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Introduction

Composite materials have gained widespread usage in struc-
tural applications because of their unique properties such as high
strength-to-weight ratio and corrosion resistance. Both plate and
shell structural laminated composite configurations have found
technical applications in aircraft and marine industries. In partic-
ular, circular cylindrical shells can be used as primary load-
carrying members in many industrial applications (e.g.. torsion
bars in automotive suspension components) and under a variety
of loading configurations. It is therefore of great technical im-
portance when designing lightweight cylindrical shells to clarify
the elastic stability characteristics.

The review articles by Ambartsumian (1962), Bert and Fran-
cis (1974), Tennyson (1975), and Simitses (1986, 1996) pro-
vided detailed accounts of the evolution of the active research
dealing with composite cylindrical shells. Some of works sum-
marized in those articles employed classical shell theories and
the others did refined theories including shear deformation ef-
fects. However, shell theories and formulations, be they classi-
cal or refined, are inherently approximate since they are based
directly upon initial assumptions and hypotheses. Furthermore,
existence of different shell theories underscores the need for
elasticity solutions to use as benchmarks for comparison of
predictions from the various approximate methods.

Recently, several three-dimensional elasticity-based buckling
solutions have become available in the cylindrical shell litera-
ture. Babich and Kilin (1985) investigated on axisymmetric
but three-dimensional form of stability loss of a three-layered
orthotropic cylindrical shell under axial compression. Kardoma-
teas (1993a) dealt with the problem of an orthotropic cylinder
under uniform external pressure on the basis of the “‘ring as-
sumption,’” in that the prebuckling stress and displacement field
was axisymmetric, and the buckling modes werc assumed to be
two-dimensional. In a further study (Kardomateas and Chung,
1994), this ring assumption was relaxed so that a nonzcro axial
displacement and a full dependence of buckling modes on the
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and radius ratios for isotropic, glass/epoxy, and graphite/epoxy cylinders.

three coordinates were assumed. A more thorough investigation
of the thickness effect was conducted by Kardomateas (1993b)
for the case of a transversely isotropic thick cylindrical shell
under axial compression. In this work, he presented a closed-
form solution in terms of Bessel functions.

In more recent studies, Kardomateas (1995, 1996) considered
the problem of buckling of orthotropic cylindrical shells under
axial compression in one case and combined axial compression
and external pressure in another case. These works included
comprehensive studies of the performance of shell formulations
by Donnell (1933), Fligge (1960), Danielson and Simmonds
(1969), and Timoshenko and Gere (1961 ). Other three-dimen-
sional elasticity results that dealt with orthotropic and cross-ply
laminated cylinders and cylindrical panels under combined axial
compression and uniform external pressure were presented by
Soldatos and Ye (1994) and Ye and Soldatos (1995). These
studies provided elasticity solutions by using the successive
approximation method.

An investigation of the literature presented above revealed
that little information is available on the three-dimensional elas-
ticity-based buckling analysis of orthotropic cylindrical shells
under torsion. Therefore, in the current study, an orthotropic
cylindrical shell with fixed ends, subjected to torsion, is studied.
Employing cylindrical coordinates r, 6, and z (see Fig. 1), the
nonlinear three-dimensional theory of elasticity is appropriately
formulated following Kardomateas (1993a). This problem is
more complicated than the pure external pressure or axial com-
pression one due to the coupled torsional displacement modes
of the first-order field (non-separable function of § and z).
Applying displacements at the prebuckling state, buckling equa-
tions are reduced to three linear homogenous difterential equa-
tions in terms of the displacements of the perturbed state. A
mixed-form Galerkin procedure is employed to solve these
equations and to find numerical values for the critical loads.
After comparing the results of this study with the ones {rom
shell theories for a varicty of example problems, an extensive
parametric study of both isotropic and orthotropic cylinders is
performed.

Formulation

For a homogeneous orthotropic cylindrical shell occupying
a region in the three-dimensional Euclidean space referred to a
cylindrical coordinate system (r, 8, z) in which the z-axis coin-
cides with the longitudinal axis of the shell as shown in Fig. I,
the stress-strain relationships can be expressed in the form
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Fig. 1 Dimensions and coordinates for a cylindrical shell
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where ¢;, are the stiltness coefficients and €,,, €, €., Vros Voo
s, arc the engineering strains defined by the following nonlin-
ear kinematic equations:

€r =, + 3 (2 + 02 + wl), (2a)
Vg U 1 ) ) 5
€w=—"+—+— [(ug —v)" 4 (v + u)* + (we)'], (2b)
r r 2
€o=w.+3(ud + 02+ wlh), (2¢)
u v 1
Yo =2 +v, — =+ —[ulus —v)
r roor

+u,(ve +u) + w.(wel, (2d)
YVre = U +w, + (uu. +v,u. +ww.), (2e)

w I
Yo = Ut = *: = [“A:(“ﬂ - U) + U_;(U‘g T ll)
" r

+wo(we)l. (21)

In the general stability thcory of elastic solids, it is known
that at the critical load there are two possible infinitely close
positions of equilibrium. Denoting 1, v,. wy as the r, 8. and
z components of displacement corrcsponding to the primary
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position, the displacements in the perturbed position are denoted
by

u=u +au(r,0,z); v=uvy+ av(r,0,z);
w=ws; + aw,(r, 6, 2), (3)

where « is an infinitesimally small quantity. Here, au,(r, 8, z),
avy(r, 8, z), and aw,(r, 6, z) are displacements that points of
the body must undergo to shift them from their initial equilib-
rium position to their new equilibrium position. The functions
w,(r, 0, z),v,(r, 8. z), and w,(r, 8, z) are assumed finite and
a is independent of r, 6, and z.

Substituting (3) into (2) results in the following equations
for the strain components in the perturbed state:

=
€; = €y + ael + a’e], (4)

where ¢, are values of the strain components in the initial posi-
tion of equilibrium; €/ are strain quantities that depend on deriv-
atives of both wy, vy, wy and w;, v\, wy; and ¢ are parameters
that depend only on derivatives of u,, v;, w) and contain only
quadratic terms. Substitution of (4) into (1) yields

o5 =04+ ach + a’cf, (5)
where ¢}, o/, and ¢/ can be expressed in the form of (1) by
replacing €, by €}, ¢/;, and ¢/, respectively.

From three-dimensional elasticity theory (Ciarlet, 1988), the
equations of equilibrium are expressed in terms of the second
Piola-Kirchhoff stress tensor X in the form

div(Z- F') = 0, (6)
where F is the deformation gradient defined by

F=1+ (grad V)7, (7)

where V is the displacement vector and / is the identity tensor.
The linear strains are also introduced as

Vo U
E€r = Upr ="+ =, €,=Ws (8a)
r r
Ug v Wy
Crg = — - 4 V, — =, €=U, it Wi, €y = U, ) PR (Sb)
r r i
and the linear rotations as
W v Ug
2w, =——v,, 2wp=u,—w, 2w =u+-——.(8c)
r . ¥

Following Kardomateas (1993a). the following buckling
equations govern the first-order field:

0 10
— (ol — Th%w! + T2w)) + —— (7l — ohw! + Th.w))
or r 08
1 '
t o, (Te Tew; + 0%wh) +=(0], — 04 + Thw)
z r

+ rhw! — 27%w) =0, (9a)

|
1 0
— (Tle+ oow! + T2w)) + ——(0h + THw! — Thw!)

ar r of

+ = (T4 + Tow!

0z

|
)
= Uf]:.u‘,{) 4= —(27','0 : = (T(,,r..u'"
r

—ohw! + Thwh) — T2w!) =0, (9b)
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0 0 0 0
5(7’,' 0wy + Trow!) +—%(T§;—7mw/’/+ Taow;)
r
0
+ 5 (0L = Thwh + Thw!)

(9¢)

l
+ = (7L — odwh + Thw!) = 0.

#
The boundary conditions associated with (6) can be ex-

pressed as

(F-ZT)-NZZ(V), (10)
where ¢ is the traction vector on the surface having an outward
unit normal N = ([, s, 7) before deformation. Traction vector
t depends on the displacement field V = (u, v, w). Again,

following Kardomateas (1993a), the following boundary condi-
tions at the lateral and end surfaces are obtained:

(0h = Thw! + TRwi)l + (T]s — ohhw! + Thwh)i

+ (7L — Tow! + 0clwh)A =0, (lla)
(Tl + 0%w! + 70w + (g4 + T%w! — To.w))A

+ (74 + Tow! — 0clw)A =0, (11b)
(01 — Towi + TRwi) [ + (T]s — ohw! + Thwh)rh

+ (1. — hw! + oclwHA=0. (llc)

In an orthotropic cylindrical shell subjected to pure torsion,
the cross section of the cylinder simply rotates about the longitu-
dinal axis, and thus similar to the case of isotropy, the displace-
ments at the initial position are cxpressed in the form:

g = wo =0; vy =—rz, (12)

c

where M is the torque at both ends and C is the torsional rigidity
of the cylinder, defined as C = cum (R — RY)/2, where R,
and R, are inner and outer radius, respectively.

Using Egs. (1) and (8), we obtain the strain components at
the prebuckling state,

M
el =edy=el=e%=¢%=0, e).=—r, (13)
C
and the stress components,
('MM
0 0 0 (4]
oh=oh=0lE=fh=rk=0 sh= r. (14)

Substitution of (14) and the expressions for o; and w/ in terms
of the displacements from (1) and (8) transforms the buckling
Egs. (9) into the following system of three linear homogenous
partial diffcrential equations with three unknown displacement
functions u,, v,, and wy:

Uy, g9 i —
-+ Ce6 — 5 + Caslly pz — Cyg % + 2MLL|\(;€
r re

Cinltyr T Cn

Vire Vg 7
+ (c12 + Ces) _r, — (cn + ces) Z M(rvi - + 2v,;)

W
+ (ci3 + css)wip, + (C13 — 03) —
»

Wig

— A/_I(w“,// - —> =0, (l5a)
-
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Uir

Uy ro ) Uyp 7
(c1a2 + o) T + (22 + Ce6) r + Mu,; + CegVrrr T Cos —
7

Wy b

v =
- Ces r—; + Mo + (e + ca)

Wy it

— /Vl(wl, + ) =0, (15p)

U U1,4; =
(Ci3 + Css)tiye + (o + Cs5) == + (con + Cas) == — Mrv
r r

W,
+ Css — + Caq
r

Wi
2

T CssWir + Wiz + Mwy g, = 0.

(15¢)

In the same manner, three homogeneous boundary conditions
can be obtained from (11) for the lateral surfaces for /2 = 72 =
Oand [ = =1:

1 v
Cnlly, + Cip =+ 2+ cawy. = 0atr =Ry, Ry, (l6a)
r r
u v
Cot 28 CooV1r — Cos L=0atr= Ry, R,, (16b)
r r
Cssthy, + csswy, = 0 atr = Ry, Ry, (16¢)

where M = M¢,,/2C.

There is a substantial difference between Eqs. (15) and those
obtained by Kardomateas (1993a, 1995) for the case of buck-
ling of an orthotropic cylindrical shell subjected to lateral or
axial compression. This difference is that in the same equation
we encounter both odd and even orders of derivatives of a
displacement with respect to the same independent variable.
This prevents one from reducing (15) to ordinary differential
equations by applying a separable form of displacement func-
tions as in the external pressure or the axial compression loading
case. Therefore, a solution procedure using the Galerkin method
is employed in this study.

For convenience, equations (15) and (16) are rewritten in
the form

i=1,2,3, (17a)
(17b)

Liy(uy) + Lia(v) + Liz(w,) =0,

B, (w) + Bia(v) + Bis(wy) =0, i=1,2,3,

where L; and B, are differential operators of second order.

Solution Methndolng:y

In solving problems using the Galerkin technique, three meth-
ods can be used to choose trial functions: the interior method,
the boundary method, and the mixed method. In this study, the
mixed method (Mikhlin, 1964, Bolotin, 1963, Finlayson, 1972)
is employed to overcome the complexity of finding trial func-
tions that satisfy either the differential Eqs. (17a) or the bound-
ary conditions (17b). Use of the Galerkin procedure requires
that the interior and boundary weighted residuals vanish. For
the first differential equation and boundary condition corre-
sponding to ¢ = | in (17), these appear as

J. &Ly (wy) + Lip(v) + Lix(w)]dV =0, (18a)
v

J. 4B (w) + Bya(v) + Biz(wy)]dS =0, (18b)
5

where #; is the jth term of the trial functions of the displacement
u,. Similarly, those residuals can be written for the second and
third equations corresponding to { = 2, 3 in (17) by subse-
quently replacing &, with ; and ,, respectively. After per-
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forming integration by parts with respect to r on (18a) and
combining it with (184), and doing similar procedures for the
other two sets of equations, we can obtain the following three
sets of governing equations:

f {&[L1 () + Liz(v)) + Liz(wy)] — 4, [Bli ()  (19a)
+ Bla(v) + Bis(w)]}dV =0,

J. {9,[1451(“1) + Ly(vy) + Lii(w)] — a,-'.r[Bél(u':)

+ By(v) + Bi(w)]1dV =0, (19)
f {Wi[L3 () + L3(vy) + Lis(w))] — W, [B3 ()
+ Bi(v) + Bu(w)]1dV =0, (19¢)

where the modified operators L[ and Bj; are given in Appendix
A.

Considering the fixed boundary conditions at the longitudinal
edges z = 0, L, trial functions for the displacements are chosen
as

Kl Ml
= Z Z Py(r)[Asmn Sin (n6)

k=1 m=1

+ By, Cos (n8)] Sin (N,,z), (20a)
K, M,
2 2 Py (r)[Cip: Sin (n8)
+ Din Cos (nf)] Sin (N,2), (20b)
KJ—I MJ
wi = 2 % Pu(r)[Eim Sin (n8)
k=0 m=\
+ Fiw Cos (n6)] Sin (N,2), (20c¢)

where Pi(r) is a kth term set of Legendre polynomials, A,
= mm/L, and Ans Biwns Comns Diwns Ewwns Frme @are unknown
coefficients. The integer values n and m in Egs. (20) represent
the number of waves around the circumference and along the
length of the cylinder, respectively. Upon substituting Egs. (20)
into Egs. (19) and integrating, we obtain six sets of linear
algebraic equations. The (¢ + k)th terms for the first and second
sets of the (K, X M,) equations are, respectively,

KI MI

2 X [TLY + MUY + UL LA,

k=1 m=1
K2 M
- M(ALGIND) Bima] — Z (T + WS D ) Dy,
k=1 m=|
K. 1 MJ
-~ M(AGPIN D2 C] + 2 Y [(TUY
x=0 m=)

TN iy — M(AG) B0 Fia) = 0, (21a)

M,

K,
2 Y HTLY + MG + o) 34 B,y
k=1 m=])

K, M,
+ MAG NP5 An] + 2 2

k=1 m=1

(I“(]ﬂ) + \I,(I ))Q,nrckmn

K=l M
+ M(AGPIN® L Dima] + 2 (T
k=0 m=1

+ UE NP Fin + M(ALY)®LE,,,] = 0,  (21b)

the (¢ + k)th terms for the third and fourth sets of the (K, X
M,) equations are, respectively,
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K, M, 1

2 TGV + TE)OLN By, — M(AG)N B2 A0 |
k=1 m=1
K, M,
+ T3+ N TEY + U800 G,
k=1 m=1
A -1 M
- M(AP)N @2 Dipn] — Z Z
=0 m=1|
+ UEOND R F — MAF )OO Er] =0, (21c)
Kl M
Z [TV + TENBNA,L,,
k=! m=
K, M,
+ MAGNER ] + 2, -2 [(TE + TSV
k=1 m=1
+ \IIE;%Z))¢L/]H)DI(HM + M(A(Zs)))\m(l);»zu)ckmn]
K_‘—I M.,
+ X 2 IFE + U0 B
k=0 m=|
+ M(AG) B4 Fin] = 0,  (214d)

and finally, the (¢ + k)th terms for the fifth and sixth sets of
the (K3 X M-) equations are, respectively,

Kl M
L z [(l"(Jl) (3”))\,"@;”2”)/4‘."," Z 2 [(r\( 3
k=) m=| k=1 m=1
U INa® 3 Dy — MONLAGT) BN Cimr)
Ki—1 M
+ 2 Z (TG + NI + 0L E,.
k=0 m=1
— M(A))N® o ] = 0, (2le)
K, ™, K, M,
2 Z (TG + RN Bime] + 2 X [(TRY
k=1 m= k=1 m=|
TP INa@ s Cin + MONLAG) D)) D]
Kj-l M;
+ 2 (TG + N0 + T ) 8L Fran
g /
k=0 m=]
+ M(AUOIN @ E, ] = 0. (21f)

In Egs. (21) above, constants from integration of the trigono-
metric functions in the z direction are denoted by

L
Lo =f Sin (A,2) Sin (\,.2)dz, (22a)
0
L
PR = J. Sin (A\,2) Cos (\,z)dz, (22b)
0
and those from integration with respect to r are
R,
ryp = L P,DS(P,)rdr, (23a)
Ry
AP = f P,Dj(P)rdr, (23b)
Ry
RZ
TP = — f P, K;(P)rdr, (23¢)
R

where Dj and D{ are the ensuing r- dependem terms after
substituting the trial displacement functions in (20) into the
operators L/ in (19). Similarly Kj; are the ensuing r-dependent
terms after substituting (20) into B} in (19). D3, DJ, and K;;
are given explicitly in Appendix B.

Equations (21) yield 2 X (K, X M, + K, X M, + K3 X M,)
algebraic equations. However, it can be noted that the terms
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Table 1 Aspect ratios of an isotropic cylinder corresponding to the re-
sults of Figs. 2 and 3

L/Rc, R/h
n

z 2 3 4 5 6 7 8 9
10000 | 21.05, 14.03, 10.52, 8.419, 7.016, 6.014, 5262, 4.677,
23.66 5324 9464 1479 2129 289.8 3786 479.1
5000 17.28, 11.52, 8.639, 6.912, S5.760, 4.937, 4.320, 3.840,
17.56 3950 7022 109.7 158.0 21S5.1 2809 355.5
2000 13.31, 8.870, 6.652, 5.322, 4.435, 3.801, 3.326, 2.957,
11.84 26.65 4738 7403 1066 145.1 1895 2398
1000 10.79, 7.194, S5.396, 4317, 3.597, 3.083, 2.698, 2398,
9.002 20.25 3601 5626 81.02 1103 1440 1823
500 8.671, 5.781, 4.335, 3.468, 2.890, 2477, 2.168, 1.927,
6.972 1569 27.89 4357 6274 8540 11L5 1412
200 6.362, 4.241, 3.181, 2.545, 2.121, 1.818, 1.590, 1414,
5.180 11.66 20.72 32.38 46.62 63.46 82.89 104.9
100 4948, 3.299, 2474, 1979, 1.649, 1414, 1.237, 1.100,
4.282 9.634 1713 2676 3854 5245 68.51 8671
50 3.817, 2.545, 1909, 1.527, 1272, 1.091, 0.954, 0.848,
3.597 8.094 1439 2248 3238 44.07 57.56 72.85
20 2,733, 1.822, 1.367, 1.093, 0911, 0.781, 0.683, 0.607,
2.807 6315 1123 17.54 2526 3438 4491 56.83
10 2.246, 1.497, 1.123, 0.898, 0.749, 0.642, 0.562, 0.499,
2.078 4675 8311 1299 1870 2545 3324 4207

including M in (21) have either Agp, Dinis Eipn ONly OF By,
Cimns Fimn only. Therefore, Egs. (21) can be divided into two
parts to reduce the dimensions of matrices to be handled. These
two partitioned sets of equations are in the form

[P1{a} + M[Q1(B} = {0}, (24a)
[S1{B) + MR {a} = {0}, (24b)

Where { a} = l—Akmn# Dknlny EknmJTand {ﬁ} = l—Bkmny CLmnv Flmm_IT~
The matrices P, Q, R, and S have the dimension of (K, X M,)
+ (Ky; X M,) + (K5 X M;), respectively. From (24a) we obtain

{a} = —M[P]7'[Q1{B}. (25)
Substitution into (244) yields
([S1 =M [GD{p) = {0}, (26)

where [G] = [R][P]7'[Q].

Equation (26) constitutes a generalized eigensystem with M?
being the eigenvalue. The system has a nontrivial solution if
and only if the determinant of [§] — M°[G] vanishes.

Numerical Results and Discussion

Numerical results based on the preceding formulations have
been generated for a wide range of geometrical and material
parameters affecting the behavior of cylindrical shells under
torsional loads. For all cases considered, the critical torsional
load was computed using a QR algorithm combined with simi-
larity reduction of general matrix to upper Hessenberg form
(Wilkinson and Reinsch, 1971). When calculating eigenvalues,
extended precision (28 significant figures) was used. By in-
creasing the integer value of circumferential wave number, 7,
the lowest eigenvalue corresponding to the critical load was
found.

Comparison With Existing Isotropic Shell Solutions. For
an isotropic cylinder subjected to torsion, Yamaki (1984) pre-
sented numerical results pertaining to the critical shear stress,
T.r, and the corresponding circumferential wave number param-
eter, B = nL/7wR., where R. and L are the radius of the midline
surface and the length of the shell, respectively. He employed
adirect integration method combined with an iterative technique

Journal of Applied Mechanics

to Donnell’s buckling equations and concluded that Donnell’s
equations yielded sufficiently accurate results when # is greater
than 4. The inaccuracy of the Donnell’s equations for the cases
with low values of n refers to the shallow shell approximation
that omits the in-plane displacement component in certain kine-
matic relations. It should be noted that he specified the geomet-
ric property of the shell by only one parameter Z =
V1 — v*(L/R.)*(R./h), which is known as the Batdorf parame-
ter, where A is the thickness of the shell, and then minimized
eigenvalues with respect to the wave number by treating g as
a continuous variable.

In order to compare Yamaki’s results with those from this
study, a combination of the geometric parameters with an as-
sumed integer value of n for a particular isotropic cylinder was
sclected so as to correspond to the published values of Z and
[ by Yamaki. For convenience, these parameters (L/R, and R,/
h) are given in Table 1. A range of n from 2 to 9 was used
and R, was set to 0.1905 m.

In addition to the shell theory results by Yamaki, those from
a simplified formula derived by Donnell (1933) were also com-
pared with the present elasticity solutions. Donnell presented
the following formula for the critical shear stress of ends-fixed
short and moderately long shells subjected to torsion:

E h?
7".,:72—2 4.6
(L—v) L

5 Lz 372
+ /7.8 + 1.67(\/1 - v 2h&> ] . (27

The critical torsional load, M,,, can then be calculated:

2T

Mcr = Ter ? (R% - R?) (28)

Table 2 shows critical torsional loads, as predicted by the
present three-dimensional elasticity formulation, compared with
those predicted by Donnell’s formula and Yamaki for a typical
value of circumferential wave number n = 5. Since an isotropic
cylinder was investigated, Young’s modulus E was assumed to

Table 2 Comparison of results for an isotropic cylinder (n = 5)

Critical torsional loads (N -m x107)

Elasticity Donnell Yamaki
Z ( % increase ( % increase
vs. Elasticity)  vs. Elasticity)

10000 1.565 1.610 1.578
(2.82%) (0.82%)

5000 3.366 3.491 3.393
(3.70%) (0.79%)

2000 9.238 9.740 9.312
(5.44%) (0.81%)

1000 18.95 20.32 19.10
(7.26%) (0.79%)

500 37.58 41.20 37.86
(9.64%) (0.74%)

200 86.97 98.96 87.54
(13.8%) (0.65%)

100 157.2 184.8 158.1
(17.5%) (0.57%)

S0 287.0 348.0 289.3
(21.3%) (0.80%)

20 7373 916.7 759.1
(24.3%) (2.95%)

10 2069 2633 2271
(27.3%) (9.76%)
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Fig. 2 Comparison of critical loads for an isotropic cylinder (Z = 200)

be unity for convenience and Poisson’s ratio v was taken as
0.3.

It is clearly seen from Table 2 that Yamaki’s results are much
closer to the elasticity solutions than those from the Donnell’s
simplified formula and that both shell theory solutions result in
nonconservative critical torsional loads. Discrepancies between
the clasticity solution and Donnell’s formula increase as the
parameter Z becomes small, as is the case for short and thick
cylinders. On the other hand, differences between the Yamaki’s
result and elasticity solution are independent of values of Z as
long as Z is greater than 50. Discrepancies increase drastically
for very short and moderately thick cylinders with values of Z
less than 20.

Critical torsional loads for the same isotropic cylinder that
buckles into wave numbers other than 5 were also calculated
and compared with those from shell theories. Results are shown
graphically in Figs. 2 and 3, where the nondimensionalized
critical torque M.,/ ER’ is plotted against the parameter Z. Simi-
lar observations can be made for the cases with 1 other than S.
In addition, the larger the wave number n for thc same values
of Z, the smaller the differences between both shell theory
approaches and the elasticity solutions. It should be noted that
circumferential wave numbers used to set the input parameters
for given values of Z, are proven to correspond to the lowest
eigenvalues from the elasticity solutions for all cases studied.

To examine the convergence of the present eigenvalue solu-
tion as sufficient numbers of displacement functions are re-
tained, values for critical torsional loads for the previously dis-
cussed isotropic cylindrical shell (Z = 10, L/R. = 0.898, R./h
= 12.99, n = 5) were generated as the numbers of terms in r
and z increase by one, respectively. The number of terms in r
and in z describe numbers of the upper indices, K; and M;,
respectively, in Eq. (20), where i = 1, 2, 3. Equal numbers for
K; (ie, K, = K, = K3y) and M; (ie, M, = M, = M) were
used for the displacements u;, v, w,.

Results are given in Table 3, which clearly shows that the
critical torsional load is monotonically converging from above
as the nnmber of terms in r and z increases. An acceptable
converged value for the critical load occurs when addition of
one term in z as well as in r yields a differcnce between subse-
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Fig. 3 Comparison of critical loads for an isotropic cylinder (Z = 500)

quent values less than 0.01 percent. Therefore, for this case the
converged critical load is obtained by employing five terms in
rand 21 terms in z, or 5 X 21 terms.

Same monotonic convergence is detected for all other studied
isotropic cylinder cases, but convergence tables are not pre-
sented here because of limited space. Instead, solution sizes.
which provide converged values of the critical torsional loads,

Table 3 Convergence of critical loads for an isotropic cylinder (Z = 10,

n =5)

Critical torsional loads (N -m = 1077)

No. of terms No. of terms in r
inz 3 4 5
1 6693.7 6667.5 6667.4
2 2243.0 2208.4 2208.0
3 2167.8 2132.6 21323
4 2141.5 2105.7 21053
5 21293 2093.0 2092.6
6 2122.6 2085.9 20854
7 2118.5 2081.5 2081.0
8 2115.7 2078.6 2078.1
9 2113.9 2076.6 2076.0
10 21125 2075.1 2074.5
It 21114 2073.9 20734
12 2110.6 2073.1 2072.5
13 2110.0 2072.4 2071.7
14 2109.5 2071.8 2071.2
15 2109.1 2071.4 2070.7
16 2108.7 2071.0 20703
17 2108.4 2070.7 2070.0
18 2108.2 2070.5 2069.7
19 2108.0 2070.3 2069.5
20 2107.8 2070.1 20692
21 2107.6 2069.9 2069.1
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Table 4 Number of terms required for convergence of critical loads for
an isotropic cylinder

(No. of terms in r) x (No. of terms in z)

n
z 2 3 4 S 6 7 8 9
10000 | 4x30 3x31 3x34 3x34 3x35 3x35 3x36 3x36
5000 4x29 4x31 3x33 3x33 3x34 3x35 3x35 3x36
2000 4x27 4x28 4x31 4x31 3x32 3x33 3x34 3x34
1000 4x25 4x26 4x30 4x30 4x31 3x32 3x33 3x33
500 4x24  4x24 4x27 4x27 4x29 4x30 4x31 4x32
200 4x20 4x22 4x25 4x25 4x26 4x28 4x29 4x30
100 5x19 4x20 4x24 4x24 4x25 4x26 4x27 4x28
50 Sx17 4x19 4x23 4x23 4x24 4x25 4x26 4x28
20 5x15 S5x18 4x22 4x22 4x23 4x25 4x26 4x27
10 J S5x13 5x16 5x21 Sx21 4x22 4x23 4x24 4x25

are summarized in Table 4. When £ is larger than 5, the use of
Legendre polynomials containing up to four terms provides
accepted convergence values. Maximum number of terms in r
for all cases considered here is 5. It is clearly seen from Table
4 that a larger number of z terms is required for a longer cylinder
with a larger value of Z regardless of the circumferential wave
number. However, for a given value of Z the rate of convergence
is slightly slower as the wave number n increases even though
a higher value of n refers to a shorter cylinder.

Comparison With Existing Orthotropic Shell Solutions.
Before discussing accuracy of the shell theory results for ortho-
tropic cylinders, it is now appropriate to quote a study per-
formed by Etitum and Dong (1995). They calculated torsional
buckling loads of cross-ply and angle-ply cylinders by using a
three-dimensional semi-analytical finite element method, based
on Biot’s incremental deformation theory (Biot, 1965) and then
compared the results with those obtained from the classical
and the first-order shear deformation formulations based on the
Fliigge shell theory. They concluded that for thin geometry (R./
h = 100), classical theory can be trusted to give accurate results
over a reasonably wide range of normalized wavelength ratio L/
R.. They also showed that shell theories and three-dimensional
formulation do not correlate well at all for a relatively thick
cylinder (R,/h = 10). In this case, shell theory results can be
lower or higher than those obtained from three-dimensional
theory depending upon the values of L/R..

In the literature, there is a limited number of shell theory
based articles dealing with torsion of orthotropic cylinders hav-
ing fixed ends (Simitses, 1967, 1968; Tabiei and Simitses,
1994). Tabiei and Simitses (1994) performed an extensive
parametric study of laminated cylindrical shells under torsion
by employing Donnell-type kinematic relations when deriving
the equilibrium equations and then employing Sanders-type re-
lations in the buckling equations. They compared numerical
results from classical shell theory (CL), first-order shear defor-
mation theory (FOSD), and higher-order shear deformation
theory (HOSD).

Table 5 shows critical torsional loads of graphite/epoxy cyl-
inders predicted by the present three-dimensional elasticity for-
mulation along with those from Tabiei and Simitses (1994)
based on the various shell theories. The material properties of
the Graphite/Epoxy cylinder considered herein are

Ey = Exn = 9.928 X 10° N/m?,
Ey = 149.617 X 10° N/m?,
G = 2551 X 10° N/m?, Gy = Gy = 4481 x 10° N/m?,
v, =045, vi3 = s = 0.0186.
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Radius of the centerline of the cylinder, R, is set to 0.1905 m
and the length is varied such that L/R. = 1, 2, 5. The thickness
of the cylinder is also varied to correspond to R./h ratios equal
to 100, 60, 30, and 15. On the third column of Table 5, Batdorf
parameter Z for orthotropic cylinder, corresponding to the shell
geometric parameter Z is indicated. It should be noted that 7
depends not only on the geometry but also on the stiffness
constants (Nemeth, 1994), and is defined as

s _L20u0n - 01"
Rc\/lz(QananDzz) Z

) (29)

where stiffness constants Q;; and flexural rigidity Dj; of a cylin-
drical shell are (1 = axial, 2 = circumferential),

hE hE.
O = e i On = L 5
I = vy I — vy
hv, Exn h?
=—222_. p,==0, 30
QIZ | — Vil i 12 Qj ( )

The data in Table 5 are also shown graphically in Fig. 4 by
normalizing the critical torsional load to M.,/ Eynh®. It is clearly
seen from Table 5 and Fig. 4 that results from shell theories
are reasonably close to the elasticity solutions as long as the
cylinder is long or thin. More specifically, when the ratio L/R..
is set at 5, the data from all approaches agree remarkably well
over the entire range of the R./h ratios considered. Furthermore,
all shell theories predict slightly lower values for the critical
loads. However, for the case of short cylinder (L/R. = 1)
classical shell theory predicts much higher values when the
cylinder is moderately thick (R./h = 30), while shear deforma-
tion theories provide reasonable values for the critical torsional
loads. When L/R. is 2, the classical theory results are higher
than the elasticity solutions except for the case of R./h = 60,
but shear deformation theory results are lower except R./h =
100 case. ;

Higher-order shear deformation theory gave conservative val-
ues for all cases except for the case of L/R, = 2, R./h = 100.

Table 5 Comparison of results for an orthotropic cylinder

Critical torsional loads (N - m x 10*)/ Wave number

Geometry Elasticity cL’ FOSD' HOSD'
L/R. Rk z (% incrcase (% increase  ( % increase
vs. Elasticity)  vs. Elasticity) vs. Elasticity)
5 100 2493 .8418/7 8277117 .8277/7 827777
(-1.67%) (-1.67%) (-1.67%)
5 60 1496 2.552/6 251576 251576 251576
(-1.44%) (-1.44%) (-1.44%)
5 30 748.1 12.00/5 11.78/5 11.74/5 11.72/5
(-1.84%) (-2.18%) (-2.33%)
S 15 3740 58.56/4 58.33/4 56.33/4 56.01/4
(-0.38%) (-3.80%) (-4.34%)
2 100 399.0 1.255/9 1.297/10 1.293/10 1.293 /10
(3.42%) (3.06%) (3.06%)
2 60 2394 421717 419377 4.173/7 4.155/7
(-0.55%) (-1.04%) (-1.47%)
2 30 119.7 23.57/6 2396/6 23.32/6 23.01/6
(1.67%) (-1.05%) (-2.40%)
2 15 59.84 138.9/5 158275 1346/5 130.0/5
(13.9%) (-3.07%) (-6.41%)
1 100 99.74 2.429/11 2.456/11 2.435/11 2.396/11
(1.09%) (0.25%) (-1.35%)
1 60  59.84 9.605/10 9.985/10 9.666/ 10 9.504 /10
(3.96%) (0.64%) (-1.05%)
[ 30 2992 62.32/9 73.47/8 61.91/9 59.51/9
(17.9%) (-0.66%) (-4.50%)
1 15 1496 347.6/8 575.0/7 329.6/8 309.2/8
(65.4%) (-5.17%) (-11.0%)

* Tabiei and Simitses (1994)
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Table 6 Critical torsional loads of an isotropic cylinder

Critical torsional loads (N - m x 10°) / Wave number

Ra/Ry
L/R; 1.01 1.05 I.1 1.15 1.2
1 2.262/10 101.6/6 516.7/5 1238/4 2164/4
2 1.513/8 54.84/5 247.0/4 565.2/3 987.5/3
3 1.232/7 41.70/4 182.3/3 404.3/3 725.9/3
4 1.070/6 35.81/4 148.9/3 344.7/3 633.1/3
) .9650/6 32.99/4 132.4/3 316.5/3 527.412
6 .8784/5 29.25/3 123.2/3 288.9/2 451.4/2
7 8111/ 26.47/3 117.5/3 250.4/2 403.2/2
8 .7687/5 24.68/3 113.9/3 22472 371.22
9 .7304/4 23.46/3 102.9/2 207.072 349.0/2
10 6816/4 22.60/3 93.61/2 194.4/2 333.272

1000
L/Rc=1
L/Rc=2
s
N L/R:=5
L’i 100 7 _
X
o CL
a FOSD
v HOSD
O 3D-EL
10 - T T T
15 30 60 100

R/h

Fig. 4 Comparison of critical loads for an orthotropic cylinder

The results from classical theory and first-order shear deforma-
tion theory are higher or lower, depending on L/R, and R,/h.
It should be mentioned on the basis of the results compared
herein that there is no trend on the conservatism of the critical
loads from shell theories as in the isotropic cases.

Figure 5 shows a comparison of normalized critical torsional
loads with respect to the Batdorf parameter 7. Even though the
data from shcll theories compared herein are limited, it can be
noted that for the value of 7 above about 100, shell theories
are adequate to predict critical torsional load of an orthotropic
cylinder.

The circumferential wave number » that a cylinder buckles
into is also shown in Table 5. Integer wave numbers calculated
from the shell theories and elasticity formulation agreed in most
cases. However, all shell theories predicted different wave num-
bers for the case of L/R. = 2, R./h = 100, and so did the
classical shell theory for the cases of L/R, = 1, R./h = 15 and
L/R. =1, R./h = 30.

It should be noted that the critical load is also monotonically
converging for all cases of orthotropic construction considered

1000 7
L/Rc=1
L/R.=2
~ L/R=5
-
N
L'J\ 100
5] o
=
o CL
a FOSD
v HOSD
O 3D-EL
10 T T
10 100 1000 10000
Z

Fig. 5 Variation of critical loads for an orthotropic cylinder with respect
toz
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herein, as it is for an isotropic cylinder. Four terms in r are
employed to provide convergence within 0.01 percent for all
cases except the shortest and thickest cylinder with L/R. = 1,
R./h = 15, which needs five terms. Maximum number of z
terms needed is 25 when L/R. = 1, R.//h = 15. For a given L/
R. ratio, the number of terms in z needed decreases as the ratio
R./h becomes small.

Parametric Study. Having established confidence in the
methodology and assessed the accuracy of shell theory results,
an extensive parametric study is performed to provide accurate
values for the critical torsional loads of isotropic and orthotropic
cylindrical shells. Results presented herein can be used as refer-
ences for future studies employing shell theory.

For the isotropic cylinder Young’s modulus £ = 14 GN/m?
and Poisson’s ratio v = 0.3 are assumed. Orthotropic materials
considered here are typical glass/epoxy and graphite/epoxy
with circumferential reinforcements, having the following prop-
erties:

glass/epoxy: Ey; = Eyy = 14.0 X 10° N/m?,
E»n = 57.0 X 10° N/m?,

Gi; = G»n = 5.7 X 10° N/m?, G5 = 5.0 X 10° N/m’,
vy, = 0.068, vz = 0.400, vy = 0.277,
graphite/epoxy: £;; = 9.9 X 10° N/m?,

E»» = 140.0 x 10° N/m?,

Ey = 9.1 X 10° N/m?, G, = 4.7 X 10° N/m?,

Gz =59 % 10°N/m?, G, =43 x 10° N/m?

V1, = 0.020, vy; = 0.533, vy = 0.300,

where the subscripts 1, 2, 3 correspond to r, 8, and z-directions,
respectively. ’

The outer cylinder radius R, 1s set to 1 m and the ratio L/R,
is varied from | to 10. A range of outer versus inner radii R,/
R, from thin (1.01) to thick (1.20) is examined.

Tables 6 through 8 show critical torsional loads and wave
numbers around the circumference for the isotropic, the glass/
epoxy, and the graphite/epoxy cylinders. In general, critical
torsional loads of the graphite/epoxy cylinder are higher than
those of the glass/epoxy cylinder because of the stronger rein-
forcements. As the cylinder becomes thicker or longer. it buck-
les into a lower circumferential wave number 1. For given shell
geometries, the buckling wave number of the isotropic cylinder
is the highest followed by the glass/epoxy cylinder and then
the graphite/epoxy cylinder.
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Table 7 Critical torsional loads of a glass/epoxy cylinder

Critical torsional loads (N - m x 10%) / Wave number

[ Ro/R,

LR, 1.01 1.05 11 115 12
1 38119 14L7/5 66824  1S60/4  269%/4
2 28327 88.00/4 37333  821.6/3 143453
3 242366 74924 29433 67208 11682
4 21815 66123 26573 602272 93362
s 1981/S 59243 25233 510872 816712
6 1.874/5  SS413 23392 458212 750802
7 L7224 53073 209172 425602 71012
8 1618/4 51543 19282 40412 68352
9 1.548/4 50493  181.672 38922  665.12
10 1499/ 47912 17352 37852 651972

Table 8 Critical torsional loads of a graphite/epoxy cylinder

Critical torsional loads (N - m x 10°) / Wave number

Ro/R,
L/R; 1.01 1.05 1.1 1.15 1.2

1 4.716/7 153.5/4 682.1/4 1558/4 262173
2 37536 108.4/4 413273 904.0/3 1528/3
3 3.305/5 92.00/3 361.1/3 762.8/3 11752
4 3.043/5 83.69/3 338.8/2 643.5/2 101572
S 2.767/4 79.71/3 296.2/2 585.4/2 938.7/2
6 2.587/4 775113 272.072 553.0/2 897.12
7 2.479/4 73.65/2 257.02 533.112 871.8/2
8 2.367/3 67.39/2 247.172 520.172 855.4/2
9 2.201/3 63.10/2 240.3/2 S511.2/72 844.2/2
10 2.085/3 60.04/2 235.4/2 504.7/2 83&.1/2

Conclusion

The accuracy of shell theory solutions has been assessed
through a comparison study for both isotropic and orthotropic
cylinders. For isotropic cylinders it was found that Donnell’s
simplified formula and the direct integration techniques by Ya-
maki always predict nonconservative values for the critical tor-
sional loads. The results from Donnell’s formula deviate in-
creasingly from those obtained by the present solution as the
cylinder becomes shorter and thicker. On the other hand, devia-
tion of Yamaki’s results is independent of cylinder dimensions
unless the shell geometry parameter, Z, is smaller than 50. As
the circumferential wave numbers corresponding to the critical
load increase, both shell theory solutions provide more accurate
values.

The shell theory solution for orthotropic cylinders, which has
been compared with the present elasticity formulation, is based
on Donnell-type kinematic relations and Sanders-type buckling
equations by employing classical, first-order shear deformation,
and higher-order shear deformation theories. While both shear
deformation theories provide results reasonably close to the
three-dimensional elasticity solutions, classical theory predicts
much higher critical load values for a short and thick cylinder.
However, there is no observed trend regarding the conservatism
of the results from the shell theories with respect to three-
dimensional elasticity solutions on the basis of the data com-
pared. In general, it can be concluded that shell theories are
adequate to predict critieal torsional loads of an orthotropic
cylinder for the value of Batdorf parameter Z above 100.

Detailed numerical tables and figures have also been pre-
sented that show variation of critical torsional loads over a wide
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range of length ratio L/R, and radii ratio R,/R, for isotropic,
glass/epoxy, and graphite/epoxy cylinders. These solutions can
be used to evaluate the performance of various proposed shell
theorics.
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APPENDIX A
Opcrators L) and Bj; of Eq. (19) are
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B3 (uy) = cssity.. Bha(vy) = 0, Bis(wy) = csswy,. (Al2)
APPENDIX B
Operators Dj and D of Eq. (23) are
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,,

DS(P) = —(1)Py, + ( )Pk, (B10)

D$i(P) = 0, D%L(Py) = (r)Py, DG(Py) = (n)P,  (Bl1)
and Kj; arc

K\ (Py) = (ci)Py, + (

Ci12
"_‘) Py, Ki2(Py)

- (’“'”) P Kis(Py) = (c)Py,  (B12)

r

NCes C
Ky (Py) = ( i_«> Py, K5 (Py) = (ce6) Py — (Tm> Prs

\

Kyu(Py) =0, (B13)
K3 (Py) = (css) Py, K5o(Py) = 0, K33(Py) = (css)Pei,. (B14)

Transactions of the ASME
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