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C. S. Valle An elas/odynamic soill/iol! for the /hemwl shock stresses in an ortho/ropic thick 
Graduate Student. cylindrical ~hell is presented. The solution is achlpved by the proper usage of illlegral 

t~ansforms sllch as thefinlt Hankeltramforrn and the Laplace transforill. No restric­
tive assumptions on the shellthi kness are placed. Results are presented/or the well­School of Aerospace Engineering, 

Georgia Institute 01 Technology, formed wave propagation phenomenon (4 elastic Sf/'esses through the thickness of 
Atlanfa, GA 30332-0150 an arthatropic thick cylindrical shell. Thermal shock stresses become of significant 

magl/flllde due to stress wave propagatiol! which is initiated at the boundaries by 
sudden {hennal loading. 

Introduction 

1n I' cent years. attention to thick composite shell has been 
continuously increased in several industrial areas. Thick com­
p site cylindrical shell. can be used In applications involving 
aerospace, off hore and su marine struclures, pressure vessels, 
civil engineering stru 'tures, chemical pipes, and even automo­
tive su p n i n comp n nts. The 'tructures can be easily ex­
posed to a variety of temperature fields in different environ­
ment '. In high-t mperature application ,thermal 1re s s, whtch 
are induced from the heat build up and cooling processes, may 
rise abo e the ultimate strength and lead LO unexp cteLl failu.res. 
Thus, the importance f thermal stre. es in causing tructurul 
damage and changes in the functionality of the structurc is 
well recogniz d whenever thermal environments are inv Iv~d. 

Tht~re~ re, the capability to predict elastodynamtc stresses 1II­

duced by sudden thermal loading in compo ite slruclw' s is 
e:. ential for th' proper and safe design and the kn wI dge of 
it respon'e during service in these severe thermal appli alions. 

In the c e of suddenly appli d thermal loading, thermal de­
formation and the role of inertia become larger. Since the ther­
mal stress changes very rapidly, tbe static anal is Cll not cap­
lure its behavior. 111is dynamic th rmoelastic stress response is 
significant and leads to the propagation of ela 'tic s1re' waves 
in th olid. 

Regarding rebted work, Sneddon ( 1951) introduced the finite 
Hankel transform to solve th beal conduction problems. The 
finit H, nkel transform w s succ sfully applied to the bound­
ary value problem of heat conduction by Cin IIi (1965) and 
later the u.efulness of applications to dynamic problems for 
cylindrical and spherical shells was also studied (Cinelli, 1966). 

The three-dimensional elasticity approach i' the most power­
ful way to analyze tbe elastodynamic behavior when thick con­
struction is involved. Ela ·ticity approach for orthotropic cy­
lindrical hells have been u 'ed for static and dynamic stress 
analy is in several instances. Hyer and Cooper ( 1986) studied 
the static. 1re es and deformations induced by a circumfcremial 
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temperature gradient in a composite tube. Kardomatea.· ( 1989, 
1990) also used the elasticity approach to obtain the transient 
(but without (he inertia term) thermal stresse in an orthotropic 
composite thi k tube. 

The thermal hock problem, which is a dynamic thermoelastic 
problem. was 'llldied by Birman ( 1990) for a composite hollow 
cylinder based on the Donnclltype of thin shell theory. Several 
other contribution using the elasticity approaCh to th thermal 
shock problem ha e been mad . which are mostly reIat d to 
an infinite elastic body with a spherical cavity (Stem berg and 
Chakra arty. 1959) and hollow spherical shells (Tsui and 
Kraus. 1965; Zaker. 1969). Another considerable work for tbe 
thermal hock tr sses in a hollow sphere due to rapid tlIliform 
heating was perform d by Hata ( 1991 ). The Ra theory wa~ 

emplo ed b taking lhe thermoelastic displacement p Ie-ntia! 
for the thermoela ·tic equati n and the di placement potential 
for the dynamic elasticity equati n. The dynanlic thermoelastic 
resp n eo thin cylind .cal shells touJdenIy applied and rotat­
ing thelmal loading \II studied b Mc uillen and Brull 
(1970). Sciuva and Carrera (199_) numerically inve't.igated 
the lastodynamic behavior of relatively thick symmetrically 
lamin ted anisotropic circular. hells as a plane-strain problem 
by tbe first-order sh ar def nna ion theory. Wang and Gong 
( 1992) obtaine the analytic 'olution usin cr the finit Hankel 
transform and the Laplace transform for elastodynamic prob­
lems and pre. ented the elastodyn' nic solution for a multilay­
red isotropic hollow cylinder. Wang (1993. 1995) dealt with 

the stress wa e propagation problem in a two layered cylinder 
with in.itial interface pres ure nd inv stig Led the thermal shock 
stresses caused by rapidly in reasing uniform heating to an 
isotropic hollow cylinder as a plane-strain problem. But their 
studi s were confu1ed only to i 'otropic shell problems, 

Even though severdl papers have been written in this area, the 
elastodynamic lution for a g Derall orthotropic cylindrical shell 
has not yet been reported. Thus, in this study, the fin.ite Hankel 
tra form and the Laplace transform are used to solve the uncou­
pled lineill' dynamic thermoelasticity problem for an orthotropic 
ylindrical shell. The advantage of tills method is the ability to 

provide do' -form solution which is llpplicable to a genertl11y 
orthotropic cylinder of arbitrary thickne ·S. This requires the use 
of the Bessel functio of the first and/or the second kind of 
arbitrary order due to the orthotropy of material constams. 

Formulation 
Consider a hollow c linder subjected to a specific tempera­

ture environment with or without external pre :ure. The inner 

184 / Vol. 65, MARCH 1998 Copyright © 1998 by ASME Transactions of the ASME 

-- - ---=- ­- .--- ­



and outer radii are denoted by rl and rl, respectively. We denote 
by r the radial ethe circumferential. and z th xial coordinate. 
The hollow cylinder is assumed to have zero initial temperature, 

ut at t > O' , the shell is k pt at a c nSlant temper, lure through 
the thi ess. Since there is only radial dependence of the tem­
perature field, the hoop displac ments r zero and U1e stresses 
and .-train are independent of e. hus the thermoelastic stress­
strain relation for the orth tropic body are 

(7" CII CI2 t l ) 0 0 0 Err - a,t:.T 
{700 el2 C21 C:!J 0 0 0 E09 - aot:.T 
{7::; CI3 C2", C3. 0 0 0 Eu. - a;t:.T 
7H: 0 0 0 C44 0 0 'Yo, 
Tn 0 0 0 0 C5 0 'Y" 
7,9 0 0 0 0 0 Ct>{, 'Yr9 

( I ) 

where c, are the elastic constants and a, are the thennal ex pan­
ion coeffil.:ients (J, 2, and 3 represent r. e, and z directions, 

respectively). The g ometry of shell is assumed to be ax.isym­
metric. Sin the temperature doesn't depend on the axial coor­
dinate, it is assumed that the stresses are independent of z. In 
addition to the constitutive Eq. ( I ), the elastic re ponse of the 
cylinder mu, t satisfy the dynamic equilibrium equations. Only 
one equilibrium equation remains, since 79z = 7" = 7 r9 = O. 

Barr - (Jeo 8 2ur-+ 
a rr 

=p-, (2)
2 or I' ot

where p denotes the density of material. 
For the problem without the thennal en CLS, the expressions 

for the displacement field were derived by Lehknit kii (1963). 

Ur = VCr, l) + z(~-v\· cos 8 - W-, . in 8) 

+ Uo cos e + Vo sin e. (3) 

U9 = -z(wy in e + Wx cos e) + w,r 

- Uo sin e + Vo cos e, (4 ) 

11, = Zj(l) - r(wy cos e - Wx sin e) + Woo (5) 

where the function V( r. t) pre. enls the radial displacement 
accompanied by defonnation. The constants uo, vo, Wo, w." Wyo 
and w~ denote the rigid-body tran lalion and rotation along the 
x y, and z directions in the Cartesian coordinate system, respec­
t'vely. The time-dependent parameter j(t) is determined from 
the boundary cond.itions. 

The strains are expressed in tenn of the displacements as 
follows: 

oV(r, t) V(r, t) 
Err = COB = ---, Ezz = j(t),

Dr I' 

'Y9~ = 'Y" = ",.., = O. (6) 

ub tituting (I) and (6) into the equilibrium Eg. (2) gives 
the following equation of dynamic them10ela '!icity for the ra­
dial displa m nt V(r, t): 

D'lV(r. t) ~ oV(r, I)j _C22 V( ) 
ell 2 + 2 r. t[ Br r Br r 

DT(r, t) T(r, t) ( _ ('13) jet)= ql + q2 --- + (', 
or r r 

(7) 
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where, the q; con tants are given by 

(8) 

and the initial conditions, as well a the boundary condition' 
due to the absence of external tractions, {7,,( r, , t) = 0, i = I, 
2, are 

OV(r. 0) = ° V(r, 0) = 0, ( 10) 
ot ' 

oV(r;, t) V(r" t) f)
til + Cl2 + Cl3. (t - q[T(r;, t) = 0, 

or r; 

I = I, 2. (11) 

The axial force p.(/) is given by 

P,(t) = fr2 
(7u.(r, t)27rrdr = f'" [C13 _o_V....:.(_r'--.t....:.) 

~ ~ or 

VCr, t) j+ C23 --r- + C33j(t) - q3 T (r, t) 2r.rdr, (12) 

where q, = Cl3a, + C130'9 + C330'.· 

Consider now the thennoelastic equmion of the pre~.'~nt prob­
lem without the inertia tenn, which is described by the following 
inhomogeneous ordinary differential equation of second order 
in tenns of the radial displacement V,( r. t): 

CII[ 02~(~. t) + ~ ov,~r. t)j - C~2 V,(r, t) 
I' r r r 

_ oT(r, t) T(r, t) ( ) j(t) 
- ql + q2 --- + C23 - CD --. ( (3) 

or r I' 

Notice the absence of the dynamic tenn (last tenn in (7)). The 
associated initial conditions and boundary conditions are given 
as in (10) and (11) with V, substituted in place of V. The axial 
force, PJ t), is also given by the same relation as in ( 12) with 
V, substituted in plaee of V. 

It is assumed that the general solution of the governing equa­
tion of linear dynamic mennoelasticity (7) can he separated 
into two parts, by the principle of superposition. namely. 

V(r, t) = V,(r, t) + Vd(r, t), (14) 

where V,(r, t) represents me thermoelastic radial displacem nt 
without the inertia tenn and Vd ( r. t) denotes the dynamic radial 
displacement. 

As a particular case for the presented fonnulation, the temper­
ature distribution which can be arbitrarily selected can be a.­
sumed as 

o. t < ° T(r, t) = Tof/(t) = { (15) 
To, 

The functionj(t) is set in the same fom1, as 

o. t < ° 
jet) = jof/(t) = ( 16) { jo. 
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where H( t) is defined as the Heaviside step function. The gen­
eral solution U,( r, t) of the inhomogeneous differentia] Eq. 
(13) is given by 

" (17)lor Cil *' C22, 

or 

I C2J - C'3
U,(r, t) = GlOr + G20	 - + for In r + Ut(r, t) 

r 2C11 

where Al.2 = JC22lcll and Ut(r, t) is a particular solution, 
obt ined as 

for CII *' C22, t 2:: 0+ 

for c" = C22, t 2:: 0+ 

( 19) 

Using (7) with the associated initial and boundary conditions 
and the above definition, the following equation for the dynamic 
elasticity part in tenns of displacement is obtained: 

_. [a2UAr, t) ~ aUAr, t)] _ C22 U ( )
(II 2 +	 2 d r, t 

or r Or r 

(20) 

with the initial conditions 

oUAr, 0) = o. (21 ) 
at 

The boundary conditions for the traction-free surfaces of the 
cylinder and the axial force at the ends are given from (II) as 
follows: 

oUd(r;,t) UAr;,t)_o '-12
c" + C'2 - , I - , . (22)

Or r; 

Moreover. the axial force condition is given from (12): 

(23) 

where r; = r" or r2- The dynamic elasticity Eq. (20) is given 
in the fonn 

where the parameter v = Vcnlell' Therefore v = AI and the 
wave speed in the radial direction is denoted by c = JCII I p. 

At this stage, in order to develop the procedure for solving 
the dynamic elasticity Eq. (24), let the solution be Ud, (r, t) = 
g(r)e-1

"", where w is the natural frequency. Substituting 
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Udh(r, t) into (24), after assuming U,(r, t) = 0 and setting ~ 

= wlc, gives a standard Bessel equation as follows: 

with the Cauchy boundary conditions 

dg(r; )
-- + h,g(r,) = 0, i = 1,2, (26)

dr 

where the constants are defined by 

(27) 

The general solution of the Bessel equation of arbitrary order 
v is obtained by 

(28) 

where Jv(x) is the Bessel function of the first kind of order v 
and Yv(x) is the Bessel function of the second kind of order v 
defined as 

Yv(~r) = Jv(~r) cos 1W - J_v(~r) . (29) 
SIO 1rv 

But when the order v is an integer, the function Y,,(z) should 
be taken by the limit definition 

The definitions of J,,(~r) and J_v(~r) are described in Appen­
dix A. By using the boundary conditions, the genera] solution 
g(r) of the Bessel equation can be written as the eigenfunction 
series 

g(r) = L AiDv(~,r), i = 1,2, . 00, (30) 

where Ai are constants, the eigenfunction 

and ~i is a positive root of the transcendental equation: 

(31 ) 

where the parameters are defined as 

Ja = ~,J~(~irl) + hIJv(~,rl)' Jb = ~,J~(~ir2) + h2Jv(~ir2)' 

Ya = ~iY ~(~;r,) + h'YV(~;rI)' 

(32) 

After multiplying (30) by DV(~ir) and r, and integrating in 
the finite range, we can find the constants Ai by using the 
orthogonality condition 

(33) 

In order to get the general solution of the Bessel equation, we 
use the finite Hankel transfonn of g(r), denoted by g(~i)' de­
fined by 

" 
g(~i) = rg(r)Dv(~ir)dr. (34)J

'I 
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Then th in erse of the finit Hankel transformation is given in 
the form 

oCr) = L g(~i)D,,(~,r) (35)
" ; N(~i) , 

wh re the normalizing factor N(~i) = f; r[D,,(~,r)]2dr which 
'I 

is always positive. Therefore. setting Ud(r, t) in place of g(r), 
the radial displacement due to the dynamic elasticity contribu­
tion can be expressed as 

U (r t) = " ~(~" t)D"(~ir) (36)
d, ~ N(~i) , 

where the summation is taken over all the positive roots of the 
transcendental equation (31). The finite Hankel transform for 
the dynamic displacement is now written by 

',
(4(C t) = rUAr, t)D"(~ir)dr. (37)I" 

Taking the finite Hankel transform of the inhomogeneous Eq. 
(24) over r, and r" and using (31 ), the transformed equation 
results in 

2Ja [_8_ .. -,-t) h U (Ul::....:/(---"r,_ )J+ 2 d r2, ( 
T, Jh 8r 

:':';1T1ce Ud(r, t) satisfies the homogeneous boundary conditions 
(22) at each surface, the first two term. of the left-hand side 
of (38) should vani h. Thus the transformed equation becomes 

Using the Laplace transform, denoted by U;/, with the zero 
initial conditions, the above equation can be transformed as 

For convenience, the above equation can be written in the form 

........ L /'..L c2~f ......... L 
Ud (~i'S) = -U,(~;,S) + _, 2 2 UI(~i'S), (41)

C-~i + S 

By using the inverse Laplace transform, the following Hankel 
trans~ rmed dynamic displacement as a function of time is ob­
tained from the previous equation 

ZI:t(~;, t) = -U,(~i' t) + C~i sin C~it*U,(E,;, t). (42) 

Journal of Applied Mechanics 

Since U,(r, t) is already known, the finite Hankel transform of 

U,( r, t), denoted by U, (~i' t), can be defined as follows: 

',
u'(~i' t) = rU,er, t)D,,(~;r)dr. (43)I'I 

Then, by using (17), the finite Hankel transform of the ther­
mally induced displacement is described, for Cl [ '* C22, by 

and, by using (18), for CII = C22, 

+ C23 - C'3 fo/3(~i) + "Zi N~i' t). (45) 
2CII 

Notice that the Ii'S are the finite Hankel transforms, defined as ',
I,(f;;)= -rV+IDv(E,ir)dr,I

v12(~i) = f'
'I 

r- +
1DvU',;r) dr. (46) 

'I 

These transforms can be analytically calculatcd from the recur­
rence formulas, 

~ {c' j v(z)} = z v Jv-I (z), 

!!:.- (z-vJv(z») = -z""Jv+I(Z), (47)
dz 

regardless of the range of arguments. Thus the finite Hankel 
transforms ll(~i) and 12 (t,i can be easily carried out analyti­
cally as given in Appendix B. Here the finite Hankel transform 
for U7(r, t) is given as 

~ flU ,* (~i' t) = H ( Ui' (r, t)} = rUi' (r, t)D,,(~;r)dr. (48) 
'I 

Tile finite Hankel transform of the above expression, using the 
earlier definition, becomes, for CII '* C22, 

(49) 

and, for CII = C22, 

~ *(c.) = Tol[2 I' (c ) (50)U I ~l 2 3 ~I , 

CII 

where q2 becomes zero for the isotropic case, for which a, = 

ae and Cil = C22. In the previous expression, I, and 13 are the 
finite Hankel transforms of the functions rand r In r, described 
by 

13(t,i) = 
', 

r 2 D v(E,;r)dr for CII '* C22, (51)I'I 

I'> 
Ij(~i) = r2 In rDv(E"r)dr for C'I = C22. (52) 

" 
The integration given by Eqs. (52) and (51) can be performed 
in closed form with the recurrence formulas available, only if 
the argument is in the small arguments domain and the definition 
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of series expansions for Bessel functions is used. The closed­
fonn integration cannot be obtained in the large argument region 
for Eqs. (51) and (52). In this case, numerical integration 
should be used. Therefore, the Bessel functions for integration 
need to be computed in the two regions. One is for small argu­
ments, the other is for large arguments. For the large arguments 
of the Bessel functions, the Hankel asymptotic expansions are 
always numerically integrated regardless of the order of Bessel 
functions because the closed fonn of integration cannot be ob­
tained due to the complexity of the asymptotic definition of 
Bessel functions in this range. It can be noted that the numerical 
Hankel transfonn is always possible for any arbitrary analytical 
functions if the appropriate scheme of numerical integration is 
used. The Bessel functions of the first kind of order l/ for small 
and large arguments used in this work are defined in Appendix 
A. Further details on the numerical finite Hankel transfonn will 
be mentioned in the next section. 

Combining all these expressions, the finite Hankel transfonn 
of the dynamic displacement part is obtained by 

l4(C t) = -Li;(~" f) + c~, sin C~it*U;(C f). (53) 

Thus, the convolution integral lo(t) = J~ Li; (~i , T) sin C~i (f ­

T)dT is used and gives 

i'i;(~" f) = -Li;(~,) cos c~,t. (54) 

Substituting l4 (~i , t) into the inverse fonnula (36), the general 
solution of the dynamic part of the equation of motion is ob­
tained by 

~ DV(~ir) '" _
Ud(r, t) = L --- [-U'(~i) cos c~,t]. (55) 

i N(~i) 

Therefore, the general solution for the elastodynamic radial dis­
placements due to thennal shock in an orthotropic thick cylindri­
cal shell is found to be 

U(r, t) = GlQr ", + G20r'" + (C23 - Cn 10 + TOQ2 ) I' 

Cil - C22 CII - C22 

~ DV(~ir) ~ _
+ L --- [-UI(~') cos C~it]. (56) 

i N(~i) 

After obtaining the displacement (19) and its finite Hankel 
transfonn (49) - (50), the total displacement field (56) can be 
obtained. Therefore the elastodynamic thennal shock stresses 
in each direction can be detennined from the relations (1) and 
(6) when C II "* C22. The radial stress is 

8U(r, f) U(r, t)
(J,,(r, t) = CII + CI2 --- + cn1(t) - qlT(r, t)

81' I' 

+ I 
i 

[-Li;(O cos C~if] 
N(O 

x [ 
Cli 

8Dv(~ir)
81' 

+ C12 D (~ )]
I' v ,I' (57) 

188 / Vol. 65, MARCH 1998 

. - -- - - -- -- -- - ­

the hoop stress is given by 

8U(r, t) U(r, t)
iJ"ee(r, t) = C l2 + C22 --- + C231(t) - qa2T(r, t)

81' I' 

+ I [-Li;(~,) cos c{,t] 

, N(~i) 

x [ 8Dv(~ir) + C22 D (C. ')] (58)C I2 81' I' v <,,1 , 

and the axial stress is given by 

8U(r, t) U(r, t)
iJ"u(r, t) = Cn + C23 --- + C331(t) - q3T(r, t)

81' I' 

+ I [-Li;(~i) cos C~it]
 
i N(~,)
 

8Dv(~ir) C23 D (C. )] (59) .x Cl3 + v <,,1'[ 81' I' 

where Qa2 = C12a, + C22ae + C23a,. 
At this stage the unknown coefficients are found from the 

boundary conditions available. We have assumed that no exter­
nal tractions exist. Then the conditions in the contour bounding 
the cross section (at 1'1 and 1'2) can be written in the following 
form: 

(In(ri, t) = T,e(ri, f) = T,,(ri, f) = 0, i = 1,2. (60) 

Only a condition for the stress (J" is not satisfied identically 
and this is written as Eq. (57). By (60), the following linear 
equations in unknown constants GlQ, G21 J, and 10 are obtained: 

GIO(CII>-1 + cI2)r;'-1 + G20 (C II >-2 + c,2)r,"2-1 

+ JoB I = ToBo, i = 1,2, (61) 

where 

!
CI.1 + (C23 - C13)(C ,I + CI2)/(CI 1 - C22) for CII *' Cn 

BI = CD + (C23 - c13)/2 + (C23 - C13)(CII + cd In r/(2cI) 

for Cil = en. 

(62) 

for CII"* Cn 

for CII = Cn 

(63) 

Transactions of the ASME 

. ---.. 
~ (! 

~h~
 



The end boundary condition of zero resultant axial force, P,(t) 

= T' O"u(r, t)21r1'dr = 0, gives the last set of equations that 
'I 

are needed to determine the unknown constants: 

( C3IA[+cn)( "+1_ "+1)e 10 r 2 1 r 11 

AI + 1 

where the parameters used are described, for CII =1= C22, by 

£2 = (CI3A, + Cn)(r}>+1 _ r ~+I); 
A2 + 1 

(65) 

(66) 

and, for CII = (;22, 

(67) 

(68) 

and 

(69) 

The boundary conditions for the time dependent terms in the 
sets of algebraic Eqs. (61) and (64 ) have already been satisfied 
by (22) and (23). Therefore there is no need for additional 
equations to determine the unknown constants. 

Results and Discussion 
In order to examine the present solution's validity, a numeri­

cal example was employed to analyze the elastodynamic ther­
mal shock stresses propagating through the wall in the form of 
a stress wave. Before presenting results, it should be mentioned 
that the definition in the form of a series expansion for the 
Bessel functions cannot be used for large arguments. For large 

Table 1 The first ten roots of the transcendental Eq. (31) 
and tbe values of the arguments* at the boundaries 

~i r J X ~, r2 X ~, 

I 25.30 1.265 2.530 
2 68.56 3.428 6.856 
3 128.4 6.422 12.84 
4 190.3 9.517 19.03 
5 252.7 12.64 25.27 
6 315.3 15.76 31.53 
7 3779 18.90 37.79 
8 440.6 22.03 44.06 
9 503.3 25.17 50.33 

10 566.1 2830 56.61 

" In computing the Bes el functions, the Hankel asymptotic expansions 
are used above the value of 18.0 (large arguments region). 

Journal of Applied Mechanics 

1=5 

400.0 r----~---~---~---~--____, 

/ 
1= 1 

Elasloslallc 
p..'" 
2'- 200.0 

tl' 
~ 

'"
~ 

... 0.0
 

'"
 

-200.0 / 
1=2 

-400.0 '---~-~-~-~-~-~---~-~--' 

QO Q2 Q4 Q6 OB In 

Nondimensionol rodiol diatonce, f 

Fig.1 The distribution of radial stress, U", from the elaslodynamic solu­
tion at different times versus the nondimensional radial distance, r = (r 
- r,)/(r, - rd. Also the elastostatic solution is shown. 

arguments, the Hankel asymptotic expansions of the Bessel 
functions should be used for the eigenvalues, eigenfunctions, 
and the evaluation of Hankel transforms as described in the 
Appendix A. 

As an illustrative example, the distributions and histories of 
thermal shock stresses in the wall are determined for a glassl 
epoxy circular cylinder of inner radius rl = 50 mm and outer 
radius r2 = 100 mm. It is supposed to be made, by filament 
winding, with the fibers oriented around the circumference of 
cylinder. The moduli in GN/m 2 and Poisson's ratios for the 
material are listed in the following, where 1 denotes the radial 
(r), 2 the circumferential ((), and 3 the axial (z) direction: 

£, = 13.7, £2 = 55.9, £3 = 13.7, e12 = 5.6, en = 5.6 

e3J = 4.9, V12 = 0.068, Vn = 0.277, V31 = 0.4. 

The thermal expansion coefficients are a, = 40 X 10 -61°C, 
ae = lOX 10 -61°C, and a, = 40 X 10 -6re. The loading 
temperature of T( r, t), causing thermal shock at the surface, is 
applied at t = 0 + over the entire thickness of the hollow cylin­
der, and it is assumed that the applied temperature is kept con­
stant thereafter. This type of thermal loading, causing the re­
sponse of strong dynamic thermal stresses on the cylinder, can 
be developed by a strong chemical reaction, an absorption of 
infrared radiation, or an electromagnetic radiant energy from 
pulses. 

For the eigenfunction series sum of the elastodynamic solu­
tion, roots of the transcendental Eq. (31) are needed. The first 
ten roots are shown in the Table 1 with the values of the argu­
ments at both boundaries. Numerical finite Hankel transforma­
tions for arbitrary functions were carried out by using the Rom­
berg's integration algorithm. 

In order to show the results, the following nondimensional 
quantities are used: for radial distance (through the thickness), 
F= (r - rl)/(r2 - r[), and for time, t = ctl(r2 - rl), where 
t would physically represent the number of trips required by 
the stress wave in going through the thickness. The distribution 
of radial dynamic thermal stress is presented at each nondimen­
sional time t = 1, 2, and 5 in Fig. 1. Since the speed of wave 
c is calculated as 3,169 m/ sec, the nondimensional time t = 1 
indicates 1.577 X 10 -5 sec. The radial stress wave is initiated 
at the inside and outside boundaries simultaneously, propagates 
outward from the inside boundary and inward from the external 
boundary through the wall and reflects in the opposite direction 
towards the boundaries. Subsequently, this reflected wave is 
also reversed again at the boundaries. The tension in the first 
phase of travel is reversed into compression by the reflection 
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Fig. 2 The distribution of hoop stress, U'oo, at different times versus the 
nondimensiona.1 radial distance, r = (r - r,)/(r, - r,) 

of waves, a' shown in Figs, 4 (a, b), and a dramatic change of 
radial ,tres, through the thickness is observed. This effect is 
reduced with time. The first maximum peak radial stress is 
obtained at r = 0,5 when Y = 5.5. As expected, the magnitude 
of dynamic radial stress is much higher than that in the static 
ca e, 

The largest change of tresses through the shell thickness is 
observed in the circumferential direction during the first travel 
of the wave, as shown in Fig. 2. The magnitude of the hoop 
tresses near the boundaries increases with continuing wave 

propagation. The hoop tress near the midpoint in the wall is 
lower than that near the boundari s, The maximum dynamic 
thermal stress on a circumferentally wound orthotropic cylindri­
cal shell occurs in the first travel in the circumferential direction 
at the inner boundary, This observation for an orthotropic cylin­
drical shell is still tme as in the isotropic case whi h was ob­
served in Wang (1995), It should be noted that the cylinder is 
most resistant in this direction, since it is circumferentially fil­
ament wound and the materiaJ strength in the fiber direction is 
usually the largest. Therefore, this dominant material character­
istic affects to a large extent the elastodynamic response of the 
cylindrical shell structure, Of course, in addition to the ·tiffness 
and strength in the fiber direction, the thermal expansion coeffi­
cient~ are also important factors in determi.ning the thermoelas­
tic behavior of an orthotropic thick cylindrical shell. The axial 
stress in Fig. 3 is not significant in comparison with the radial 
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and hoop stresses, Actually the behavior of axial stress is simi­
lar to that of the radial stres, , 

The time history of the radial stress is shown at r = 0,1 in 
Fig, 4(a) and r= 0.5 in Fig, 4(b) (notice the high-frequency 
oscillations), The peaks of radial stress appear wh never the 
stress wave reaches the corresponding locations. The steep 
change of magnitude of radial tress is seen near each observing 
location, In Fig, 5, it is clear that the hoop str .$ at r = 0.5 
experiences a smaller change than that at r = 0 and r = 1, This 
phenomenon can be obser ed in Fig. 2, swell. Th maximum 
stress is observed at Y = 5 and lOin the circumferential direc­
tion. The time history of axial stress is given in Fig. 6, The 
axial stress also has sharp peaks at r = 0.5 when a stress wave 
arrives at that location. This characteristic of axial stre~s isn't 
seen in Fig, 3 because the time selected corresponds to the 
absence of points when the waves anive. 

To compare Lhe effects of stresses for an orthotropic thick 
cylindrical shell to that of the isotropic case the distributiun of 
radial tres at Y = 1, 2, 5, and lOin Fig. 7 is carried out after 
selecting for the orthotropic moduli, in GN/m~ and the other 
material constants: 

I,: = Ei = 55,9, v = V,j = 0.277, 

a = ai = 10 X 1O-6/oC, i = 1,2,3, 

i.e" the con tants of the orthotropic shell in the circumferential 
direction. It is seen that a large amount of 'tress variation 
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Fig. 5 The time history of hoop stress, u ... versus the nondimensional 
time,1 = cf/(r, - r,), at different positions through the shell thickness 

through the wall exists in an orthotropic cylindrical shell (Fig. 
1). Thus, the peaks near the boundaries are much higher than 
these in other locations. The magnitude of radial stress in an 
orthotropic cylindrical shell drops near the center and has an 
oscillatory behavior attributed to the direct contribution of static 
stress and the orthotropic characteristics of elastic constants and 
thermal expansion coefficients. This effect can not be seen in 
the isotropic case. The oscillating behavior would come even 
at large time values due to the interference of the stress waves. 
The main difference between the two material systems appears 
in Figs. 1 and 7. The wavefront in an orthotropic shell is more 
rapidly interfered than that in an isotropic shell, as shown in 
Figs. 4 (a, b). Also, Fig. 7, where the normalized radial stress 
is defined as 0'". = !J'rrlEaT, and its plot shows almost the same 
shape and magnitude with the result given by Wang (1995). 
In Fig. 9, a comparison of the time history of the radial stress 
at r = 0.5, is shown. One of the differences between the two 
studies is that a plane-strain condition, E" = 0 was imposed in 
that study, unlike the present one. The differences between the 
two results, however, most likely should be due to the differ­
ences in the calculation points. The peak values of Wang's 
(1995) solution are on the present study's curves but the wave 
patterns are different after the first trip. This seems to be due 
to the fact that the plot in Wang ( 1995) was made from data 
at time values not closely enough, therefore missing the peaks 
values of the stress wave. This comparison also makes an im­
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Fig.6 The time history of axial stress, u=, versus the nondimensional 
time, 1 = cf/(r, - r,), at I' =0.5 and 1.0 
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Fig.7 The distribution of radial stress, u", at 1 = 1.2,5, and 10 

portant point: that the time scale of calculations of data points 
should be carefully examined to make sure the entire response 
of the stress wave and especially the peaks are captured. 

Finally, one more result is presented regarding the phenom­
ena of initial wave propagation. Figure 8 for an isotropic shell 
can help the understanding of the early phase of stress distribu­
tion due to wave occurrence and propagation. Since the thermal 
loading is applied to the entire hollow cylinder instantaneously, 
the stress disturbance is simultaneously generated all over the 
wall. In the vicinity of the boundary, the radial stress feels the 
strong discontinuity (wavefront) right after the loading. Each 
wavefront moves inward and the waves meet at the center loca­
tion and cause a stress reversion and sudden jump in magnitude, 
as shown in Figs. 4(a, b). After that, the wavefronts proceed 
to the boundaries continuously. When the wavefronts reach the 
boundaries, they are reflected into the opposite direction as 
mentioned earlier. 

In this study, it should be mentioned that the coupling effects' 
between the thermal and mechanical energy in the system are 
neglected. This means that the uncoupled linear dynamic ther­
moelasticity problem was handled. Since the coupling effects 
always exist in the physical system under thermal environments, 
the coupled dynamic thermoelasticity is more realistic but too 
difficult and complex or sometimes impossible to obtain the 
closed-form solution. The uncoupled dynamic thermoelasticity 
problem, which was treated here, is, however, still valuable and 
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can provide a large amount of useful information on the thermal 
';h0ck effects. Finally, the shell axisymmetry concept, in con­
junction with the radial dependence of the thermal field, limit 
the applicability of the results to essentially infinitely long 
shells. 

Summary 
This work presents a method to analyze the uncoupled dy­

namic thermo lastic stress problem in an orthotropic thick cylin­
drical shell. In implementing the method, the linyar dynamic 
themlOelasticity equations are used with the appropriate bound­
ary and initial conditions, and the elastodynamic problem is 
olved by using the finite Hankel transform in the spatial vari­

able and the Laplace transform in the time variable. In this 
paper, the temperature distribution was considered as the step 
function applied to the entire surface of the hollow cylinder. It 
is shown that a closed-form solution can be obtained for the 
thennal shock stresses in an orthotropic thick cylindrical shell. 
As seen in the results, a thel1llal tress wave occurs due to the 
thennal shock loading, and this plays an important role on the 
significant amount of dynamic thennal stresses generated 
through the wall. Important difference between an isotropic 
and orthotropic cylindrical shell exist, namely rapid variations 
of radial stres es in the orthotropic case, which are attributed 
to th orthotropy of the mechanical and thermal properties. 
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APPENDIX A 

The definition of Bessel functions of the first kind of order 
v is for small arguments: 

1 =" (-I)"'(l/2)l"'-" 2..-" 
-v(Z) L Ire _ 1) Z ,m = 1,2,3, . (A2)

",_om. m 1/ + 

The Hankel's asymptotic expansions for large argumen , 
when 1/ is fixed and Izi goes to infinity, are described in the 
following: 

lv(z) = hl('lrz) [P(I/, z) cos X - Q(I/, z) sin X], (A3) 

Yv(z) = hl(7rz)[P(I/, z) sin X + Q(I/, z) cos X], (A4) 

where the parameter X = z - (;1/ + ~)'/[, and, with 41/ 2 denoted 

by J.!., P, and Q are defined by 

... , (1/, 2k) 
P(I/, z) = (-I) --2-'.-0 (2z) 

(1/-1)(1/-9) 
(AS)= 1 - 2! ( 8z ) 2 + . .. , 
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(82) 

(v-I) (v-I)(v-9)(v-2S) 
(A6)=~- 31(8z)1 + .... 

APPE DIX B 
For r, the finite Hankel tran form is given by 

The finite Hankel tran. format.ions of arbit.rary functions can 
be evaluated analytically y using th 'erie expansion form of h(E,,) = Jr, rlDv(~ir)dr = J_,,[ i: _A.....:m.::...r_lm_+_v_.J_]"
the Bessel functiuns for small argwl1ents. By the recurrence 

'1 ",-0 2m + v + 3 '1
formula, the finit Hankel transforms for r" and r v can be 
expres. ed as 

"'A .2",-,,·, J ]"
'" _",I- Ja ~ • (83)[ 

. ",=0 2m - v + 3 '1 

where 

(_1)"'(112)2"''''' (-I )m(1/2)2"-"
(81 ) Am = -'--'---'----''--- A .. (84)

m!f(m + v + I) m!r(m - II + I) 
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