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Introduction 
Composite materials have gained widespread usage in struc­

tm;J1 ;Jpplications because of their unique properties such as high 
strength-to-weight ratio and corrosion resistance. Both plate and 
shell structural laminated composite configurations have found 
technic;JI applications in aircraft and marine industries. In partic­
ular, circular cylindrical shells can be used as primary load­
carrying members in many industrial ;Jpplications (e.g.. torsion 
bars in automotive suspension component·) amI under a vanety 
of loading configurations. It is therefore of great technical im­
portance when designing lightweight cylindrical shells to c1anfy 
the elastic stability characteri~tics. 

The review articles by Ambartsumian (1962), ert and Fran­
cis ( 1974), Tennyson ( 1975), and Simitses (1986, 1996) pro­
vided detailed accounts of the evolution of the active research 
dealing with composite cylindric;J1 shells. Some of works sum­
marized in those articles employed classical shell theories and 
the others did refined theories including "hear deformation ef­
fects. However, shell theories and formulations, be they classi­
calor refined, are inherently approximate since they are hased 
directly upon initial assumptions and hypotheses. Furthermore, 
existence of different shell theories underscores the need for 
elasticity solutions to use as benchmarks for comparison of 
predictions from the various approximate methods. . 

Recently, several three-dimensional elasticity-based buckllllg 
solutions have become available in the cylindrical shell litera­
ture. Babich and Kilin (1985) investigated on axisymmetric 
but three-dimensional form of stability loss of a three-layered 
orthotropic cylindrical shell under axial compression. Kardoma­
teas (1993a) dealt with the prohlem of an 011hotropic cylinder 
under uniform external pressure on the basis of the "ring as­
sumption," in that the prebuekling stress and displacement field 
was axisymmetric, and the buckling modes were assumed to be 
two-dimensional. In a further study (Kardomateas and Chung, 
1994), this ring assumption was relaxed so that a non/ero axial 
displacement and a full dependence of buckling modes on the 
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three coordinates were assumed. A more thorough investigation 
of the thickness effect was conducted by Kardomateas ( 1993b) 
for the case of a transversely isotropic thick cylindrical shell 
under axial compression. In this work, he presented a closed­
form solution in terms of Bes el functions. 

In more recent studies, Kardomateas ( 1995, 1996) considered 
the problem of buckling of orthotropic cylindrical shells under 
axial compression in one case and combined axial compression 
anel extema1 pr ,'sure in another case. These works included 
comprehensive studies of the performance of shell formulatIOns 
by Donnell (1933), Flugge (1960), Danielson and Simmonds 
(1969), and Timoshenko and Gere (1961). Other three-dImen­
sional elasticity results that dealt with orthotropic and cross-ply 
laminated cylinders and cylindrical panels under combined axial 
compression and uniform external pressure were presented by 
Soldatos and Ye ( 1994) and Ye and Soldatos (1995). The,se 
studies provided elasticity solutions by using the successive 
approXimation method. 

An investigation of the literature presented above revealed 
that little information is availahle on the three-dimensional elas­
ticity-based buckling analysis of orthotropic cylindrical shells 
under torsion. Therefore, in the current study, an orthotroplc 
cylindrical shell with fixed ends, subjectcd to torsion, is studied. 
Employing cylindrical coordinates 1', e, and.z (see FIg. I), the 
nonlinear three-dimensional theory of elastIcity IS appropnately 
formulated following Kardomateas (1993a). This problem is 
more complicated than tne pure external pressure or axial com­
pression one due to the coupled torsional displacement modes 
of the first-order field (non-separable function of e and z). 
Applying displacements at the prchuckling state: Imckling equa­
tions are reduced to three linear homogenous dl1terentIaI equa­
tions in terms of the displacements of the perturbed state. A 
mixed-form Galerkin procedure is employed to solve these 
equations and to find numerical values for the critical loads. 
After comparing the results of this study WIth the ones Irom 
shell theories for a variety of example problems, an extensIve 
parametric study of both isotropic and orthotropic cylinders is 
performed. 

Formulation 
For a homogeneous orthotropic cylindrical shell occupying 

a region in the three-dimensional Euclidean space referred to a 
cylindrical coordinate system (I', e, z) in which the z-axIs com­
cides with the longitudinal axis of the shell as shown In FIg. I, 
the stress-strain relationships can be expressed in the form 
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Fig. 1 Dimensions and coordinates for a cylindrical shell 
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where c;/ are the stillness coefficients and Ern Eoo, r.' 1',0, 1',." 
Yo. arc the engineering strains defined by the following nonlin­
ear tinematic equations: 

Err = U,r + ~ 

V,o u 1 
E/Hi = - + - + -, [(UO ­

r 

Uo 
1',0 = -'­

r 

r 2r<' 

L 

(u~ + v~r + w~(), (2a) 

2 2 2 
V) + (V~ + U) + (wO) J, (2b) 

. . 

w: + i (U~ + V~ + w~), (2c) 

V. r -
V 
­

r 

1 
- [U.,( U.O 
r 

- V) 

+ vAv.o + U) + W.,( W,O)]. (2d) 

1',., = U.z + w" + (U.,u.z + V.,V., + w.,w,> , (2e) 

Wo I 
YO: = V.: + --'- + - [U.,(U.O - V) + V.,(V.O + U) 

r r 

+ W.,(W,O)J. (2f) 

In the general stability theory of elastic solids. it is known 
that at the critical load there are two possible infinitely close 
positions of equilibrium. Denoting uo. V". Wo as the r, e. and 
z components of displacement corresponding to the primary 
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position. the di placements in the penurbed position are denoted D 
by 8,. 

(3) 

where a is an infinitesimally small quantity. Here, aUI (r. e, z).
 
aVI(r, fJ, z), and all',(,., e, z) are displacemen that points of
 
the body must undergo to shift them from their initial equilib­

rium position to their new equilibrium position. The functions
 
u,(r, B, z), VI(", B. z), and wl(r. B. z) arc assumed finite and pre
 

a is independent of r. fl. and z.
 
Substituting (3) into (2) results in the following equations 

for the strain components in the perturbed state: 
un 

(4) I ~ 

roi 
where ~ are values of the train components in the initial posi­ tia 
tion of equjlibriunl' Eij are strain quantities that depend on deriv­
atives of both lto, v", w" and [/1, UI, WI: and EJ are parameters (a 
that depend only n derivatives of [/" VI, WI and contain only 
quadratic terms. Substitution of (4) into ( I ) yields 

(7(5) 

where aZ, aij, and aE can be expressed i.n the form of (I) by 
replacing v by E~, IOU' od eij. respectively. 

(c
From three-dimensional elasticity theory (Ciarlet, 1988), the 

equations of equilibrium are expressed in ternlS of the second 
Piola-Kirchhoff LreS' tensor L in the fOlm 

di (L' pT) = 0, (6) til 
di

where F is the defolmation gradient defined by m 

F = I + (grad \I) r, (7) 

where V is the displacement vector and I is the identity tensor. 
The linear strain' are also introduced as 

\\ 
I) 

V.II U 
err = LI. n eO() =- - + - (8a) a 

r r 

tl 
Uo V Wo 

eo=-+v er: = I./., + w,,, eo, = V_ + --'­ (8b)r r ,r 
r r 

and the linear rotations as 

Wo V Uo
2w, = - - V." 2wo = II,: - w,,, 2u,', = VJ + - - -'- (8c)
 

r r r
 

Following Kardomateas (1993a), the following buckling 
equations govern the first-order field: 

8 (' 0' o ') I 8 (' 0or a rr - TrOW;: T,:WO +~8B T,o-aoo 

a (' 0, 0 ') I a (' 0, ')0ar Tro+a"wl.+T,:W, +-;oB a/Hi+Trllw:-T/I,W, 

8 (' 0, 0') + I (2' u'-8 TO, + T",W, - a··u,'r - T,o + a"w, 
Z r 
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0, 0 ') I EJ (/ 0 / a /)~ (T' auWe + TrOW,. + - - Tf),- - TrIfLu'(j + aeeWrar ' rae 

+ a (' 0 /)0, +- 17;;: - T,.,W,) TOZW,.
 
a (.
 

(ge) 

The boundary conditions associated with (6) can be ex­
pressed as 

( 10) 

where t is the traction vector on the surface having an outward 
unit normal N = (f, m, n) before deformation. Traction vector 
t depends on the displacement field V = (u, v, w). Again, 
following Kardomateas ( 1993a), the following boundary condi­
tions at the lateral and end surfaces are obtained: 

+ (T;, - T~,W~ + I7~We)n = 0, (lla) 

+ (Te, + T~zW; -17~w:)n = 0, (lib) 

+ (T:': - T~,,,,'; + l7'l.cwiJ)/l = 0. (lIe) 

In an orthotropic cylindrical shell ubjected to pure torsion, 
the cross section of the cylinder simply rotates about the longitu­
dinal axis, and thus similar to the case of isotropy, the displace­
ments at the initial position are expressed in the form: 

M 
Uo = Wa = 0; Va = C rz, ( 12) 

where M is the torque at both ends and C is the torsional rigidity 
of the cylinder, defined as C = e447r(R~ - R7)/2, where R, 
and R1 are inner and outer radius, respectively. 

Using Egs. (I) and (8), we obtain the strain components at 
the prebuckling state, 

o M 
e~,. = e~o = e~ = e~o = e~, = 0, eo'=C r , (13 ) 

and the stress components, 

o c.u,M
17~,. = l7~o = 17~ = T~R = T~, = 0, TiI:=C r . ( 14) 

Substitution of ( 14) and the expressions for 17 ij and w; in terms 
uf the displacements from ( I ) and (8) transforms the buckling 
Eqs. (9) into the following system of three linear homogenous 
partial differential equations with three unknuwn displacement 
functions UI, VI, and WI: 

- M(W'{Ii- W,:.!!) = 0, (15a) 
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( IS c) 

In the same manner, three homogeneous boundary conditions 
can be obtained from ( II) for the lateral surfaces for m = n =°and [ = ± I: 

( 16e) 

where M = MC4.J2C. 
There is a substantial difference between Eqs. (15) and those 

obtained by Kardomateas (1993a, 1995) for the case of buck­
ling of an orthotropic cylindrical shell subjected to lateral or 
nxial compression. This difference is that in the same equation 
we encounter both odd and even orders of derivatives of a 
displacement with respect to the same independent variable. 
This prevents one from reducing (15) to ordinary differential 
equations by applying a separable form of displacement func­
tions as in the external pressure or the axial compression loading 
case. Therefore, a solution procedure using the Galerkin method 
is employed in this study. 

For convenience, equations (15) and (16) are rewritten in 
the form 

Lil(ul) + L i2 (VI) + L;J(w,) = 0, i = 1,2,3, (17a) 

B,,(U,) + Bi2 (V,) + Bi3 (W\) = 0, i = 1,2,3, (17b) 

where Lij and Bu are differential operators of secund order. 

Solution Methodology 
In solving problems llsing the Galerkjn technique, three meth­

ods can be llsed to choose trial functions: the interior method, 
the boundary method, and the mixed method. In this study, the 
mixed method (Mikhlin, 1964, Bolotin, 1963, Finlayson, 1972) 
is employed to overcome the complexity of finding trial func­
tions that satisfy either the differential Eqs. (17a) or the bound­
ary conditions (17b). Use of the Galerkin procedure requires 
that the interior and boundary weighted residuals vanish. For 
the first differential equation and boundary condition corre­
sponding to i = I in ( 17), these appear as 

I Uj[L\\(u,) + L'2(V\) + Lu(w,)]dV = 0, (18a) 

J, Uj[B,,(u,) + B'2(VI) + B 13 (w,)]dS = 0, (18b) 

where Uj is the jth term of the trial functions of the di 'placement 
u, . Similarly, those residuals can be written for the second and 
third equations corresponding to i = 2, 3 in (17) by subse­
quently replacing ii) with Vj and YV)' respectively. After per-
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1 forming integration by parts with respect to r on (I8a) and 
combining it with (ISb), and doing similar procedures for the 
other two sets of equations, we can obtain the following three 
sets of governing equations: 

(I9a) 

+ B;2(V,) + B;3(W,)] jdV = 0, 

Iv (Dj[L~,(u,) + L~2(V,) + L~,(w,)] - Dj.r[B~,(ul) 

+B~2(V,)+B~,(w,)])dV=0, (l9b) 

J (~Vj[L3'(U,) + L32 (V,) + L 33 (W,)] - \vj.r[B 3,(u,) 

" 

where the modified operators Lij and Bij are given in Appendix 
A. 

Considering the fixed boundary conditions at the longitudinal 
edges z = 0, L, trial functions for the displacements are chosen 
as 

K M l1 

u, = L L Pk(r)[Akmn Sin (nO) 
k=J m=l 

+ Bkmn Cos (nO)] Sin (AmZ), (20a) 
K2 M 2 

V, = L L Pk(r)[C,,,,,, Sin (nO) 
k=l Tn=1 

+ Dkmn Cos (nO)] Sin (A",Z), (20b) 
K),-I M) 

WI = L L Pk(r)[Eknm Sin (nO) 
k=O m=! 

+ F/",,,, Cos (nO)] Sin (A",Z), (20c) 

where Pk(r) is a kth term set of Legendre polynomials, A", 
= m7r/L, and Akmnl Bk11ln , Ckmn , Dkml1 , £/;.1111" Fkll111 are unknown 
coefficients. The integer values nand m in Eqs. (20) represent 
the number of waves around the circumference and along the 
length of the cylinder, respectively. Upon substituting Eqs. (20) 
into Eqs. (19) and integrating, we obtain six sets of linear 
algebraic equations. The (q + k) th terms for the first and second 
sets of the (K, X M,) equations are, respectively, 
K1 M1 

L L [(ql') + A;"n/14 
) + w~l'»)(f>~~:AL.m 

1.:.=1 m:,1 

K2 M2 

- M(A~l'»)Am(f>~;.!Bkmn] - L L [(ql') + \TJ~~'»)<J)~~,iDk,nn 
k=l m=1 

K'l M J 

- M(A~12»)Am(f>~;,;C,,,,,,] + L L [(r~13) 
k-U m= I 

K, M) 

L L [(ql1) + A;"q14 
) + w~l'»)<l>;,~,;Bkmn 

1.:=1 m=! 

K'J. M2, 

+ M(A~l'»)Am(f>~;';Akn",] + L L [(qF) + w~12»)(f>;,:.:ckmn 
k= I m~~ I 

KJ-l ,',.1, 

+ M(A~/12»)Am(f>;,;.!Dkmn] + L L [(r~x) 
14.=0 m=l 

+ w~13»)Am(f>~;,;Fkmn + M(A~:3»)(f>;,~.!Ek"m] = 0, (2Ib) 

the (q + k)th terms for the third and fOllrth sets of the (K2 X 

M 2 ) equations are, respectively, 
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K, M, 

L L [(r~Z'J + W~;'»)<J)~~.!Bk",n - M(A~Z'))An'<I>~~!AkmnJ 
k=l m=!
 

K M

2 2 

+ L L [(qZ2) + A;"qZ4) + W~Z2»)(f>~~JCkmn 
10:::::.1 m=)
 

K,-I M)
 

- M(A~Z2»)Am(f>~;;Dk"m] - L L [(qp) 
k-O m=-I 

K, M, 

L L [(r~Z') + W~;'»)(f>;,~,;Akmn 
k=l m=1 

+ M(A~~'»)Am(f>;,~B .,] + L L [(q~2) + A;',qf4 
) 

1e=1 1//=1 

+ W~Z2»)<P~~.! Dkn", + M(A~~2») A",<P;,?;!Cmn] 
K -1 ,)3

+ L L [(nJJ> + W~;}'»A",<I>~,;.!E.tllfn 
,(; ....0 m=! 

+ M(A~P))<P1~,/Fk""'] = 0, (21 d) 

and finally, the (q + k)th terms for the fifth and sixth sets of 
the (K, X M)) equations are, respectively, 
K J M, K1 M 1 

I L [(qi') + w~t'»)Am(f>;,?;:Akn",] - L L [(r~t2) 
k=1 m=1 k-:-11l1=1 

+ w~~2»Am(f>i;lDLn" - M(A~,A~~2))(f>~~Ckm"] 
K1-1 M) 

+ L L [(q~3) + A;"q;') + w~,i)J)<J>~~}Ek',," 
.4.:=0 m=l 

K) M Kj z M 2 

L L [(q~') + w~t'»)Am<J>~~;Bkmn] + L L [(r~/r) 
.4.:=1 m=1 ,(,_"\ m=1 

+ W~r»)Am(f>~;,!Cmn + M(A~A~/?»)<J>~~,!Dkmn] 
K3-1 M) 

+ L L [( q~3) + A~, C/;"') + w~)' ') (f>~~ F,m" 
k ......O ",=1 

+ M(A~("))Am(f>;,;,;E"""l = o. (2I!) 

In Eqs. (21) above, constants from integration of the tligono­
metric functions in the Z direction are denoted by 

(f>;,~,; = f Sin (ApZ) Sin (Amz)dz, (22a) 

(f>1~; = f Sin (ApZ) Cos (Amz)dz, (22b) 

(23a) 

(23b) 

(23c) 

where Dl and DV are the ensuing r-dependent terms after 
substituting the trial displacement functions in (20) into the 

operators Lij in ( 19). Similarly Kij are the ensuing r-dependent 

terms after substituting (20) into Bij in (19). Dt, DV, and Kij 
are given explicitly in Appendix B. 

Equations (21) yield 2 X (K, X M, + K2 X M2 + K, X M,) 
algebraic equations. However, it can be noted that the terms 
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Table 1 Aspect ratios of an isotropic cylinder corresponding to the re­
suUs of Figs. 2 and 3 

UR" R,/h 

n 

Z 2 3 5 6 7 

10000 21.05, 14.03, 10.52, 8.419, 7.016, 6.014, 5.262, 4.677, 
23.66 5324 94.64 147.9 212.9 289.8 378.6 479.1 

5000 17.28, 11.52, 8.639, 6.912, 5.760, 4.937, 4.320, 3.840, 
17.56 39.50 70.22 109.7 158.0 215.1 280.9 355.5 

2000 13.31, 8.870, 6.652, 5.322, 4.435, 3.801, 3.326, 2.957, 
11.84 26.65 47.38 74.03 106.6 145.1 189.5 239.8 

1000 10.79, 7.194, 5.396, 4.317, 3.597, 3.083, 2.698, 2.398, 
9.002 20.25 36.01 56.26 81.02 110.3 144.0 182.3 

500 8.671, 5.781, 4.335, 3.468, 2.890, 2.477, 2.168, 1.927, 
6972 1569 27.89 4357 6274 85.40 111.5 141.2 

200 6.362, 4.241, 3.181, 2.545, 2.121, 1.818, 1.590. 1.414, 
5180 11.66 20.72 32.38 46.62 6346 82.89 104.9 

100 4.948, 3.299, 2.474, 1.979, 1.649, 1.414, 1.237, 1.100, 
4.282 9.634 17.13 26.76 3854 52.45 68.51 86.71 

50 3.817, 2.545, 1.909, 1.527, 1.272, 1.091, 0.954, 0.848, 
3.597 8.094 14.39 22.48 32.38 44.07 57.56 72.85 

20 2.733, 1.822, 1.367, 1.093, 0.911, 0.781, 0.683, 0.607, 
2.807 6.315 11.23 17.54 25.26 34.38 44.91 56.83 

2.246, 1.497, 1.123, 0.898, 0.749, 0.642, 0.562, 0.499, 
2078 4.675 8.311 12.99 18.70 25.45 33.24 42.07 

10 

including M in (21) have either Abron Dk""" E kmn only or Bku"" 

Ckmn , F kmn only. Therefore, Eqs. (21) can be divided into two 
parts to reduce the dimensions of matrices to be handled. These 
two partitioned sets of equations are in the form 

[P]( ex} + M[ Q](,8} = {O}, (24a) 

[SH,B} + M[R](ex} = {OJ, (24b) 

where {ex} = LA kmn , Dkmn , Ekm.,JT and {,B} = LBkm,,, Ckmn , Fkm"JT 

The matrices P, Q, R, and S have the dimension of (K 1 X M 1) 

+ (K2 X M 2 ) + (K3 X M 3 ), respectively. From (24a) we obtain 

(25) 

Substitution into (24b) yields 

([S] - M 2 [G]){,Bl = (OJ, (26) 

where [G] = [R][Prl[Q]. 
Equation (26) constitutes a generalized eigensystem with M2 

being the eigenvalue. The system has a nontrivial solution if 
and only if the determinant of [S] - lW[G] vanishes. 

Numerical Results and Discussion 
Numerical results based on the preceding formulations have 

been generated for a wide range of geometrical and material 
parameters affecting the behavior of cylindrical shells under 
torsional loads. For all cases considered, the critical torsional 
load was computed using a QR algorithm combined with simi­
larity reduction of general matrix to upper Hessenberg form 
(Wilkinson and Reinsch, 1971). When calculating eigenvalues, 
extended precision (28 significant figures) was used. By in­
creasing the integer value of circumferential wave number, n, 
the lowest eigenva ue corresponding to the critical load was 
found. 

Comparison With Existing Isotropic Shell Solutions. For 
an isotropic cylinder subjected to torsion, Yamaki (1984) pre­
sented numerical results pertaining to the critical shear stress, 
T a , and the corresponding circumferential wave number param­
eter, ,B = nLl7rRe, where Rr and L are the radius of the midline 
surface and the length of the shell, respectively. He employed 
a direct integration method combined with an iterative technique 
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to Donnell's buckling equations and concluded that Donnell's 
equations yielded sufficiently accurate results when n is greater 
than 4. The inaccuracy of the Donnell's equations for the cases 
with low values of n refers to the shallow shell approximation 
that omits the in-plane displacement component in certain kine­
matic relations. It should be noted that he specified the geomet­
ric property of the shell by only one parameter Z = 

~(LlRc)2(Rclh), which is known as the Batdorfparame­
ter, where h is the thickness of the shell, and then minimized 
eigenvalues with respect to the wave number by treating ,B as 
a continuous variable. 

In order to compare Yamaki's results with those from this 
study, a combination of the geometric parameters with an as­
sumed integer value of n for a particular isotropic cylinder was 
selected so as to correspond to the published values of Z and 
,B by Yamaki. For convenience, these parameters (LI Rcand Rei 
h) are given in Table 1. A range of n from 2 to 9 was used 
and Rc was set to 0.1905 m. 

In addition to the shell theory results by Yamaki, those from 
a simplified formula derived by Donnell (1933) were also com­
pared with the present elasticity solutions. Donnell presented 
the following formula for the critical shear stress of ends-fixed 
short and moderately long shells subjected to torsion: 

T c, = E h: [4.62 
(l-v)L 

+ 7.8 + 1.67 ( ~
L2)3/2]

2hRc . (27) 

The critical torsional load, Mer. can then be calculated: 

(28) 

Table 2 shows critical torsional loads, as predicted by the 
present three-dimensional elasticity formulation, compared with 
those predicted by Donnell's formula and Yamaki for a typical 
value of circumferential wave number n = 5. Since an isotropic 
cylinder was investigated, Young's modulus E was assumed to 

Table 2 Comparison of results for an isotropic cylinder In = 5) 

Critical torsional loads ( N .m x 10-') 

Elasticity Donnell Yarnaki 

Z (% increase (% increase 
vs. Elasticity) vs. Elasticity) 

10000 1.565 1.610 1.578 
(2.82%) (0.82%) 

5000 3.366 3.491 3.393 
(3.70%) (0.79%) 

2000 9.238 9.740 9.312 
(5.44%) (0.81%) 

1000 18.95 20.32 19.10 
(7.26%) (0.79%) 

500 37.58 41.20 3786 
(9.64%) (0.74%) 

200 86.97 98.96 87.54 
(13.8%) (0.65%) 

100 157.2 184.8 158.1 
(17.5%) (0.57%) 

50 287.0 348.0 289.3 
(21.3%) (0.80%) 

20 737.3 916.7 759.1 
(24.3%) (2.95%) 

10 2069 2633 2271 
(27.3%) (9.76%) 
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Fig. 2 Comparison of critical loads for an isotropic cylinder (Z s 200) 

be unity for convenience and Poisson's ratio v was taken as 
0.3 

It is clearly seen from Table 2 that Yamaki's results are much 
closer to the elasticity solutions than those from the Donnell's 
simplified formula and that both shell theory solutions result in 
noncof1servative critical torsional loads. Discrepancies between 
the elasticity solution and Donnell's formula increase as the 
parameter 2 becomes small, as is the case for short and thick 
cylinders. On the other hand, differences between the Yamaki's 
result and elasticity solution are independent of values of 2 as 
long as 2 is greater than 50. Discrepancies increase drastically 
for very short and moderately thick cylinders with values of 2 
less than 20. 

Critical torsional loads for the same isotropic cylinder that 
buckles into wave numbers other than 5 werc also calculated 
and compared with those from shell theories. Results are shown 
graphically in Figs. 2 and 3, where the nondimensionalized 
critical torque Me,1 Eh 3 is plotted against the parameter 2. Simi­
lar observations can be made for the cases with n other than 5. 
In addition, the larger the wave number n for thc same values 
of 2, the smaller the differences between both shell theory 
approaches and the elasticity solutions. It should be noted that 
circumferential wave numbers used to set the input parameters 
for given values of 2, are proven to correspond to the lowest 
eigenvalues from the elasticity solutions for all cases studied. 

To examine the convergence of the present eigenvalue solu­
tion as sufficient numbcrs of displacement functions are re­
tained, values for critical torsional loads for the previously dis­
cussed isotropic cylindrical shell (2 = 10. LIRe = 0.898, Rei h 
= 12.99, n = 5) were generated as the numbers of terms in r 
and z increase by one, respectively. The number of terms in r 
and in z describe numbers of the upper indice , Ki and M;, 
respectively, in Eq. (20), where i = 1,2,3. Equal numbers for 
Ki (i.e., K, = K2 = K) and Mi (i.e., M, = M2 = M) were 
used for the displ.acements u, , VI, W, . 

Results are given in Table 3, which clearly shows that the 
critical torsional load is monotonically converging from above 
as the nnmber of terms in rand z increases. An acceptable 
converged value for the critical load occurs when addition of 
one term in z as well as in r yields a differcnce between subse­
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quent values less than 0.0 I percent. Therefore, for this casc the 
convergcd critical load is obtained by employing five tcrms in 
rand 21 terms in z, or 5 X 21 terms. 

Same monotonic convergence is detected for all other studied 
isotropic cylinder case. but convergcnce tables are not pre­
sented here because of limited space. Instead, solution sizes. 
which provide converged values of the critical torsional load, 

Table 3 Convergence of critical loads for an isotropic cylinder (Z = 10, 
n = 5) 

Critical torsional loads (N . m x 10") 

No, of terms No. of terms in r 

in z 5 

I 6693.7 6667.5 6667.4 

2 2243,0 2208.4 2208,0 

3 2167.8 2132.6 2132,3 

4 2141.5 2105.7 2\05,3 

5 2\29.3 2093,0 2092.6 

6 2122.6 2085,9 2085.4 

7 2\\8.5 2081.5 2081.0 

8 2115,7 20786 2078.\ 

9 2\\3.9 2076.6 2076.0 

10 2112.5 2075.\ 20745 

11 2111.4 20739 2073.4 

12 2110,6 2073 1 2072.5 

13 2110,0 20724 20717 

14 2109.5 2071.8 2071.2 

\5 2109.\ 2071.4 2070.7 

\6 2\08.7 2071.0 2070.3 

\7 2\ 08.4 2070,7 2070,0 

18 2\082 2070.5 20697 

19 2108.0 20703 2069,5 

20 2107,8 2070 \ 20692 

21 2107,6 2069,9 2069, I 
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Table 4 Number of terms required for convergence of critical loads for 
an isotropic cylinder 

(No. oftenns in r)" (No. oftemlS in z) 

n 

Z 2 4 6 9 

10000 4,,30 3x31 3x34 3x34 3x35 3x35 3x36 3x36 

5000 4x29 4x31 3x33 3x33 3x34 3x35 3x35 3x36 

2000 4x27 4x28 4x31 4x31 3x32 3x33 3x34 3,,34 

1000 4x25 4x26 4x30 4x30 4x31 3x32 3x33 3x33 

500 4x24 4x24 4x27 4x27 4x29 4x30 4x31 4x32 

200 4x20 4x22 4x25 4x25 4x26 4x28 4x29 4x30 

100 5x19 4x20 4,,24 4x24 4x25 4x26 4x27 4x28 

50 5x 17 4xl9 4,,23 4x23 4x24 4x25 4x26 4x28 

20 5,,15 5x18 4,,22 4x22 4x23 4x25 4x26 4x27 

10 5x13 5x16 5x21 5x21 4x22 4x23 4x24 4x25 

are summarized in Table 4. When n is larger than 5, the use of 
Legendre polynomials containing up to four terms provides 
accepted convergence values. Maximum number of terms in r 
for all cases considered here is 5. It is clearly seen from Table 
4 that a largcr number of z terms is required for a longer cylinder 
with a larger value of Z regardless of the circumferential wave 
number. However, for a given value of Z the rate of convergence 
is slightly slower as the wave number n increases even though 
a higher value of n refers to a shorter cylinder. 

Comparison With Existing Orthotropic Shell Solutions. 
Before discussing accuracy of the shell theory results for ortho­
tropic cylinders, it is now appropriate to quote a study per­
formed by Etitum and Dong ( 1995). They calculated torsional 
buckling loads of cross-ply and angle-ply cylinders by using a 
three-dimensional semi-analytical finite element method, based 
on BiOI'S incremenlal deformation theory (Biot, 1965) and then 
compared the results with those obtained from the classical 
and the first-order shear deformation formulations based on the 
Fli.igge shell theory. They concluded that for thin geometry (Rei 
h = 100), classical theory can be trusted to give accurate results 
over a reasonably wide range of normalized wavelength ratio LI 
Re . They also showed that shell theories and three-dimensional 
formulation do not cOITelate well at all for a relatively thick 
cylinder (R)h = 10). In this case, shell theory results can be 
lower or higher than those obtained from three-dimensional 
theory depending upon the values of LIRe. 

In the literature, there is a limited number of shell theory 
based articles dealing with torsion of orthotropic cylinders hav­
ing fixed ends (Simitses, 1967, 1968; Tabiei and Simitses, 
1994). Tabiei and Simitses (i 994) performed an extensive 
parametric study of laminated cylindrical shells under torsion 
by employing Donnell-type kinematic relations when deriving 
the equilibrium equations and then employing Sanders-type re­
lations in the buckling equations. They compared numerical 
results from classical shell theory (CL), first-order shear defor­
mation theory (FOSD), and higher-order shear deformation 
theory (HOSD). 

Table 5 shows critical torsional loads of graphitelepoxy cyl­
inders predicted by the present three-dimensional elasticity for­
mulation along with those from Tabiei and Simitses (1994) 
based on the various shell theories. The material properties of 
the GraphitelEpoxy cylinder considered herein are 

Ell = E22 = 9.928 X 109 N/m2, 

E33 = 149.617 X 109 N/m 2
, 

G I2 = 2.551 X 109 N/m 2
,	 Gu = Gn = 4.48J X 109 N/m 2 , 

V ,2 = 0.45, VI3 = V23 = 0.0186. 
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Radius of the centerline of the cylinder, Re is set to 0.1905 m 
and the length is varied such that LIRe = J, 2, 5. The thickness 
of the cylinder is also varied to correspond to R,/h ratios equal 
to 100, 60, 30, and 15. On the third column of Table 5, Batdorf 
parameter 1 for orthotropic cylinder, corresponding to the shell 
geometric parameter Z is indicated. It should be noted that Z 
depends not only on the geometry but also on the stiffness 
constants (Nemeth, 1994), and is defined as 

_ e(QIIQ22 - QT2)'12 

Z = R)12(Q"Qn D II D 22 )'/4' 
(29) 

where stiffness constants Q'i and flexural rigidity Dij of a cylin­
drical shell are (I == axial, 2 == circumferential), 

(30) 

The dala in Table 5 are also shown graphically in Fig. 4 by 
normalizing the critical torsional load to MalE22h

3
. It is clearly 

seen from Table 5 and Fig. 4 that results from shell theories 
are reasonably close to the elasticity solutions as long as the 
cylinder is long or thin. More specifically, when the ratio LIRe 
is set at 5, the dala from all approaches agree remarkably well 
over the entire range of the Reih ratios considered. Furthermore, 
all shell theories predict slightly lower values for the critical 
loads. However, for the case of short cylinder (LIRe = I) 
classical shell theory predicts much higher values when the 
cylinder is moderately thick (Rei h :5 30), whi Ie shear deforma­
tion theories provide reasonable values for the critical torsional 
loads. When LIRe is 2, the classical theory results are higher 
than the elasticity solutions except for the case of Rei h = 60, 
but shear deformation theory results are lower except Rei h = 
100 case. 

Higher-order shear deformation theory gave conservative val­
ues for all cases except for the case of LIRe = 2, R/ h = 100. 

Table 5 Comparison of results for an orthotropic cylinder 

Criticaltorsi~nal1oads(N·m x 10')/ Wave number 

Geometry Elasticity CL' FOSD' HOSD' 

UR< R/h Z (% increase (% increase (% increase 
vs. Elasticity) vs. Elasticity) vs. Elasticity) 

100 2493 .84 J8/7	 .8277 / 7 .8277 / 7 .8177 / 7 
(-1.67%) (-1.67%) (-1.67%) 

60 1496 2.552/6	 2.515/6 2.515/6 2.515/6 
(-1.44%) (.1.44%) (-1.44%) 

30 748.1 12.00/5	 11.78/5 11.74 /5 11.72 / 5 
(-1.84%) (-2.18%) (-233%) 

15 374.0 58.56/4	 58.33/4 56.33 / 4 56.01/4 
(-0.38%) (-3.80%) (-4.34%) 

2 100 399.0 1.255/9 1.297/10 1.293/10 1.293/10
 
(3.42%) (3.06%) (3.06%)
 

60 239.4 4.217/7	 4.193/7 4.173/7 4.155/7 
(-0.55%) (-1.04%) (·1.47%) 

30 119.7 23.57/6 23.96/6 23.32/6 23.01/6 
(1.67%) (-1.05%) (-2.40%) 

2 15 59.84 138.9/5	 158.2/5 134.6/5 130.0/5
 
(13.9%) (-3.07%) (·6.41%)
 

100 99.74 2.429/11 2.456/11 2.435/11 2396/11 
(1.09%) (0.25%) (-1.35%) 

60 59.84 9.605/10 9.985/10 9.666/10 9.504 / 10 
(3.96%) (0.64%) (-1.05%) 

30 29.92 62.32/9	 73.47/8 61.91/9 59.51/9 
(17.9%) (-0.66%) (-4.50%) 

15 14.96 347.6/8	 575.0/7 329.6/8 309.2/8 
(65.4%) (-5.17%) (-11.0%) 

• Tabiei and Simitses (1994) 
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The results from classical theory and first-order shear deforma­
tion theory are higher or lower, depending on LIRe and R,./h. 
It should be mentioned on the basis of the results compared 
herein that there is no trend on the conservatism of the critical 
loads from shell theories as in the isotropic cases. 

Figure 5 shows a comparison of normalized critical torsional 
loads with respect to the Batdorf parameter t. Even though the 
data from shell theories compared herein are limited, it can be 
noted that for the value of z: above about 100, shell theories 
are adequate to predict critical torsional load of an orthotropic 
cylinder. 

The circumferential wave number n that a cylinder buckles 
into is also shown in Table 5. Integer wave numbers calculated 
from the shell theories and elasticity formulation agreed in most 
cases. However, all shell theOlies predicted different wave num­
bcrs for the case of LIRr = 2, Rei h = 100, and so did the 
classical shell theory for the cases of LIRr = I, R,./ h = 15 and 
LIRe = I, Rc/h = 30. 

It should be noted that the critical load is also monotonically 
converging for all cases of orthotropic construction considered 
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Fig. 5 Variation of critical loads for an orthotropic cylinder with respect 
to i 

Table 6 Critical torsional loads of an isotropic cylinder 

Critical torsional loads (N· m x 10') / Wave number 

R,/R, 

L/R, 1.01 1.05 1.1 1.15 1.2 

I 2.262110 101.6/6 516.7/5 1238/4 2164/4 

2 1.513/8 5484/5 247.0/4 565.2/3 987.5/3 

1.232/7 41.70/4 182.3/3 404.3/3 725.9/3 

1.070/6 35.81/4 1489/3 3447/3 633.1/3 

5 .9650/6 32.99/4 132.4/3 3165/3 527.412 

6 .8784/5 29.25/3 1232/3 288.9/2 451.4/2 

7 .8111/5 26.47/3 J 17.5/3 250.4/2 403.2/2 

8 .7687/5 24.68/3 113.9/3 224.7/2 371.2/2 

9 .7304/4 23.46/3 1029/2 207.0/2 349.0/2 

10 .6816/4 2260/3 9361/2 194.4/2 3332/2 

herein, as it is for an isotropic cylinder. Four terms in rare 
employed to provide convergence within 0.0 I percent for all 
cases except the shortest and thickest cylinder with LIRe = I, 
Rclh = 15, which needs five terms. Maximum number of z 
terms needed is 25 when LIRe = I, RJh = 15. For a given LI 
Rc ratio, the number of terms in z needed decreases as the ratio 
Rclh becomes small. 

Parametric Study. Having established confidence in the 
methodology and assessed the accuracy of shell theory results, 
an extensive parametric study is performed to provide accurate 
values for the critical torsional loads of isotropic and orthotropic 
cylindrical shells. Results presented herein can be used as refer­
ences for future studies employing shell theory. 

For the isotropic cylinder Young's modulus E = 14 GN/m 2 

and Poisson's ratio v = 0.3 are assumed. Orthotropic materials 
considered here are typical glass/epoxy and graphite/epoxy 
with circumferential reinforcements, having the following prop­
erties: 

glass/epoxy: Ell = E3. = 14.0 X 10 9 N/m 2
, 

E22 = 57.0 X 109 N/m 2 , 

G I2 = G21 = 5.7 X 109 N/m 2
, G I3 = 5.0 X 109 /m 2

, 

Vl2 = 0.068, VI3 = OAOO, 1./2} = 0.277, 

graphite/epoxy: Ell = 9.9 X 109 N/m 2 , 

E" = 140.0 X 10 9 N/m 1 
, 

E33 = 9.1 X 10 9 N/m 2
, G I2 = 4.7 X 10" N/m 2 

, 

G I3 = 5.9 X 10 9 N/m 2
, G I2 = 4.3 X 10 9 N/m 2 

1./12 = 0.020, VI3 = 0.533, V23 = 0.300,' 

where the subscripts 1,2, 3 correspond to r, e, and ~-directions, 

respectively. 
The outer cylinder radius R2 is set to I m and the ratio LI R2 

is varied from I to )O. A range of outer verSus inner radii Ro/ 
R1 from thin (1.01) to thick (1.20) is examined. ­

Tables 6 through 8 show critical torsional loads and wave 
numbers around the circumference for the isotropic, the glass/ 
epoxy, and the graphite/epoxy cylinders. In general, critical 
torsional loads of the graphite/epoxy cylinder are higher than 
those of the glass/epoxy cylinder because of the stronger rein­
forcements. As the cylinder becomes thicker or longer, it buck­
les into a lower circumferential wave number n. For given shell 
geometries, the buckling wave number of the isotropic cylinder 
is the highest followed by the glass/epoxy cylinder and then 
the graphite/epoxy cylinder. 
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Table 7 Critical torsional loads of a glass/epoxy cylinder 

Critical torsional loads (N ·m x 10') I Wave number 

R,IR, 

LIR, 1.01 1.05 1.1 1.15 1.2 

I 3.811/9 141.7/5 668.2/4 156014 2693/4 

2 2.83217 88.00/4 373.3/3 821.613 1434/3 

3 2.423/6 74.92/4 294.3/3 672.0/3 1\ 68/2 

2.181/5 66.12/3 265.7/3 602212 933612 

1.981/5 59.24/3 252.31] 510.8/2 816.7/2 

1.874/5 55.41/3 233.7/2 458.212 7508/2 

1.72214 53.0713 209.1/2 4256/2 710.1/2 

8 1.618/4 51.54/3 192.8/2 404.1/2 683.5/2 

9 1.548/4 50.49/3 181.6/2 ]89.2/2 665 1/2 

10 1.49914 47.91/2 173.5/2 3785/2 651.9/2 

Table B Critical torsional loads of a graphite/epoxy cylinder 

Critical torsional loads (N . m x 10') I Wave number 

R,IR, 

LIR, 1.01 1.05 1.1 1.15 1.2 

I 4.716/7 153.514 682.1/4 1558/4 2621/3 

2 3.753/6 108.414 413.2/3 904.0/3 1528/3 

3 3.305/5 92.00/3 361.1/3 762.8/3 1175/2 

4 3.043/5 83.69/3 338.8/2 643.5/2 1015/2 

5 2.767/4 79.71/3 296.212 585.4/2 938.7/2 

6 2.587/4 77.51/3 272.0/2 553.0/2 897.1/2 

7 2.47914 73.65/2 257.0/2 533.1/2 871.8/2 

8 236713 67.3912 2471/2 520.1/2 855.4/2 

9 2.201/3 63.10/2 240.3/2 511.212 844.2/2 

10 2085/3 60.04/2 235.412 504.7/2 836.1/2 

Conclusion 
The accuracy of shell theory solutions has been assessed 

through a comparison study for both isotropic and orthotropic 
cylinders. For isotropic cylinders it was found that Donnell's 
simplified formula and the direct integration techniques by Ya­
mak.i always predict nonconservative values for the critical tor­
sional loads. The results from Donnell's formula deviate in­
creasingly from those obtained by the present solution as the 
cylinder becomes shorter and thicker. On the other hand, devia­
tion of Yama j's results is independent of cylinder dimensions 
unless the shell geometry parameter, Z, is . mailer than 50. As 
the circumferential wave numbers corresponding to the critical 
load increase, both shell theory solutions provide more accurate 
values. 

The shell theory solution for orthotropic cylinders, which has 
been compared with the pre ent elasticity formulation, is based 
on Donnell-type kinematic relations and Sanders-type buckLing 
equations by employing classical, first-order shear deformation, 
and higher-order shear deformation theories. While both shear 
deformation theories provide results reasonably close to the 
three-dimensional elasticity solutions, classical theory predicts 
much higher critical load values for a short and thick cylinder. 
However, there is no observed trend regarding the conservatism 
of the results from the shell theories with respect to three­
dimensional elasticity solutions on the basis of the data com­
pared. In general, it can be concluded that shell theories are 
adequate to predict critical torsional loads of an orthotropic 
cylinder for the value of Batdorf parameter Z above 100. 

Detuiled numerical tables and figures have uLso been pre­
sented that show variation of critical torsional loads over a wide 
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range of length ratio LIR2 and radii ratio R2 / R, for isotropic, 
glass/epoxy, and graphite/epoxy cylinders. These solutions can 
be used to evaluate the; performane;c of various proposed shell 
theories. 
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APPENDIX A 

Operators L:j and B ~ of Eq. ( 19) are 

(AI2) 

APPENDIX B 
Operators D~ and D~ of Eq, (23) are 

C(6D' (P) = _(C12) P _ (Cll + /12 ) P (Bl )II k r ,r r 2 k, 

(B2) 

(A2) 

(A3 ) 

(M) 

VI/If! 
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W~90)., (A6) 
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Ii 
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lJ 
il 
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DY,(Pt ) = (2n)P", D\~(Pt) = -(r)P,., -- (2)Ph	 C 

Di'~(Pt) = -(n)Pt ,< + (~) Ph (B9) 
I 

D¥,(P,J = (I )Pk> D~2(PI) = (n)Pko 

D~~(Pt) = -( I )Pu + (,: 
2

) Pk> (BIO) 

Dr,(PI ) = 0, D~;l(Pt) = (r)Pko DYJ(Pd = (n)Pt . (BII) 

and K,;- an; 

KII(Pt ) = (ell)Pt .r + (el~2) Ph K'2(Pt ) 

(B 12) 

Kn(Pt ) = 0, (BI3) 

KJ,(Pt ) = (c ~)Pko KJ2(Pd = 0, K33 (Pd = (C55)Pt .r • (BI4) 
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