynamic response of the
cylindrical shell structure. Of course, in addition to the stiftness
and strength in the fiber direction, the thermal expansion coeffi-
cients are also important factors in determining the thermoelas-
tic behavior of an orthotropic thick cylindrical shell. The axial
stress in Fig. 3 is not significant in comparison with the radial
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Fig. 3 The distribution of axial stress, o, at different times versus the
nondimensional radial distance, 7
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and hoop stresses. Actually, the behavior of axial stress is simi-
lar to that of the radial stress.

The time history of the radial stress is shown at 7= 0.1 in
Fig. 4(a) and 7= 0.5 in Fig. 4(b) (notice the high-frequency
oscillations ). The peaks of radial stress appear whenever the
stress wave reaches the corresponding locations. The steep
change of magnitude of radial stress is seen near each observing
location. In Fig. 3, it is clear that the hoop stress at 7 = 0.5
experiences a smaller change than that at 7= 0 and 7= 1. This
phenomenon can be observed in Fig. 2, as well. The maximum
stress is observed at 7 = 5 and 10 in the circumferential direc-
tion. The time history of axial stress is given in Fig. 6. The
axial stress also has sharp peaks at 7= 0.5 when a stress wave
arrives at that location. This characteristic of axial stress isn’t
seen in Fig. 3 because the time selected corresponds to the
absence of points when the waves arrive.

To compare the effects of stresses for an orthotropic thick
cylindrical shell to that of the isotropic case, the distribution of
radial stress at7 = 1, 2, 5, and 10 in Fig. 7 is carried out after
selecting for the orthotropic moduli, in GN/m? and the other
material constants:

i = E; = 55.9,
a=qa =10 X 107¢/°C,

v =v;=0277,
i=1,23,

i.e., the constants of the orthotropic shell in the circumferential
direction, It is seen that a large amount of stress variation
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through the wall exists in an orthotropic cylindrical shell (Fig.
1). Thus, the peaks near the boundaries are much higher than
these in other locations. The magnitude of radial stress in an
orthotropic cylindrical shell drops near the center and has an
oscillatory behavior attributed to the direct contribution of static
stress and the orthotropic characteristics of elastic constants and
thermal expansion coefficients. This effect can not be seen in
the isotropic case. The oscillating behavior would come even
at large time values due to the interference of the stress waves.
The main difference between the two material systems appears
in Figs. 1 and 7. The wavefront in an orthotropic shell is more
rapidly interfered than that in an isotropic shell, as shown in
Figs. 4(a, b). Also, Fig. 7, where the normalized radial stress
is defined as o,, = o,/EaT, and its plot shows almost the same
shape and magnitude with the result given by Wang (1995).
In Fig. 9, a comparison of the time history of the radial stress
at 7 = 0.5, is shown. One of the differences between the two
studies is that a plane-strain condition, €., = 0 was imposed in
that study, unlike the present one. The differences between the
two results, however, most likely should be due to the differ-
ences in the calculation points. The peak values of Wang’s
(1995) solution are on the present study’s curves but the wave
patterns are different after the first trip. This seems to be due
to the fact that the plot in Wang (1995) was made from data
at time values not closely enough, therefore missing the peaks
values of the stress wave. This comparison also makes an im-
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Fig. 6 The time history of axial stress, o, versus the nondimensional
time, t = ¢t/(r, — r,), at7 = 0.5 and 1.0
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portant point: that the time scale of calculations of data points
should be carefully examined to make sure the entire response
of the stress wave and especially the peaks are captured.
Finally, one more result is presented regarding the phenom-
ena of initial wave propagation. Figure 8 for an isotropic shell
can help the understanding of the early phase of stress distribu-
tion due to wave occurrence and propagation. Since the thermal
loading is applied to the entire hollow cylinder instantaneously,
the stress disturbance is simultaneously generated all over the
wall. In the vicinity of the boundary, the radial stress feels the
strong discontinuity (wavefront) right after the loading. Each
wavefront moves inward and the waves meet at the center loca-
tion and cause a stress reversion and sudden jump in magnitude,
as shown in Figs. 4(a, b). After that, the wavefronts proceed
to the boundaries continuously. When the wavefronts reach the
boundaries, they are reflected into the opposite direction as
mentioned earlier. .
In this study, it should be mentioned that the coupling effects
between the thermal and mechanical energy in the system are
neglected. This means that the uncoupled linear dynamic ther-
moelasticity problem was handled. Since the coupling effects
always exist in the physical system under thermal environments,
the coupled dynamic thermoelasticity is more realistic but too
difficult and complex or sometimes impossible to obtain the
closed-form solution. The uncoupled dynamic thermoelasticity
problem, which was treated here, is, however, still valuable and
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Fig.8 The propagation of the radial stress wave, o, versus F at different
times
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can provide a large amount of useful information on the thermal
shock effects. Finally, the shell axisymmetry concept, in con-
junction with the radial dependence of the thermal field. limit
the applicability of the results to essentially infinitely long
shells.

Summary

This work presents a method to analyze the uncoupled dy-
namic thermoelastic stress problem in an orthotropic thick cylin-
drical shell. In implementing the method, the linear dynamic
thermoelasticity equations are used with the appropriate bound-
ary and initial conditions, and the elastodynamic problem is
solved by using the finite Hankel transform in the spatial vari-
able and the Laplace transform in the time variable. In this
paper, the temperature distribution was considered as the step
function applied to the entire surface of the hollow cylinder. It
is shown that a closed-form solution can be obtained for the
thermal shock stresses in an orthotropic thick cylindrical shell.
As seen in the results, a thermal stress wave occurs due to the
thermal shock loading, and this plays an important role on the
significant amount of dynamic thermal stresses generated
through the wall. Important differences between an isotropic
and orthotropic cylindrical shell exist, namely rapid variations
of radial stresses in the orthotropic case, which are attributed
to the orthotropy of the mechanical and thermal properties.
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APPENDIX A

The definition of Bessel functions of the first kind of order
v is for small arguments:

; (_1)111(1/2)21/5"/ =
J ()= ———————z""", =1,2,3,..., (Al
() ,?Um!F(m+u+ l)4 - )
it (_I)ln(l/z)fm v .
J_.(2)= ——z"", m=123,.... (A2
(2) ,,,Xfom!l"(mAI/+ 1) " (42)

The Hankel's asymptotic expansions for large arguments,
when v is fixed and |z| goes to infinity, are described in the
following:

J(2) = V2/(w2) [P(v. 2) cos x — Q(v, 2) sin x], (A3)

Y, (2) = V2/(w2) [P(v, z) sin x + Q(v, 2) cos x], (A4)

where the parameter y = z — (%u 4 },)Tr, and, with 4% denoted
by u, P, and Q are defined by

oo o (v 2k)
P(v, z) AZ()( 1) (27)%
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-1 _—2!(82)2 + ..., (AS)
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APPENDIX B
The finite Hankel transformations of arbitrary functions can
be evaluated analytically by using the series expansion form of
the Bessel functions for small arguments. By the recurrence
formula, the finite Hankel transforms for r” and r “ can be
expressed as
! r,
) r 2
5Li(&) = f r D (&irydr = J-a[? Je..-r(f,;r)]
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For r, the finite Hankel transform is given by
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