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PREDICTING THE EFFECTS OF LOAD RATIO ON THE FATIGUE
 
CRACK GROWTH RATE AND FATIGUE THRESHOLD
 

G. A. KARDOMATl,AS and R. L. CARLSO:\T
 

School of Aerospace Engineering, Georgia Institutc of Technology, Altanta, Georgia 30332-0150, USA
 

Abstract-The effect of the load ratio, R, on fatigue crack growth behaviour is analysed on the basis of 
the recently proposed inelastic discrete asperities model. A wide range of load ratios, both positive and 
negative, are cxamined. Particular cmphasis is placed on compressive excursions, i.e. negative R loadings. 
The inelastic discrcte asperities model is a micro-mechanical analysis based on the plastic crushing of a 
single asperity (or multiple as(lerities) located on the crack face elose to the crack tip and under 
dominantly planc strain conditions. Experimental data have indicated that the primary crack face contacts 
which obstruct closure are immcdiately adjacent to the crack tip, although segments of the crack face 
more distant from the crack tip are not neglected. However, the more distant asperities are a part of the 
past crack advance history which does not influence currcnt behaviour. By use of this model, it is shown 
that the clrcct of the load ratio can be adequately predicted once somc baseline information on mechanical 
material properties and surface roughness is provided. The model also provides uscful trend information 
and explains many of the observed phcnomena, e.g. the 'saturation' of the compressive underload effects. 
For a constant applied nominal stress intensity factor range, t.K it is shown that the eOective stressnom , 

intensity factor range, t.Kctf• initially decreases as the positive R decreases (corresponding to the increasing 
influence of closure), reaches a minimum around R = 0, and then starts increasing with negative R 
(corresponding to the plastic crushing of the asperities which reduces closurc), evcntually reaching a 
saturation level below t.K ' Converscly, for an assumption of a constant t.Kerr, the applied t.Knom nom 

increases as the positivc load ratio decreases, reaching a maximum around R = 0, and then decreases 
with more ncgative R values, eventually rcaching again a saturation level (above t.Kcrr)' It is also shown 
that the effect of matcrial hardness can be directly analyscd bascd on this model. 

Keywords-Fatigue crack growth; Load ratio; Fatigue threshold; Inelastic discretc asperities; Compressive 
excursions; Stress intensity factor range. 

INTRODUCTION 

It is well established that the load ratio, R, defined as the ratio of the algebraically mInImum 
over the maximum load, affects the fatigue crack growth and threshold behaviour, e.g. [1]. If the 
load ratio is positive, experiments have shown that the required stress intensity factor range for 
growth decreases with increasing positive R values. Several authors have proposed empirical 
equations to describe the dependence of the threshold value on R, e.g. McEvily [2]. It is generally 
recognized that a phenomenon of major influence in this issue is the decrease in the contribution 
of crack closure as the positive load ratio increases. 

On the other hand, if the load ratio is negative, it has been observed that the required stress 
intensity factor range for growth (threshold stress intensity range) decreases as R becomes more 
negative, and after a certain point, it remains constant ('saturation' level), e.g. [3]. In fact, the 
common analytical practice has been to exclude the compression segments since it seems reasonable 
to believe that no contribution to crack growth is developed during a compressive excursion. Thus, 
for a negative load ratio, R cycle, the stress intensity factor range is set equal to the maximum 
stress intensity factor. This is based on the assumption that a crack would be closed in compression 
and only the tensile portion of the loading cycle can contribute to crack growth. However, a 
common conclusion from a number of experimental programs during the past several years, has 
been that the use of the foregoing assumption of neglecting the compressive segment may lead to 
non-conservative predictions. A review of the results from these experimental investigations on 
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both smooth bars and cracked specimens can be found in Carlson and Kardomateas [4 J, For 
example, Zaiken and Ritchie [5 J 0 bserved crack growth below the threshold stress intensity range 
after the application of large compression overloads, 

Since much of the observed near-threshold behaviour can be attributed to the closure phenom
enon, many stud,ies have been performed in an attempt to understand the effect of surface roughness 
on fatigue crack growth, The closure obstruction effect of a plastic wake generated as a crack 
advances was analysed by Budiansky and Hutchinson [6]. They used a Dugdale strip model as 
a basis for their analysis, and demonstrated that a wake in the form of a plastic layer could 
obstruct closure and therefore reduce the effective range of the stress intensity factor. Budiansky 
and Hutchinson [6J considered the case of plane stress, Subsequently, Newman [7J extended the 
use of a Dugdale strip model by introducing a crack advance criterion and treating the plane 
strain case. 

Dugdale strip models result in the production of plastic layers which are in continuous contact 
along the crack faces. Tack and Beevers [8J, however, have presented micrographic evidence that 
gaps remain between crack faces even under compressive loading. Also, Buck et al. [9J used 
acoustic wave techniques to show that crack face contact occurs at discrete points. These obser
vations suggest that a discrete asperity model for closure can be useful in diagnosing the mechanics 
of closure obstruction. 

With regard to compressive load excursions, it is reasonable to expect that the height of 
individual asperities can be reduced by crushing, whereas the compressive loading would be less 
effective in reducing the height of a continuous layer for the plane strain case. The crushing of 
closure obstacles would qualitatively explain the observations of increased crack growth rate 
following compressive excursions [1]. 

In a fundamental paper, Forsyth [lOJ suggested that the topography of a fracture surface near 
the crack tip, as well as the externally applied loads, was important to an understanding of crack 
advance. Modelling surface features, e.g, asperities which act as obstructions to closure leads to a 
partitioning of the crack tip stress state into two components, i,e. a component caused by external 
forces which may be classified as global, and one resulting from asperity contact forces which may 
be termed local. Since there are a variety of local contact force types that can be developed, 
different crack tip states are possible. 

Based on these observations, a single asperity model based on the elastic compression of an 
asperity was formulated by Beevers et al. [11]. The single asperity model is an idealization in 
which complete closure is prevented at one point near the crack tip. As the external load decreases, 
and the upper and lower fracture surfaces approach one another, however, it seems likely that 
additional asperity contacts, more distant from the crack tip, would a],so develop. A multiple 
asperity model, again based on the elastic compression of the asperities, was presented by Carlson 
and Beevers [12]. 

These discrete asperities models provide a rational explanation of the observed behaviour due 
to closure obstruction in load sequences that involve cycling in tension with a positive load ratio, 
and involve mostly elastic loading/unloading of the asperities. In order to adequately explain the 
phenomena associated with compressive excursions of sizeable magnitude, a model accounting for 
the plastic crushing of the asperities was presented recently by Kardomateas and Carlson [13,14J 
for both a single or multiple asperity contact. 

In this work, both positive and negative load ratios are examined through the inelastic discrete 
asperities model with emphasis placed on explaining the near-threshold fatigue behaviour. It is 
clearly proven why for positive Rs, the required applied stress intensity range, L1Knom ' for growth, 
increases as the positive load ratio decreases, and why for negative load ratios, the required L1Knom 
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for growth decreases with more negative Rs. It is also demonstrated that positive values of stress 
intensity can be developed with externally applied compressive forces, and it is clearly explained 
why the 'saturation' phenomenon associated with the effect of negative load ratios occurs. 

THE INELASTIC DISCRETE ASPERITIES MODEL 

For the plane strain case, the distribution of the asperities is essentially uniform across the 
specimen thickness, which suggests the possibility of representing the asperities configuration 
through the thickness by an effective (through-thickness) line contact. The line contact represen
tation permits the problem to be treated as a two-dimensional one. 

The essential features of the model are shown in Fig.!. Consider an asperity at a distance C 
from the crack tip in a specimen of thickness t. The presence of both externally applied forces and 
crack face forces is illustrated in Fig. 1(a), whereas the details of the proposed model are indicated 
in Fig. 1(b). Only the upper crack face is shown. A force P develops on the asperity when it is in 
contact. The initial asperity height is L o and the final, compressed height is L f . Similarly, the initial 
asperity width is bo and the final, compressed one is boo Asperity size and spacing is typically a 
fraction of the grain size. Finally, let us denote by t the asperity thickness. 

The total mode I stress intensity factor at the crack tip depends on the local crack force P, and 
the external or global loading. The stress intensity factor produced by a concentrated, opposing 
line load on the crack faces of a finite centre crack of length 2a, can be determined from Sih et al. 
[15]. The opening mode stress intensity factor for plane strain in terms of the local crack face 
force is: 

K = (_1__.)1.2 (2 _~)1/2 ~ (1)
I.local nC a t 

This expression is also valid for a single-edge crack of length a (this can be easily shown by 
following the same procedure as in Sih et al. [15]. 

The contribution of the external load will be represented by Kl,global' By superposition, the total 
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Fig.\. Cracked body configuration: (a) extcrnal (global) and crack tip (local) loading; (b) a single asperity 
on the upper crack face. 
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stress intensity factor is 

K) = Kl,local + K1,global (2) 

The dimension Lo represents the initial magnitude of the interference produced by the asperity. 
The effective initial width of the asperity is bo [Fig. 1(b)]. Since the asperity may be re-loaded at 
subsequent cycles after being partially crushed, the i subscript will be used to denote the current 
(after the i-th cycle) dimensions, e.g. L, instead of Lo. 

The load P will now be determined form a displacement condition at the asperity site, which 
includes the plastic crushing of the asperity. 

The vertical displacement at the upper crack face, i.e. at 0 = n and an arbitrary r, is: 

U2 (r, n) = U2,global + U2,local (3) 

By use of the stress intensity factors for the global and local load, we can write the displacement 
at the asperity site, r = C, () = n: 

2(C)1!2 2(l-V)( 
(4)

C)I!2P 
U2 (C, n) = G 2n (1 - V)KI.global + nG 1 - 2a t 

where G is the shear modulus and v is the Poisson's ratio. 
Hence, the first condition for determining the forces P is the displacement at the asperity site 

(5) 

Since Lr is not known, let us consider now the relations between the interference height during 
closure Lr and asperity force P. 

The asperity is assumed under uniaxial compression a (all other stress components are zero), 
Moreover, the total equivalent strain of the asperity is 

(6) 

where eO is the elastic and eP the plastic component (we consider the asperity stress a and strain 8 

to be positive when they are compressive). Notice that in uniaxial compression, although there 
are other non-zero components of strain, i.e. 811 = 833 = - 822/2, it turns out that e= 822' Hence, 
since 

(7) 

the plastic strain component is 

L o a 
€P=ln- -- (8)

L r E 

where E is the modulus of elasticity. Assume now an equivalent true stress versus integrated 
equivalent plastic strain law 

(9) 

where n is the strain hardening exponent. Let us denote by Ao = tbo the initial cross-sectional area 
of the asperity. For simplicity, we shall again consider the material as being incompressible in both 
the elastic and plastic ranges when cross-sectional area calculations are performed (this would be 
strictly accurate if the Poisson's ratio is 0.5; however the effort introduced for the usual value of 
0.3 can be reasonably expected to be small, if the elastic strains are small compared to the plastic 
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ones). Therefore, using the incompressibility requirement ArLr = AoLo, to obtain a relationship for 
the current cross-section Ar, and the stress (J = PjAr, and subsequently, substituting in Eqs (7) and 
(8), gives one equation in P, Lr: 

PLr Jl/11 Lo PLr (lOa)[ (JoAoL = In L - EAoL + Co o r o 

If the asperity is compressed below yield, then the foregoing equation is replaced with 

P Lr
~~=l-	 (lOb)
EA i L; 

where Li, Ai are the current (after the i-th cycle) asperity beight and cross-sectional area when the 
asperity is re-loaded. 

The other equation needed to solve for Lr and P is found by combining Eqs (4) and (5): 

2(C)I/2	 2(1-V)( C)I/2P 
( 11) L r = G 2n (1 - V)KJ.global + nG 1- 2a t 

Notice that the final, crushed asperity width can be found from the volume preservation condition 
and transverse strain equality Cll = C33 (if 2 denotes the axial direction): 

(12) 

If the asperity is loaded elastically, then eliminating Lr leads to the following linear equation for 
determining P: 

L; 2(1-V)( C)I/2J 2(l-V)(C)I/2P -+ l-~ -L - - K	 (l3)[ EA. Gnt 2a - k G 2n I.global 
I 

The description of the asperity behaviour for the two separate phases, i.e. the loading and 
unloading one, will follow next, by reference to Fig. 2. 
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M
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M 

o 
M oI a 1b = 1c 

Compressive Strain K = KM = 0 K = KO, KM > 0 

Fig. 2. Schematic of asperity loading/unloading behaviour.	 Fig. 3. Illustrating the negative contribution of a closing 
bending moment on the stress intensity factor: (a) pure 
tension, (b) pure bending, and (c) combined tension and 

bending. 
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Loading phase 

During the application of the external cyclic load, Q, asperity loading may occur from the initial 
configuration or it may involve re-loading after the asperity has been plastically crushed to a 
reduced height. Hence, during the decreasing external load cycle (loading the asperity) from a 
general position (Qi' Pi = 0, L j , Ai) to a position (Qr < Qi> P, Lr :::; Li, Ar ;:' AJ, the following 
conditions may develop: 

(i) No asperity contact takes place and K] = K"g!obal if, from Eq. (11):

2(1- v) (C )1/2 
(14)G 2n K"global > L j 

(ii) If the foregoing condition is not met, and contact of the asperity takes place, the following 
numerical solution procedure is followed: for a specific Lr, determine P so that the constitutive of 
the asperity [either elastic or plastic, Eq. (10)] is satisfied. Finally, iterate through values of Lr so 
that P, so-determined, satisfies the displacement condition, Eq. (11). 

In each of the previous steps, to determine the force P that corresponds to a final asperity height 
L r, first examine if elastic compression take place. This would occur if: 

P = EA j ( 1 - ~~) < Pu (15) 

where Pu is the load from which the asperity was unloaded, or the yield load if no previous plastic 
loading was involved. If the condition of Eq. (15) is not satisfied, then the plastic constitutive 
equation [Eq, (lOa)] is numerically solved; the search starts from the elastic limit, i.e. with 
L min = L j - PuLJ(EAJ 

In all cases, the local stress intensity factor is given in terms of the asperity load, P, by Eq. (1) 
and the total (global and local) stress intensity factor by Eq. (2). Notice again that the current 
asperity height, L j , and cross-sectional area, A j , are sometimes needed instead of the initial values, 
La and Aa, respectively since on re-Ioading after a compressive excursion, the asperity is loaded 
elastically from the current (crushed asperity) dimensions. 

Unloading phase 

During the increasing external load cycle (unloading the asperity to zero asperity load, e.g. 2-1a 
or 3-1c in Fig. 2), from a position (Qr, Pu, Lr, Ar) to a position (Qj > Qr, P = 0, Li > Lr, Ai < Ar), we 
recover not the initial asperity height La, but the final compressed one, Lr, plus the change in 
height that is given by the elastic solution that corresponds to the load Pu at which unloading of 
the asperi ty takes place, i.e.: 

(16) 

Notice that L i is now the 'new' (after unloading) interference height. 
Moreover, we do not recover the initial cross-sectional area and asperity width, but the final 

crushed asperity one, minus the elastic recovery, which can again be found by use of Eq. (16), 
An important but saddle point of this analysis will now be discussed. Since the crack will always 

be open due to the asperity interference, during the compressive segment of the applied load cycle, 
i.e. when Q < 0, there is a negative contribution of the external load to the stress intensity factor, 
i.e. K1,gIobaI has a negative sign and is calculated by the same relation as for a positive external 
load, An analogous way to envision this is to consider the same single-edge cracked configuration 
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417 Predicting the effects of load ratio 

when an opening tensile loading Q is first applied, and then a closing bending moment M is 
applied (Fig. 3). A pure bending moment M, applied alone, would result in zero stress intensity, 
K = K M = O. On the contrary, a pure tensile load, applied alone, would give a non-zero K = K Q > O. 
The combined case, however, would have a stress intensity K = K Q - K M > 0, i.e. it would entail 
a 'negative' contribution of the closing bending moment M. Hence, a 'negative K' can contribute, 
if the crack is open. 

OPENING AND ZERO LOAD STRESS INTENSITIES 

An important benchmark quantity in closure analyses is the opening stress intensity factor, 
at which asperity contact is first established when the load is decreasing. This can be found 

by setting P = 0 in Eq. (11): 

LG (C)-1/2 
(17) 

K open , 

K open = 2( 1'- \I) 2n 

where L j is the current asperity height. Also, the opening load (external load at which asperity 
contact is established), Qopcn, can be found from solving K open = KI(Qopen)' 

It has been suggested that the effective range be calculated as: 

f:.K cff = K max - Kmin for the case of K open < K min for R > 0 

and 

f:.Keff = K max - K open for the case of K open > K min for R > 0 

The last relation has also been suggested to be used for negative R values, but the present model 
indicates that this may not provide adequate accuracy since K opcn in Eq. (17) is based on the 
asperity height before the excursion, and this height is further reduced by plastic crushing during 
the compressive excursion with an associated change of the prevailing effective stress intensity 
factor at minimum load. 

Another benchmark quantity is the zero load stress intensity factor, Ko, which corresponds to 
zero applied external load, Q = O. For completely elastic behaviour, at Kl.gIObal = 0, Eqs (13) and 
(1) give: 

2 )1/2 [1 2(1- v) ( C)1/2J-l 
(18)KO,el = Kr,local = ( nC Eb + nGL 1 - 2a 

o 

If the plastic crushing of the asperity is included, then the zero load stress intensity factor, Ko,pl> 
should be determined by following the procedure for calculation of the asperity load P and the 
final asperity height L f , as this has been previously outlined, i.e. by solving Eqs (10) and (11). In 
general, Eq. (18) results in a KO,el close to the opening value, Kopcn ; however, inclusion of the 
plasticity effects would predict that the zero load value of the stress intensity, KO,pl, can be 
noticeably less than K open ' 

APPLICATION OF THE MODEL: EFFECT OF LOAD RATIO ON tlKerr 

The inelastic discrete asperities model described in the previous section is now used to analyse 
the response due to varying load ratios, and also to study the effect of hardness. One effective way 
to describe the response is to plot the following versus R: (i) the opening stress intensity factor, 
K open and the corresponding nominal values of the stress intensity factors, Kmax.nom and Kmin.nom' 
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(ii) The effective range of stress intensity factor !J.Keff = Kmax,eff- Kmin,eff and the nominal one, 
!J.K nom ' defined according to the usual practice, as: !J.K nom = Kmax,nom - Kmin,nom, if R > 0 and 
!J.K nom = Kmax,nom, if R < O. (iii) The asperity height L; at different R values, 

Consider a metal with the mechanical properties typical of aluminium alloy 6061-T6 (baseline 
material): E = 69.0 GPa, v = 0.3, yield strength (Jy = 300 MPa, strain-hardening exponent n = 0.30 
and the constant of Eq. (9), (Jo = 500 MPa, The other constant in Eg. (9) that describes the 
behaviour beyond yield is found by fitting the yield point, i.e. 80 = ((Jyj(Jo)l/n, A single-edge cracked 
specimen of thickness t = 10 mm and width HI = 30 mm with a crack of length a = 5 mm is assumed. 

For this case of single-edge through crack of length a in a plate of width HI under a remote 
normal load Q, the stress intensity factor is, e.g. [16]: 

(19) 

Consider also a single asperity configuration with an initial interference height Lo = 1.5 M-m and 
initial width bo = 50 M-m. The distance from the crack tip is C = 90 ~lm. Grain size in this aluminium 
alloy is of the order of 200 M-m, therefore the asperity size is a fraction of the grain size. These are 
typical dimensions of an asperity configuration reported by Carlson et aL. [17J by fitting the 
opening stress intensity factor values reported by McEvily and Yang [18]. It should also be noted 
that typical values of the threshold stress intensity factor range for this type of material are 
!J.K'hr~4.0 MPaym. 

To examine the effect of hardness, consider a variation of this baseline material: a 'harder' 
material with yield strength (Jy = 400 MNjm 2 and the same strain-hardening exponent n = 0,30 
and (Ja = 500 MNjm 2 

Load ratios in the range - 2 < R < 0.8 are examined. In these results, a constant nominal stress 
intensity factor range !J.K nom = !J.Kthr is maintained by selecting 

R(!J.K thr )K, =--- if 0 < R < 1 (Kmin > 0)mIn,nom 1 - R 

if 0 < R < 0 (K min < 0) 

Figure 4(a) shows the nominal stress intensity factors, Kmax,nom and Kmin,nom, as well as the 

1.= 10 KopIIl1 

:~.

2O,.-------------r 
(.) 

IS 

KIO<J:<:.nOlJl 

IO~-" ~-'-'.-t I '-----'-~-'-~'--'----,,'-~:-'::-------'~--:":----"---:' 
.2 n .1.6 1 2 () eo" .0 0 0 ,1 0.8 -08 ...(} lj ·0 d 02 00 02. c·; 06 06 

Load Rene. R Load ACitiO. R 

Fig. 4, Load ratio effects. (a) The nominal stress intensity factors, Kmax.nom and Km;n.nom, as well as the 
opening stress intensity factor, Kopen , as a function of the load ratio, R. (b) The zero load elastic. KO,d, 

and plastic, Ko,pl, stress intensity factors. in comparison with the opening stress intensity factor, Kopen , 

as a function of the I'oad ratio, R, 
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opening stress intensity factor, K open , as a function of R. Notice that K open is constant for the high 
positive load ratios, but starts decreasing as the load ratio decreases (once asperity contact is 
established) and eventually reaches a saturation level for the highly negative load ratios (corre
sponding to plastic crushing of the asperity). Figure 4( b) shows a comparison of the opening stress 
intensity factor, K open , with the zero load elastic, K O•e1 and plastic, K O•P1 stress intensity factors. 
The effect of plasticity is pronounced for the positive load ratios, since for negative Rs, the asperity 
is already crushed below zero applied nominal load. This plot also shows that in someK open , 

instance of positive R, may not be a reliable indicator of the effective minimum stress intensity factor. 
Figure 5 shows the corresponding I1K eff = Kmax.cff - Kmin.eff and the nominal I1K nom = 

Kmax.nom - Kmin.nom as a function of R. Also, a comparison between the base material and the 
'harder' one is shown. By design of the calculations, the nominal I1K nom was kept constant. Then, 
it is seen that I1Keff equals I1K nom for the high positive load ratios, but decreases as the positive 
R decreases (corresponding to the increasing influence of closure), reaches a minimum around R = 

0, and then starts increasing with negative R (corresponding to the plastic crushing of the asperities 
which reduces closure), reaching again eventually a saturation level below I1K nom . These curves 
are qualitatively similar to the ones given by Kemper el al. [1], taking into account the fact that 
in the latter paper the tests were designed so that I1Keff was constant. In fact, it is easy to conclude 
from Figs 4 and 5 that if this was the case, 11K nom would have to increase as the positive load 
ratio decreases, reaching a maximum around R = 0, and then would have to decrease with more 
negative Rs, eventually reaching a saturation level. It should also be noted that in these calcu!ations, 
Kmax.eff = K max and Km.in,eff ~ K open , i.e. a positive effective minimum stress intensity is developed 
even with high negative R ratios (and negative nominal Kmins). 

Figure 6(a,b) shows a comparison between the base material and the 'harder' one. K open , plotted 
in Fig. 6(a), is larger for the harder material and, accordingly, I1K cff' already plotted in Fig. 5, is 
smaller for the harder material (notice that for the high positive load ratios there is no difference). 
These results reflect the influence of the plastic crushing of the asperity, which is less in the harder 
material. Hence, closure is a more pronounced phenomenon in the harder material. 

Figure 6( b) shows the asperity height L;/Lo as a function of R in the two cases (Lo is the initial 
asperity height corresponding to the highest positive load ratio). As expected, L;/Lo is higher in 
the harder material, indicating less crushing of the asperity, and therefore more influence of closure 
on the fatigue behaviour. Kemper el al. [1] have performed experiments on the soft recrystallized 

,\K 
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oK ~lf 
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O+--~-.---~--.-~-.--~---,----,-~----r~---l 

·2.0 ., 6 ., 2 0.8 ·0.' ·00 0.' 0.0 

Load Ratio. R 

Fig. 5. The nomililal stress intensity factor range, I1K nom ' and the effective one, I1K.IT , for the base and 
harder material, as a function of R. 
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Fig. 6. Hardness effects. (al The opening stress intensity factor, K op,,,. (b) The asperity height, L;/Lo, as 
a function of R, for the base and harder material. 

copper and have found the roughness of the fracture surfaces to decrease, indeed, significantly, 
with decreasing load ratios and at a much faster pace than the harder Al 2024-T3 material. 

DISCUSSION 

Delayed acceleration and plastic zone effects 

The preceding analysis cannot account for transient effects, which have been observed to occur 
immediately after compressive underloading [6,19]. Thus, although the crushing of asperities may 
be expected to result in an abrupt growth rate increase by virtue of an increase in the effective 
range of the stress intensity factor, an initial, transient retardation has been observed. A possible 
explanation for this transient behaviour may be associated with the sizes of thc cyclic plastic zones 
sizes developed before and immediately after the underloading event. This is illustrated by the 
cyclic plastic zone size in front of a crack in Fig. 7(a). It is assumed here that the loading prior to 
and after the application of the underload is under constant !1.K. Immediately after the underloading 
a new, larger cyclic plastic zone engulfs the zone of Fig. 7(a), as shown in Fig. 7(b). The rate of 
growth will not resume the rate characteristic of that for Fig.7(a) until the crack has passed 
through the larger zone of Fig. 7(b). This is illustrated in Fig. 7(c). 

Strain hardening has been cited as a possible contributor to the retardation behaviour which 
has been observed after tensile overloads [20]. Although this suggestion has not been generally 
verified, it may be conjectured that the enlarged cyclic plastic zone depicted in Fig. 7(b) may be 
responsible for the initial, transient retardation which has been observed to occur immediately 
after compressive underloading. The intervening retardation may, then, be described as a 'delayed 
acceleration' phase. This is analogous to the 'delayed retardation' designation, which has been 
observed to occur immediately after a tensile overload. 

The phases depicted in Fig. 7 do not include the effects of a reduction of the obstruction to 
closure due to the crushing of an asperity. Thus, the rate of growth after the above transient effects 
may be expected to increase for a period during which the steady state obstruction to closure has 

• 
(a) (b) (c) 

Fig. 7. Cyclic plastic zones: (a) before, (b) immediately after a compressive underload, and (c) after the 
crack has grown through the underload plastic zone. 
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been efrectively reduced. When the crushed asperities have receded sufficiently from the crack tip, 
a growth rate characteristic of the constant 11K may be resumed. It is of interest to observe that 
the above description suggests that growth rate under variable amplitude loading may therefore 
consist of a sequence of complex transient behaviours. 

One other issue will be discussed now. For the external maximum loads applied, it can be 
expected that small plastic enclaves would form at the crack tip. Since this can result in a relaxation 
of the stress state at the crack tip, an estimate of the magnitude of this effect was made. Irwin 
[21J has proposed the concept of an effective crack length by adding the plastic zone size. This 
concept was applied to increase the distance from the crack tip to the asperity. Thus, C was 
increased by the radius of the plastic zone. For plane strain, an estimate of the radius is [22]: 

~ (Kmax)2R = (20) 
p 6n (J"y 

In addition to this tip plasticity effect, one other factor that should be included in analysing 
compressive underloads, is that the possible intervening crack extension during the compressive 
excursion phase would tend to increase the growth acceleration of the second positive load ratio 
phase relative to the first one. Therefore, this crack extension would produce a contribution which 
opposes the tip plasticity effect. 

Residual stress effects 

Although the present model has a unique capacity in explaining the observed behaviour when 
compressive excursions are part of a spectrum loading, it is not the only attempt to examine this 
subject. A scheme for including the effects of the compressive load excursions has been proposed 
by Chang et al. [23]. They introduced a complex empirical procedure which reduces the plastic 
zone size used in the Willenborg model [24]. 

A rational explanation for a Willenborg-type mechanism in the context of compressive excursions 
may be described as follows. The basic analytical assumption is that the crack surfaces are perfectly 
flat. A uniformly applied compression can be reasonably expected to produce a uniform, compress
ive stress state in such a cracked body. In a realistic configuration, however, there can be a void 
adjacent to the crack tip, which would represent a gap of the type seen in micrographs. Tack and 
Beevers [8J, for example, observed that even under maximum compressive loading, complete 
closure did not occur. When the presence of such a void is recognized, it follows that the local 
stress will not be a simple, unifonn compression. It could, in fact, result in a very large effective, 
compressive stress concentration. A very large compressive stress could produce localized compress
ive yielding. Upon unloading, there would then be a tensile residual stress in front of the crack 
tip. The tensile residual stress would be superimposed on the stresses produced by the externally 
applied load. 

This mechanism is analogous to that which has been used in experiments designed to initiate 
cracks. Suresh and Brockenbrough [25], and Tack and Beevers [8J have applied compressive 
loads to notched specimens to generate residual tensile stress fields which increase the total 
sensitivity to crack initiation under subsequent cyclic loading. The scales (micro versus macro) for 
these examples arc different, but the mechanisms are similar. 

The Willenborg model introduces an efrective stress intensity factor which accounts for the 
presence of a residual stress state. Specifically, for a tensile overload, an effective stress intensity 
factor Keff is defined as 

(21a) 
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where K R is the residual stress intensity factor. For a compressive overload, a change in the sign 
of the residual stress is formally accounted for by the definition 

Kcff = K + KR	 (21 b) 

However, in this approach, no change occurs for the range of the stress intensity factor, t1K, but 
the effective stress ratio would be of the form 

(21c) 

It should be noted that the K R of the Willenborg model is not the result of a solution to a 
mechanics problem, but a rationally evolved, non-unique result, as discussed in Carlson et al. 
[17]. Also, the above definition of Reff does not account for the effects due to closure obstruction. 
It can be expected that both closure and residual stresses may be present for some loading 
conditions, particularly in the near-threshold region. 

The model discussed in this paper is based on a mechanism that would affect the effective range 
of the mode I stress intensity factor. The local loads developed between impinging fracture surfaces 
are not, however, exclusively restricted to mode I effects. Micrographs of fracture surfaces reveal 
inclined jogs or steps along the crack path. Furthcrmore, one of the consequences of the misfit 
developed between the surfaces of growing cracks is the development of contact friction. As has 
been discussed in Carlson and Kardomateas [4], although the latter may be insignificant for 
tension-tension tests, they could be important for tests with compressive excursions. 

Finally, the proposed model is capable of explaining one additional experimentally observed 
phenomenon. On specimen loading (unloading the asperities), if the asperities weld to one another, 
then a tensile force will be developed in the asperities, which would result in a further reduction 
in the range of the stress intensity factor. This properly describes the differences in growth rates 
between tests in an inert atmosphere, where welding can occur, and an active atmosphere where 
welding does not occur [17]. 

CONCLUSIONS 

Experiments have shown that the required stress intensity factor range for growth decreases 
with increasing positive load ratio, R, values. On the other hand, if the load ratio is negative, it 
has been observed that the required stress intensity factor range for growth (threshold stress 
intcnsity range) decreases as the load ratio becomes more negative, and after a certain point, it 
remains constant ('saturation' level). It is shown in this paper that these load ratio effects on the 
fatigue crack growth behaviour can be predicted through a micro-mechanical analysis based on 
the plastic crushing of a single asperity (or multiple asperities) located on the crack face close to 
the crack tip. This inelastic discrete asperities model shows, that for a constant applied nominal 
stress intensity factor range, the effective stress intensity factor range initially decreases as the 
positive load ratio decreases, reaches a minimum around R = 0, and then starts increasing with 
negative load ratio values, eventually reaching a saturation level below the nominal stress intensity 
factor range. Another way to describe the effect of asperities is to consider it as a crack-tip shielding 
mechanism, which is quantified and analysed in this paper. The effect of material hardness and 
several other related issues, e.g. the residual stresses and plastic zone effects are also discussed. 
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